
Supplementary Material for "Fused Orthogonal
Alternating Least Squares for Tensor Clustering"

Anonymous Author(s)
Affiliation
Address
email

A Proofs1

We introduce some notations utilized in this supplementary material. Bold capital letters such as2

A,B, ... denote the matrices and in particular, we use I to represent the identity matrix. Columns in3

matrices are denoted via specifying column index and using colon to cover all row elements, i.e., A:i4

denotes the ith column in matrix A. ⊙ represents Khatri–Rao product between matrices.5

A.1 Proof of Theorem 16

We use the updates for Ĉ:i as an example; similar error bounds can be derived for Â:i, B̂:i analogously.7

As stated, Fused-Orth-ALS algorithm includes the following major four steps for the updates:8

1. Orthogonal projection:9

Suppose Â:i and B̂:i are estimates from the previous iteration. With a slight abuse of10

notation, we first calculate the projection of Â:i and B̂:i to the previous (i− 1) orthogonal11

basis, {Ā:j , j < i} and {B̄:j , j < i}, which are denoted by Ā:i and B̄:i; they are calculated12

as13

Ā:i = Â:i −
∑
j<i

Ā⊤
:jÂ:iĀ:j

B̄:i = B̂:i −
∑
j<i

B̄⊤
:jB̂:iB̄:j

2. ALS-update:14

This is similar to the classical alternating least squares algorithm; it computes the unnormal-15

ized version of the estimate for the factor matrix along the third mode via Y(3)(B̄⊙ Ā). We16

denote with Z the estimate after taking ALS updates with normalization. In summary, each17

column in Z is equivalent to,18

Z:i =
Y(Ā:i, B̄:i, I)

∥Y(Ā:i, B̄:i, I)∥2
3. Fuse operator:19

This step imposes a generalized LASSO regularization on the pairwise row differences on20

Z, which is equivalent to imposing the operator 3∆ on each column as21

Z̃:i = argmin
C:i

1

2
∥Z:i −C:i∥22 + λ∥ 3∆C:i∥1

4. Normalization:22

The factor matrix estimate Ĉ is finally obtained via normalizing columns in Z̃ to have unit 123

norm.24

Ĉ:i =
Z̃:i

∥Z̃:i∥2
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We show the convergence rate for Fused-Orth-ALS algorithm in two steps, one for the first column25

and one for the remaining columns. The first step updates the first column, i.e. C:1 which is not26

affected by the ’orthogonalization’ step. Then utilizing a similar proof strategy, induction will be27

implemented to prove the same convergence error bounds hold for the remaining K − 1 columns.28

Step 1: convergence error for Ĉ:129

Update for Z:1 can be written as30

Z:1 =
Y(Â:1, B̂:1, I)

∥Y(Â:1, B̂:1, I)∥2
and furthermore ∥Z:1 −C:1∥2 can be upper bounded by31

∥Z:1 −C:1∥2 = ∥ Y(Â:1, B̂:1, I)

∥Y(Â:1, B̂:1, I)∥2
−C:1∥2

≤ ∥ Y∗(Â:1, B̂:1, I)

∥Y(Â:1, B̂:1, I)∥2
−C:1∥2 + ∥ E(Â:1, B̂:1, I)

∥Y(Â:1, B̂:1, I)∥2
∥2

The second inequality comes from the model assumption that the tensor observation is a perturbed32

version of the true underlying tensor, Y = Y∗ + E . Following the proof of Theorem 3 in Sun and Li33

[2] and denoting f(ϵ0, ρ,K) := αϵ20 + ρ2(K − 1) + 2ϵ0ρ(K − 1), we can show the convergence34

error bound for Z:1 is35

∥Z:1 −C:1∥2 ≤ 2wmaxf(ϵ0, ρ,K) + 2ψ

w1(1− ϵ20)− wmaxf(ϵ0, ρ,K)− ψ

By Lemma 1 and choosing an appropriate tuning parameter λ, the update Ĉ:1, which is derived from36

Z:1 after taking fuse operator, satisfies37

∥Ĉ:1 −C:1∥22 ≤
[ 2wmaxf(ϵ0, ρ,K) + 2ψ

w1(1− ϵ20)− wmaxf(ϵ0, ρ,K)− ψ

]2
+

8M∥ 3∆C:1∥1(wmaxf(ϵ0, ρ,K) + ψ)

w1(1− ϵ20)− wmaxf(ϵ0, ρ,K)− ψ
(1)

Moreover, under bounded fusion assumption A4, the convergence error bound in (1) can be expressed38

as39

∥Ĉ:1 −C:1∥2 ≤ 2
√
2(wmaxf(ϵ0, ρ,K) + ψ)

w1(1− ϵ20)− wmaxf(ϵ0, ρ,K)− ψ
(2)

Note that f(ϵ0, ρ,K) can be organized as ρ2(K − 1) + q̃ϵ0, where q̃ = αϵ0 +2ρ(K − 1). Moreover,40

assumption A2 requires ϵ0 ≤ min{ wmin

6wmax
− ρ2(K − 1), wmin

12
√
2wmaxα

− 2ρ(K−1)
α }, which leads to41

ϵ20 ≤ wmin

6wmax
and q̃ ≤ 1. Thus, we can derive f(ϵ0, ρ,K) ≤ wmin/(6wmax). Now, the denominator42

in (2) can be lower bounded by43

w1(1− ϵ20)− wmaxf(ϵ0, ρ,K)− ψ

≥wmin(1−
wmax

wmin
ϵ20 −

wmax

wmin
f(ϵ0, ρ,K)− ψ

wmin
)

≥wmin(1−
1

6
− 1

6
− 1

6
)

≥wmin

2
(3)

Combining (2) and (3), we have44

∥Ĉ:1 −C:1∥2 ≤ 4
√
2wmax

wmin
ρ2K +

4
√
2

wmin
ψ +

4
√
2wmax

wmin
q̃ϵ0

with 4
√
2wmax

wmin
q̃ ≤ 1

3 . Then, by iteratively applying the above result, we can obtain45

∥Ĉ:1 −C:1∥2 ≲ γρ2K +
ψ

wmin

2



Step 2: convergence error for Ĉ:i,∀i ∈ {2, ...,K}46

We now prove that Fused-Orth-ALS algorithm recovers the remaining columns. We have already47

shown that it recovers the first column and we would like to use induction to prove the same48

convergence error bound holds for the remaining K − 1 columns, i.e. if the first (i − 1) columns49

have converged, the ith column also converges. The main idea is that, since the correlations among50

columns in factor matrices are small, the orthogonalization step will not affect the factors which have51

not been recovered, but ensure the ith estimate never has high correlation with the first i− 1 columns52

which have already been recovered. Lemma 3 proves this claim.53

Next, we show how to bound ∥Ĉ:i − C:i∥2, for i > 1. We will start by bounding the difference54

between ALS update Z:i and C:i and then apply Lemma 1 to consider the effect of fuse operator.55

Taking the orthogonalization step into account, ∥Z:i −C:i∥2 can be bounded through56

∥Z:i −C:i∥2 =∥ Y(Ā:i, B̄:i, I)

∥Y(Ā:i, B̄:i, I)∥2
−C:i∥2

≤∥ Y∗(Ā:i, B̄:i, I)

∥Y(Ā:i, B̄:i, I)∥2
−C:i︸ ︷︷ ︸

II1

∥2 + ∥ E(Ā:i, B̄:i, I)

∥Y(Ā:i, B̄:i, I)∥2︸ ︷︷ ︸
II2

∥2

We will follow a similar procedure as that we used for proving the convergence for the first col-57

umn. Note that orthogonalized columns updates Ā:i, B̄:i can be expressed as Ā:i = a(Â:i −58 ∑
j<i Ā

⊤
:jÂ:iĀ:j) and B̄:i = b(B̂:i −

∑
j<i B̄

⊤
:jB̂:iB̄:j) where a, b are two normalization parame-59

ters to keep ∥Ā:i∥2 = ∥B̄:i∥2 = 1 holds. We will ignore the normalization parameters a, b when60

we analyze II1, II2 since they will both appear in the numerator and denominator and could be61

cancelled.62

First, let’s try to analyze the numerator of II1.63

Y∗(Ā:i, B̄:i, I) = Y∗(Â:i −
∑
j<i

Ā⊤
:jÂ:iĀ:j , B̂:i −

∑
j<i

B̄⊤
:jB̂:iB̄:j , I)

= Y∗(Â:i, B̂:i, I)︸ ︷︷ ︸
II11

−
∑
j<i

Ā⊤
:jÂ:iY∗(Ā:j , B̂:i, I)︸ ︷︷ ︸

II12

−
∑
j<i

B̄⊤
:jB̂:iY∗(Â:i, B̄:j , I)︸ ︷︷ ︸

II13

+

∑
j1<i

Ā⊤
:j1Â:i

∑
j2<i

B̄⊤
:j2B̂:iY∗(Ā:j1 , B̄:j2 , I)︸ ︷︷ ︸
II14

Before we show the bound for II11, II12, II13, II14, we notice that Ā⊤
:jA:i, B̄

⊤
:jB:i,∀j < i, appear64

in II12, II13, II14 which can be bounded uniformly,65

∆ : = max
j1<i,j2<i

{Ā⊤
:j1Â:i, B̄

⊤
:j2B̂:i}

≤ max
j1<i,j2<i

{(A:j1 + ξj1)
⊤(A:i + ξ̂i), (B:j2 + ξj2)

⊤(B:i + ξ̂i)}

≤ α/
√
d+ ϵ0 + 10Kγα/

√
d+ 10Kγα/

√
dϵ0

The two inequalities above are derived based on Lemma 3.66

Bound ∥II11∥267

II11 =Y∗(Â:i, B̂:i, I)

=

K∑
l=1

wl⟨A:l, Â:i −A:i +A:i⟩⟨B:l, B̂:i −B:i +B:i⟩C:l

=

K∑
l ̸=i

wl⟨A:l, Â:i −A:i +A:i⟩⟨B:l, B̂:i −B:i +B:i⟩C:l + wi⟨A:i, Â:i −A:i⟩⟨B:i, B̂:i −B:i⟩C:i

+ wi⟨A:i, Â:i −A:i⟩⟨B:i,B:i⟩C:i + wi⟨A:i,A:i⟩⟨B:i, B̂:i −B:i⟩C:i + wi⟨A:i,A:i⟩⟨B:i,B:i⟩C:i

3



For simplicity, we denote II ′11 =
∑K

l ̸=i wl⟨A:l, Â:i − A:i + A:i⟩⟨B:l, B̂:i − B:i + B:i⟩C:l +68

wi⟨A:i, Â:i−A:i⟩⟨B:i, B̂:i−B:i⟩C:i+wi⟨A:i, Â:i−A:i⟩⟨B:i,B:i⟩C:i+wi⟨A:i,A:i⟩⟨B:i, B̂:i−69

B:i⟩C:i. After re-randomization, we can use the conclusion from the convergence result from step 170

and Theorem 3 in Sun and Li [2], we can obtain71

∥II ′11∥2 ≤ wmaxf(ϵ0, ρ,K) + 2wiϵ0

Bound ∥II12∥2 Similarly, II12 can be written as72 ∑
j<i

Ā⊤
:jÂ:iY∗(Ā:j , B̂:i, I) ≤

∑
j<i

∆Y∗(Ā:j , B̂:i, I)

with73

Y∗(Ā:j , B̂:i, I) =Y∗(Ā:j −A:j +A:j , B̂:i −B:i +B:i, I) = Y∗(Ā:j −A:j , B̂:i −B:i, I)︸ ︷︷ ︸
i1

+ Y∗(A:j , B̂:i −B:i, I)︸ ︷︷ ︸
i2

+Y∗(Ā:j −A:j ,B:i, I)︸ ︷︷ ︸
i3

+Y∗(A:j ,B:i, I)︸ ︷︷ ︸
i4

Using the CP low rank decomposition structure of Y∗, we have74

∥i1∥2 = ∥
∑
l∈[K]

wl⟨Ā:j −A:j ,A:l⟩⟨B̂:i −B:i,B:l⟩C:l∥2

≤ ϵ0 max
j<i

∥ξj∥2
∑
l∈[K]

wl ≤ ϵ0 max
j<i

∥ξj∥2wmaxα (4)

where the last inequality is obtained from Lemma 3 and assumption A1, i.e., ∥Y∗∥ ≤ wmaxα.75

Similarly, by imposing the incoherence assumption A1, we can bound ∥i2∥276

∥i2∥2 = ∥
∑
l ̸=j

wl⟨A:j ,A:l⟩⟨B̂:i −B:i,B:l⟩C:l + wj⟨B̂:i −B:i,B:j⟩C:j∥2

≤ ϵ0ρ(K − 1)wmax + wmaxϵ0 (5)

To bound ∥i3∥2, ∥i4∥2, we split i3, i4 into two parts with the second part related to wiC:i,77

i3 = i′3 + ∥ξj∥2wiC:i

∥i′3∥2 = ∥
∑
l ̸=i

wl⟨Ā:j −A:j ,A:l⟩⟨B:i,B:l⟩C:l∥2

≤ max
j<i

∥ξj∥2ρ(K − 1)wmax (6)

and78

i4 = i′4 + wiρC:i

∥i′4∥2 = ∥
∑
l ̸=i

wl⟨A:j ,A:l⟩⟨B:i,B:l⟩C:l∥2

≤ ρ2(K − 2)wmax + wmaxρ (7)

Thus, combine the above analysis for i1, i2, i3, i4, we have79

∥II12∥2 ≤ (K − 1)∆∥II ′12∥2 + (K − 1)∆(max
j<i

∥ξj∥2 + ρ)∥wiC:i∥2

Furthermore, ∥II ′12∥2 can be bounded by combining the results in (4), (5), (6) and (7) as,80

∥II ′12∥2 ≤ ∥i1∥2 + ∥i2∥2 + ∥i′3∥2 + ∥i′4∥2
≤ max

j<i
∥ξj∥2ϵ0wmaxα+ (ϵ0 +max

j<i
∥ξj∥2)ρ(K − 1)wmax + ρ2(K − 2)wmax + (ϵ0 + ρ)wmax

4



Bound ∥II13∥2 Similar to ∥II12∥2.81

Bound ∥II14∥282

II14 =
∑
j1≤i

Ā⊤
:j1A:i

∑
j2≤i

B̄⊤
:j2B:iY∗(Ā:j1 −A:j1 +A:j1 , B̄:j2 −B:j2 +B:j2 , I)

≤
∑
j1≤i

∑
j2≤i

∆2(Y∗(Ā:j1 −A:j1 , B̄:j2 −B:j2 , I)︸ ︷︷ ︸
ii1

+Y∗(Ā:j1 −A:j1 ,B:j2 , I)︸ ︷︷ ︸
ii2

+ Y∗(A:j1 , B̄:j2 −B:j2 , I)︸ ︷︷ ︸
ii3

+Y∗(A:j1 ,B:j2 , I)︸ ︷︷ ︸
ii4

)

Still, under the CP decomposition structure of Y∗, we have83

∥ii1∥2 =
∥∥∥ ∑

l∈[K]

wl⟨Ā:j1 −A:j1 ,A:l⟩⟨B̄:j2 −B:j2 ,B:l⟩C:l

∥∥∥
2

≤ ∥ξj1∥2∥ξj2∥2wmaxα (8)
84

∥ii2∥2 = ∥
∑
l∈[K]

wl⟨A:j1 ,A:l⟩⟨B̄:j2 −B:j2 ,B:l⟩C:l∥2

≤ wmax∥ξj2∥2 + ρ(K − 1)∥ξj2∥2wmax (9)

∥ii3∥2 can be bounded in a similar way to ∥ii2∥2, which is85

∥ii3∥2 ≤ wmax∥ξj1∥2 + ρ(K − 1)∥ξj1∥2wmax (10)

For ii4,86

∥ii4∥2 = ∥
∑
l∈[K]

wl⟨A:j1 ,A:l⟩⟨B:j2 ,B:l⟩C:l∥2

≤ (K − 2)ρ2wmax + 2wmaxρ (11)

Combine the above results in (8),(9),(10) and (11),87

∥II14∥2 ≤((K − 1)∆)2
{
∥ξj1∥2∥ξj2∥2wmaxα+ wmax(∥ξj1∥2 + ∥ξj2∥2 + 2ρ)

+ ρ(K − 1)(∥ξj1∥2 + ∥ξj2∥2)wmax + (K − 2)ρ2wmax

}
In summary, if we denote ξ := maxj ∥ξj∥2,∀j ∈ [K] and from Lemma 3, we can obtain ξ ≤88

10γαK/
√
d and furthermore, the norm of Y∗(Ā:i, B̄:i, I) in the numerator of II1 is bounded by89

∥Y∗(Ā:i, B̄:i, I)∥2 ≤ ∥Λ∥2 + ∥ (2(K − 1)∆(ξ + ρ) + 1)︸ ︷︷ ︸
η0

wiC:i∥2

where90

∥Λ∥2 = η1wmaxα+ η2ρ(K − 1)wmax + η3ρ
2(K − 2)wmax

η1 = 2(K − 1)∆ξϵ0 + (K − 1)2ξ2∆2 + ϵ20

η2 = 2(K − 1)∆(ϵ0 + ξ) + 2(K − 1)2∆2ξ + ϵ0

η3 = 2(K − 1)∆ + (K − 1)2∆2 + 1

Next, following Theorem 3 step 2 in Sun and Li [2], the denominator of II1 can be lower bounded in91

a similar way to the numerator,92

∥Y(Ā:i, B̄:i, I)∥2 ≥ wi(1− ϵ20)− ∥Λ∥2 − ψ

Thus,93

∥II1∥2 ≤ ∥Λ∥2 + ∥η0wiC:i − (wi(1− ϵ20)− ∥Λ∥2 − ψ)C:i∥2
wi(1− ϵ20)− ∥Λ∥2 − ψ

(12)

5



Using assumption Kρ2 = o(1) in A1 and the initialization assumption in A2,94

ϵ0 ≤ (
√
2− 1)

√
d/(K − 1)− α(1 + 10γK)√
d+ 10αγK

Utilizing the above upper bound on ϵ0, we can show that η0 ≤ 2, η1 ≤ 2ϵ20, η2 ≤ 2ϵ0, η3 ≤ 2.95

Plugging those facts into (12), we obtain96

∥II1∥2 ≤ 4wmaxf(ϵ0, ρ,K) + ψ

wi(1− ϵ20)− 2wmaxf(ϵ0, ρ,K)− ψ
(13)

Following the analogous arguments in step 1, we can bound ∥II2∥2 as97

∥II2∥2 ≤ ψ

wi(1− ϵ20)− 2wmaxf(ϵ0, ρ,K)− ψ
(14)

Therefore, combining (13) and (14), we successfully show that98

∥Z:i −C:i∥2 ≤ 4wmaxf(ϵ0, ρ,K) + 2ψ

wi(1− ϵ20)− 2wmaxf(ϵ0, ρ,K)− ψ

Next we consider the effect of fuse operator by combining the result in Lemma 1, assumption A4 and99

appropriate choice for tuning parameter λ, which leads to100

∥Ĉ:i −C:i∥2 ≤ 4
√
2wmaxf(ϵ0, ρ,K) + 2

√
2ψ

wi(1− ϵ20)− 2wmaxf(ϵ0, ρ,K)− ψ

Under assumption A2, wi(1− ϵ20)− 2wmaxf(ϵ0, ρ,K)−ψ ≥ wmin(1− 1
6 −

1
3 −

1
6 ) =

wmin

3 . Then,101

∥Ĉ:i −C:i∥2 ≤ 12
√
2
wmax

wmin
ρ2(K − 1) + 6

√
2

ψ

wmin
+ 12

√
2
wmax

wmin
q̃

We know that 12
√
2wmax

wmin
q̃ ≤ 1 by assumption A2. Thus, iteratively implementing the above result,102

we have103

∥Ĉ:i −C:i∥2 ≲ γρ2(K − 1) +
ψ

wmin
.

A.2 Proof of Corollary 1104

Theorem 1 shows that105

∥Ĉ:i −C:i∥2 ≲
wmax

wmin
ρ2(K − 1) +

ψ

wmin

Under the assumption that Eijk are independent, zero-mean and E[etEijk ] ≤ e
σ2t2

2 , by Lemma 2, we106

have with probability at least 1− δ,107

ψ ≤

√
8σ2(3d log

6

log 3/2
+ log

2

δ
)

Combined with wmin ≻
√
σ2[3d log 6

log 3/2 + log 2
δ ]d

2/(K − 1), we have108

ψ

wmin
≲

(K − 1)

d

Furthermore, under assumption A1 that ρ ≤ α√
d

, it is easy to derive that109

∥Ĉ:i −C:i∥2 ≲
(K − 1)

d

6



A.3 Proof of Theorem 2110

We have shown in Corollary 1 that, if elements in error tensor E are independently and identically111

sub-Gaussian distributed, we have112

∥Ĉ:i −C:i∥2 ≲
(K − 1)

d
Based on this result, we can obtain the estimation error for the true cluster means as113

max
i

∥µ̂3,i − µ3,i∥2 ≤
√
K∥Ĉ:i −C:i∥2 ≤ C̃

K1.5

d

for some constant C̃. If mini,j ∥µ3,i − µ3,j∥2 ≥ CK1.5

d for some constant C > 4C̃, we have, for114

any two samples µ̂3,i, µ̂3,j from two different clusters C∗
i ,C

∗
j respectively,115

∥µ̂3,i − µ̂3,j∥2 = ∥µ̂3,i − µ3,i + µ3,i − µ3,j + µ3,j − µ̂3,j∥2

≥ ∥µ3,i − µ3,j∥2 − ∥µ̂3,i − µ3,i∥2 − ∥µ3,j − µ̂3,j∥2 ≥ 2C̃
K1.5

d

For any two samples µ̂3,i, µ̂3,i′ from same cluster C∗
i ,116

∥µ̂3,i − µ̂3,i′∥2 = ∥µ̂3,i − µ3,i + µ3,i − µ̂3,i′∥2
≤ ∥µ̂3,i − µ3,i∥2 + ∥µ3,i − µ̂3,i′∥2

≤ 2C̃
K1.5

d

≲
K1.5

d
Thus, the within cluster distance is always smaller than the between-cluster distance, and henceforth,117

we will get the clustering consistency, Ĉi = C∗
i ,∀i ∈ {1, 2, ..., s3} with high probability. Analogously,118

this method can be applied to the first and second mode to obtain similar results.119

To see how this bound relates to the cluster size s3, we will do the following analysis. Recall that120

assumption A4 imposes the following restriction121

∥ 3∆C:i∥1 ≤ wmax(ϵ
2
0α+ 2ϵ0ρ(K − 1) + ρ2(K − 1)) + ψ

2Mwmin(1− ϵ20)
(15)

Considering the simple case when we have balanced size in each cluster, i.e., there are d/s3 samples122

equally in each cluster. Then, ∥ 3∆C:i∥1 can be bounded by123

∥ 3∆C:i∥1 ≤
∑

j,l∈[s3],j<l

( d
s3

)2

|µ(3,j),i − µ(3,l),i|

≤
( d
s3

)2

(s3 − 1)
∑
j∈[s3]

|µ(3,j),i|

≤
( d
s3

)2

(s3 − 1)
√
s3

√ ∑
j∈[s3]

|µ(3,j),i|2

≤
( d
s3

)2

(s3 − 1)
√
s3

√
s3
d

≤ d1.5(1− 1

s3
) (16)

where the third inequality is due to Cauchy-Schwarz inequality and the fourth inequality is derived124

from the following fact: since ∥C:i∥2 =
∑

j∈[s3]
d
s3
|µ(3,j),i|2 = 1, we can obtain125 ∑

j∈[s3]

|µ(3,j),i|2 =
s3
d

Considering that we impose uniform weight difference operator, i.e., γ3i1,i2 = 1 , we have the126

following result for 3∆†,127

3∆† =
1

d
3∆⊤ (17)
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This results in M = 2/d. Thus, under assumptions A1-A3, we have (15) can be simplified as128

wmax(ϵ
2
0α+ 2ϵ0ρ(K − 1) + ρ2(K − 1)) + ψ

2wmin(1− ϵ20)
≲
K

d
(18)

Combining (16), (17) and (18), we have129

1− 1

s3
≲

K√
d

In conclusion, when the cluster size s3 increases, the clustering task becomes more challenging.130

B Supporting Lemmas131

In this section, we provide several supporting lemmas.132

Lemma 1. Consider the model y = β∗+ϵwith true parameter β∗ ∈ Rd and arbitrary noise ϵ. Denote133

the fused LASSO estimator as β̂ := argminβ
1
2∥y − β∥22 + λ∥Dβ∥1. Denote M := maxj ∥[D†]j∥2.134

If λ ≥M∥ϵ∥2, then we have135

∥β̂ − β∗∥22 ≤ ∥ϵ∥22 + 4λ∥Dβ∗∥1

Lemma 1 provides the error bound of a fused LASSO estimator and can be proved using similar136

arguments as in the proof of Theorem 3 in Wang et al. [4].137

Lemma 2. Assume that each element in E ∈ Rd1×d2×d3 is independent, zero-mean and satisfies138

E[etEijk ] ≤ e
σ2t2

2 , then spectral norm can be bounded as follows:139

ψ := ∥E∥ ≤

√
8σ2((d1 + d2 + d3) log

6

log 3/2
+ log

2

δ
)

with probability at least 1− δ.140

Proof of Lemma 2 follows from similar arguments to the proof of Theorem 1 in Tomioka and Suzuki141

[3].142

Lemma 3. Consider a stage of the algorithm Fused-Orth-ALS iterations when the first (m − 1)143

columns in each factor matrices have converged. Without loss of generality, let Ĉ:p = C:p +144

ξ̂p, p < m, where ∥ξ̂p∥2 ≤ 6
√
2(α2 + 1)Kγ/d. Let {C̄:p, p < m} denote an orthogonal basis for145

{C:p, p < m}. Then if assumptions A1-A4 hold, we have146

• C̄:p = C:p + ξp, ∥ξp∥2 ≤ 10Kγα/
√
d, ∀p < m147

• |C⊤
:i ξp| ≤ 20Kγα2/d, ∀p < m, i > p148

Proof. We now analyze the orthogonal basis {C:p, p < m}. The key idea follows Lemma 3 in149

Sharan and Valiant [1] where the orthogonal factors {C̄:p, p < m} is close to the original factors150

{C:p, p < m} as factor matrices satisfy the incoherent condition. Next, we try to prove the result by151

induction. As shown, the first column estimate converges to C:1+ ξ̂1 with the error term ξ̂1 satisfying152

the bound153

∥ξ̂1∥2 ≤ 4
√
2wmax

wmin
ρ2K +

4
√
2

wmin
ψ +

4
√
2wmax

wmin
q̃ϵ0

≤ 4
√
2(γρ2K +

ψ

wmin
) +

1

3
ϵ0

...

≤ 4
√
2(γρ2K +

ψ

wmin
)(1 +

1

3
+

1

32
+ ...+

1

3n
) +

1

3n
ϵ0

≤ 6
√
2(γρ2K +

ψ

wmin
)

≤ 6
√
2(α2 + 1)Kγ/d
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The third to last and second to last inequalities are derived by keeping updates iteratively and set154

number of iterates n → ∞. Under assumption A1 ρ ≤ α/
√
d and A3 ψ ≤ wmaxK/d, the last155

inequality can be shown easily. Since C̄:1 = Ĉ:1, the base case is correct. Assume the result is156

true for the first p− 1 vectors in the basis and after orthogonalization, the pth basis vector has the157

following form of updates158

C̄:p =
1

κ
((C:p + ξ̂p)−

∑
j<p

((C:p + ξ̂p)
⊤C̄:j)C̄:j)

where κ is the normalizing factor which guarantees ∥C̄:p∥2 = 1. Define µp,j = C⊤
:p(C:j + ξj) and it159

can be bounded by |µp,j | ≤ 2γα/
√
d since induction hypothesis and incoherent assumption. Using160

the induction hypothesis, we can write161

κC̄:p = C:p −
∑
j<p

(C⊤
:p(C:j + ξj))(C:j + ξj) + ξ̂p −

∑
j<p

(ξ̂⊤p (C:j + ξj))(C:j + ξj)

= C:p −
∑
j<p

µp,j(C:j + ξj) + ξ̂ϵ

where ξ̂ϵ = ξ̂p −
∑

j<p(ξ̂
⊤
p (C:j + ξj))(C:j + ξj). Since ξ̂ϵ is a projection of ξ̂p orthogonal to the162

basis {C̄:j , j < p}, it’s easy to obtain ∥ξ̂ϵ∥2 ≤ ∥ξ̂p∥2 ≤ 6
√
2(α2 + 1)Kγ/d. Next, we can write163

κC̄:p = C:p −
∑
j<p

µp,jC:j −
∑
j<p

µp,jξj + ξ̂ϵ

= C:p + ξ′p

with ξ′p = −
∑

j<p µp,jC:j −
∑

j<p µp,jξj + ξ̂ϵ which can be bounded by164

∥ξ′p∥2 ≤
∑
j<p

∥µp,jC:j∥2 +
∑
j<p

∥µp,jξj∥2 + ∥ξ̂ϵ∥2

≤ 2Kγα/
√
d+ 2Kγα

√
d× 10Kγα/

√
d+ 6

√
2(α2 + 1)Kγ/d ≤ 3Kγα/

√
d

Recall that κ is the normalizing constant and thus by triangle inequality, 1 − 3Kγα/
√
d ≤ κ ≤165

1 + 3Kγα/
√
d. Furthermore, we can also bound 1/κ by166

1− 3Kγα/
√
d ≤ 1

1 + 3Kγα/
√
d
≤ 1

κ
≤ 1

1− 3Kγα/
√
d
≤ 1 + 6Kγα/

√
d

Thus, we can rewrite C̄:p as167

C̄:p =
1

κ
(C:p + ξ′p)

= C:p − (1− 1

κ
)C:p +

1

κ
ξ′p

= C:p +m1C:p +m2ξ
′
p

= C:p + ξp

withm1 = −(1− 1
κ ),m2 = 1

κ , ξp = m1C:p+m2ξ
′
p. Since |m1| ≤ 6Kγα/

√
d and 1−3Kγα/

√
d ≤168

m2 ≤ 1 + 6Kγα/
√
d. Hence, ∥ξp∥2 ≤ 10Kγα/

√
d.169

The remaining work lefts to show |C⊤
:i ξp| ≤ 20γα2K/d, p < i.170

|C⊤
:i ξp| = |m1||C⊤

:iC:p|+ |m2||
∑
j<p

µp,jC
⊤
:jC:i −

∑
j<p

µp,jC
⊤
:i ξj +C⊤

:i ξ̂ϵ|

≤ 6Kγα2/d+ (1 + 6Kγα/
√
d)(2Kγα2/d+ 2Kγα/

√
d× 20Kγα2/d+ 6

√
2(α2 + 1)Kγ/d)

≤ 20Kγα2/d

171
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C More details on numerical experiments172

C.1 Finite sample performance of Fused-Orth-ALS algorithm173

We add more synthetic experiments to evaluate the Fused-Orth-ALS algorithm performance on174

finite samples, and the relationship between recovery error, clustering error and different parameters175

including perturbation level ψ, dimension d as shown in Theorems 1 and 2. Theorem 1 reveals that176

the convergence bounds are in the same form with respect to parameters over each mode. Thus, the177

first experiment takes a similar simulation setting to that in the paper, using an order three tensor, and178

where we would like to perform clustering over the third mode. We assume the order three tensor is179

generated under the CP decomposition structure with rank K = 2, and we set the dimension of the180

first two matrices to be the same e.g. d1 = d2 = d and their unnormalized columns:181

A:1 = B:1 = (µ,−µ, 0.5µ,−0.5µ, 0, ..., 0︸ ︷︷ ︸
d−4

)⊤,A:2 = B:2 = (0, 0, 0, 0, µ,−µ, 0.5µ,−0.5µ, 0, ..., 0︸ ︷︷ ︸
d−8

)⊤

The third factor matrix with unnormalized & unshuffled columns is generated by182

C:1 = (µ, ..., µ︸ ︷︷ ︸
⌊d3/2⌋

,−µ, ...,−µ︸ ︷︷ ︸
⌊d3/2⌋

)⊤,C:2 = (−µ, ...,−µ︸ ︷︷ ︸
⌊d3/4⌋

, µ, ..., µ︸ ︷︷ ︸
⌊d3/2⌋

,−µ, ...,−µ︸ ︷︷ ︸
⌊d3/4⌋

)⊤ (19)

We then shuffle the rows of C to make the samples from same cluster not necessarily in consecutive or-183

der. There are four clusters over third mode with cluster means as (µ,−µ), (µ, µ), (−µ, µ), (−µ,−µ)184

respectively. After normalizing the columns of A,B,C, we can calculate the weights wi. For sim-185

plicity, the factor matrices we used in this example, A,B,C, are orthogonal, satisfying assumption186

A1. Moreover, the error tensor is generated with entries drawn independently from a Gaussian187

distribution with mean 0 and standard deviation σ.188

Henceforth, we would like to see how recovery and cluster errors change as the noise level σ and the189

sample size over third mode d3 change. Results for multiple experiments are shown in Figure 1. Top190

left panel in Figure 1 indicates that recovery error increases linearly with σ as we change the noise191

level σ from 0 to 2. As we increases sample size d3 from 20 to 200, recovery error decreases roughly192

at the rate of 1/d3. The trend in these two figure is consistent with our theoretical result in Theorem193

1. Note in top right panel of Figure 1 that clustering error increases as noise level σ increases. As194

reflected by bottom right panel of Figure 1, clustering error decreases at a rate of 1/d3 as d3 increases195

which validates the clustering error bound provided in Theorem 2.196

Theoretical results show that a large number of clusters s3 increases recovery and clustering errors.197

To test this conclusion, we modify the third mode factor matrix C (defined in (19)) to increase the198

number of clusters from 2 to 8. Remember that we shuffle rows of C to make sure that rows from199

same cluster are not necessarily adjacent to each other. The detailed choice of cluster mean values for200

different number of clusters can be found in Table 1. Corresponding recovery and clustering errors201

for experiments with different number of clusters are provided in Table 2, and are in agreement with202

previous analysis in the proof of Theorem 2.

Table 1: Cluster center mean choice for C with different number of clusters s3

s3 cluster mean
2 (µ, µ), (µ,−µ)
4 (µ, µ), (µ,−µ), (−µ, µ), (−µ,−µ)
6 (µ, µ), (µ,−µ), (−µ, µ), (−µ,−µ), (0, µ), (µ, 0)
8 (µ, µ), (µ,−µ), (−µ, µ), (−µ,−µ), (0, µ), (µ, 0), (0,−µ), (−µ, 0)

Table 2: Recovery error and clustering error with different number of cluster s3. Average errors
and standard deviations (in parenthesis) are reported based on 50 replications. (Model setting:
µ = 1, d1 = d2 = 8, d3 = 40, σ = 1)

s3 = 2 s3 = 4 s3 = 6 s3 = 8
Recovery Error 0.504(0.0871) 0.507(0.0829) 0.555(0.0604) 0.614(0.1109)
Clustering Error 0.019(0.0328) 0.025(0.0490) 0.109(0.0326) 0.121(0.0301)

203
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Figure 1: (Top left): Recovery errors for different noise levels (Model setting µ = 1, d1 = d2 =
8, d3 = 40 and σ ∈ {0, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2}. (Bottom left): Recovery errors for differ-
ent sample sizes d3 (Model setting µ = 1, d1 = d2 = 8, σ = 1 and d3 ∈ {20, 40, 60, 80, 100, 200}).
(Top right): Clustering errors for different noise levels σ (Model setting µ = 1, d1 = d2 = 8, d3 = 40
and σ ∈ {0, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2}). (Bottom right): Clustering errors for different
sample sizes d3 (Model setting µ = 1, d1 = d2 = 8, σ = 1 and d3 ∈ {20, 40, 60, 80, 100, 200}).
Average errors and standard error bars are reported based on 50 replications.

C.2 More details on real data analysis204

The rank K for Fused-Orth-ALS algorithm is chosen with the elbow method for recovery error.205

Finally, K = 2 which achieves the lowest recovery error is picked for HCP dataset and K = 7 is the206

elbow point for Nations dataset.207

The number of clusters based on Gap statistics are set to be 5 and 3 for HCP and nations dataset208

respectively (Figure 2).209
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Figure 2: Number of clusters based on gap statistics (Left: HCP, Right: Nations)
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