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Abstract

Recently, the accuracy of image-text matching has been greatly improved by
multimodal pretrained models, all of which are trained on millions or billions of
paired images and texts. Different from them, this paper studies a new scenario as
unpaired image-text matching, in which paired images and texts are assumed to
be unavailable during model training. To deal with this, we propose a simple yet
effective method namely Multimodal Aligned Conceptual Knowledge (MACK),
which is inspired by the knowledge use in human brain. It can be directly used as
general knowledge to correlate images and texts even without model training, or
further fine-tuned based on unpaired images and texts to better generalize to certain
datasets. In addition, we extend it as a re-ranking method, which can be easily
combined with existing image-text matching models to substantially improve their
performance.

1 Introduction

Image-text matching is one of the most representative techniques in the field of vision and language
understanding, which has wide applications such as online shopping, human-robot interaction and
autonomous driving. Its major challenge lies in how to accurately measure the cross-modal similarity
between images and texts. Recently, by training on very large-scale (millions or billions) paired
images and texts, various multimodal pretrained models [23, 20, 7] alleviate the challenge in a
supervised learning manner. Although the accuracy of image-text matching is greatly improved,
collecting and annotating such large-scale data in real world applications is time-consuming and
expensive.

Different from them, this work attempts to study the image-text matching in the context of a new
scenario, namely unpaired image-text matching, in which paired images and texts are assumed to be
unavailable during model training. It is motivated by the fact that the human brain can well correlate
arbitrary images with texts while does not need to learn from such large-scale paired images and texts.
Instead, it stores semantic knowledge about objects, actions, attributes, etc., which is multimodal
aligned and can be used to correlate visual and linguistic information [28, 2]. Inspired by these
neuroscience evidences, this work tries to deal with the unpaired image-text matching by modeling
human brain-like knowledge.

Unimodal visual or linguistic knowledge has been widely used for vision and language understanding
such as image captioning [39], visual reasoning [45] and visual question answering [31]. By directly
combining these two types of knowledge together, multimodal knowledge shows more complementary
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advantages [46, 37]. However, existing knowledge-based methods are always designed to corporate
with paired data during model training, which cannot well handle the unpaired image-text matching.
Another alternative is multimodal knowledge graphs [47], most of which are extended from existing
linguistic knowledge graphs by linking semantically related images to corresponding words. However,
the image-word alignment might have the following issues: 1) images usually include redundant
or word-unrelated contents, so the images and words carry unequivalent semantic information, and
2) word-related objects (or attributes) usually have diverse appearances in different images, so
the alignment is one-to-many rather than one-to-one. In fact, obtaining well-aligned multimodal
knowledge is a great challenge.

In this work, we propose a new method namely Multimodal Aligned Conceptual Knowledge (MACK)
for unpaired image-text matching. To remove the word-unrelated content in images, it focuses on
semantic concepts and collects pairs of words and semantically related image regions from public
available datasets. Then it computes prototypical region representations and aligns them to the words,
with the goal to alleviate the appearance variant. Based on the aligned conceptual knowledge (i.e.,
word-prototypical region pairs), the MACK can bridge images and texts in the same feature space
to measure their cross-modal similarities. To make the pre-computed general knowledge better suit
certain datasets, we can further fine-tune it with the principle of region-level cycle-consistency, which
does not need paired images and texts. Since the proposed MACK is simple yet effective, it can well
corporate with existing image-text matching models as a re-ranking method to further improve their
performance.

Our contributions are summarized as follows. 1) We study a rarely investigated problem as unpaired
image-text matching, which is under great demand in practical applications. 2) We accordingly
propose a simple yet effective method to model multimodal aligned conceptual knowledge, which
can either perform test directly or perform training based on unpaired data. 3) The proposed method
can be easily adopted by existing image-text matching models to re-rank their results to obtain better
performance.

2 Related Work

2.1 Image-Text Matching

Image-text matching draws much attention recently, and many effective models trained on paired
images and texts have been proposed. Socher et al. [32] and Frome et al. [6] propose the early
framework of Visual-Semantic Embedding (VSE) to correlate images and their labels. Kiros et al.
[16] extend the VSE from image-label matching to image-text matching, which is later improved
from various aspects such as adding intra-modal constraint [36], mining hardest negative sample
[5], analyzing canonical correlation [41], matching local instance [11, 13], improving sentence
representation [29, 19], and reasoning visual relation [22, 14]. In addition to the VSE, another
important framework is Cross-Modal Attention (CMA) proposed by Lee et al. [18], which uses
pretrained object-level features [1] and then generates cross-modal attended representations for
similarity measurement. The CMA is later improved from the directions of cross-modal memory
[10, 9], cross-modal message passing [38], hybrid learning [8], context modeling [44], iterative
matching [3], and graph structure [25]. Later, many more models [4, 20, 27, 23] based on multimodal
versions of Transformer [35] are proposed, which rely on millions or billions of paired images and
texts for model training and achieve very good performance. Recently, Huang et al. [12] make the
early attempt to study how to improve the efficiency of such large image-text matching models, which
achieves promising results. In contrast to the existing models, we attempt to study a new scenario
of unpaired image-text matching that assumes paired images and texts are unavailable for model
training, which is more challenging than conventional image-text matching.

2.2 Multimodal Knowledge

There are only a few works that use multimodal knowledge for vision and language understanding
tasks. For example, Zhu et al. [46] build heterogeneous graphs corresponding to visual, semantic
and factual features for visual question answering. Wang et al. [37] combine visual and textual
knowledge to find discriminative parts of objects and improve the performance of few-shot learning.
Zhang et al. [43] propose a concept-relation graph and then leverage it for visually grounded concept
learning. In addition, different multimodal knowledge graphs [47, 26, 33] are proposed, most of
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Figure 1: The proposed Multimodal Aligned Conceptual Knowledge (MACK) for unpaired image-
text matching. The top figures illustrate how to obtain the knowledge in three steps: 1) collecting a set
of conceptual words and their related image regions, 2) computing prototypical region representations
to get the pretrained general knowledge, and 3) training on unpaired images and texts to obtain
the fine-tuned domain knowledge. The bottom figures illustrate how to use the knowledge for
unpaired image-text matching in three steps: 1) obtaining parsed words and detected regions from
the input image and text, 2) aggregating related words and representing them by prototypical region
representations in the knowledge, and 3) comparing word and region representations in the same
feature space and pooling their cross-modal matrix to obtain a global similarity score.

which extend linguistic knowledge graphs by aligning images to words. Such cross-modal alignment
could be quite noisy because images usually include redundant or word-unrelated contents. In fact,
the multimodal knowledge used in these methods is either cross-modal unaligned or noisy aligned,
which usually needs paired images and texts as strong supervisions for model training. Different from
them, our multimodal aligned conceptual knowledge establishes more accurate one-to-one alignment
in the fine-grained concept-level, which can handle the unpaired image-text matching without using
strong supervisions.

3 Multimodal Aligned Conceptual Knowledge

As shown in Figure 1, we propose the Multimodal Aligned Conceptual Knowledge (MACK) for
unpaired image-text matching. To obtain the knowledge, we first collect a set of conceptual words and
their semantically related image regions from public datasets. For each word, we obtain a prototypical
region representation by averaging the representations of all related regions. Thus, we obtain the
pretrained general knowledge containing pairwise words and prototypical region representations.
To make the knowledge better adapt to certain datasets, we then fine-tune the pretrained general
knowledge by modeling the concept-level cycle consistency based on unpaired images and texts.

Give an image and a text, we first perform text parsing to obtain a word graph, and use the knowledge
as a cross-modal bridge to obtain a set of prototypical region representations for all the words. Then,
we perform object detection on the image to obtain another set of region representations. Thus, the
representations of words and regions are in the same feature space, in which they can be directly
compared to get a cross-modal matrix. After pooling the values in row and column dimensions based
on heuristic rules, we can finally obtain the global similarity score between the image and text.

3.1 Pretrained General Knowledge

The studied knowledge in this work has two major properties as follows. 1) Concept-level knowledge:
the knowledge is built upon two major types of semantic concepts, which correspond to objects
and attributes in images, and nouns and adjectives in texts. It is more fine-grained than existing
multimodal knowledge graphs that roughly link global images to words. 2) One-to-one alignment:
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rather than align a word to multiple possible images in a one-to-many manner, the knowledge focuses
on cross-modal one-to-one alignment, with the goal to alleviate the appearance variations of objects
and attributes.

We define the knowledge as a set of semantic concepts having paired multimodal representations
{(wk, vk)}k=1,...,K , where wk ∈ NK and vk ∈ RF are the one-hot word representation and real-
valued region representation of k-th semantic concept, respectively, and K is the total number of
semantic concepts. To maximize the number of concepts, we collect all the words and their related
regions in the Visual Genome (VG) dataset [17]. We could alternatively use other datasets, but the
VG has more diverse content that is useful for improving the generalization ability of the knowledge.
For each word, we can easily obtain its semantically related image regions in the dataset, and different
regions usually have diverse visual appearances. To avoid the impact of appearance variations, we
compute a prototypical region representation vk for each word wk by averaging all its related region
representations {rj}j=1,...,Jk

:

vk =
1

Jk

∑Jk

j=1
rj (1)

where each region representation rj is obtained by feeding a bounding box and an image into the
pretrained object detection model Faster-RCNN1 [1]. Note that the numbers of regions for different
words {Jk}k=1,...,K are quite imbalanced, which vary from tens to tens of thousands. Intuitively,
frequently appeared words such as “man” and “dog” will have more related regions, and their
corresponding prototypical region representations might be more robust than those of few-shot words
such as “otter” and “nun”. However, the few-shot words can still compute initial prototypical region
representations with very limited numbers (e.g., < 20) of regions and then refine them when more
related regions are encountered.

3.2 Fine-tuned Domain Knowledge

To better adapt the pretrained general knowledge to certain datasets, we could further fine-tune
the prototypical region representations based on the principle of concept-level cycle consistency, if
unpaired images and texts in those datasets are available. In particular, given a batch of unpaired
images and texts, we first obtain a set of detected regions using the Faster-RCNN above and a
set of tokenized words. For the set of words, duplicated ones are removed and the rest words are
{wm}m=1,...,M . Then all the words can be represented by the corresponding prototypical region
representations as {vm}m=1,...,M or V ∈ RF×M . For the set of regions, we compute similarity scores
between the prototypical region representations (in the pretrained general knowledge) and the set of
region representations, and then remove the redundant regions belonging to same concepts in a similar
way as Non-Maximum Suppression (NMS). The resulting regions are denoted as {rn}n=1,...,N or
R ∈ RF×N .

To fine-tune the prototypical region representations to better suit for certain datasets, we design a
cycle consistent loss to learn a parametric transformation matrix W ∈ RF×F . The main idea is to
first measure similarities between each word and all regions, and use the similarities as weights to
combine all regions to obtain a reconstructed word2:

V̂ = WRσ(S)T , S = (WV )TWR (2)
where S ∈ RM×N is the similarity matrix between transformed word and region representations, σ(·)
is the softmax operation along the column dimension, and V̂ ∈ RF×M contains the reconstructed
word representations. Then, each original word and its reconstructed one are compared to generate a
label indicating whether they are the same or not. By minimizing the cross-entropy loss L based on
the predicted label and groundtruth one, we can optimize the W :

L = −
∑M

m=1
yTm log(ŷm), Ŷ = σ(V̂ T (WV ))T (3)

where Ŷ ∈ RM×M includes the predicted labels, in which each column is denoted as ŷm, and ym is
the groundtruth label in which the m-th value is one and the rest values are zeros. After the training,
we can use the W to transform all prototypical region representations to obtain the fine-tuned domain
knowledge, denoted as {(wk, uk)}k=1,...,K , where uk = Wvk ∈ RF .

1We could alternatively use other pretrained models to detect regions. We select this model because it has
been widely used and demonstrated to be effective for image-text matching.

2In fact, we similarly combine words to obtain reconstructed regions in the reverse direction.
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3.3 Knowledge-based Unpaired Matching

To decide whether an image and a text is matched or not, we use the knowledge3 to measure the
cross-modal similarity. For the image, we use the Faster-RCNN to obtain a set of detected region
representations {ri}i=1,...,I or R ∈ RF×I . For the text, we use the knowledge as a cross-modal
bridge to represent all the words as a set of prototypical region representations {uj}j=1,...,J . Even
though these two set of representations are in the same feature space, they have different amount of
semantic information, directly comparing their similarity might be sub-optimal. In fact, each uj is
concept-level corresponding a word, while each ri usually describes not only an object but also its
attribute. To make a better comparison, we infer the relation among words and aggregate related
word representations before the similarity measurement.

In particular, for the words in the text, we use the Natural Language Toolkit (NLTK)4 to predict
their types and parse their dependencies. Then, we take each noun as an anchor and combine its
representation with dependent adjective representation in an averaged manner. Thus, the set of word
representations {uj}j=1,...,J are re-computed as {ul}l=1,...,L or U ∈ RF×L. Then we can obtain the
desired similarity score s for the image and text as:

s = ρ(UTR) (4)

where ρ(·) is the max-mean pooling that first performs max pooling on the column dimension and
then mean pooling on the row dimension on the input matrix. Given multiple images and texts, we
can similarly obtain their similarity scores for unpaired image-text matching.

3.4 Re-ranking Existing Models

Note that the knowledge in this work is inspired by human-like knowledge, which is quite different
from the pretrained model knowledge learnt from paired data. So the proposed MACK tends to have
complementary properties when combining with existing pretrained models. To demonstrate this idea,
we try to use the knowledge to re-rank the results by existing models to improve their performance.

Taking the text-driven image retrieval as an example, given a text as query and a set of G images as
gallery, an existing model can produce a similarity vector s ∈ RG×1. By sorting all the scores of s in
the descending order, the model is usually able to rank the matched image in top-k. Then we can tune
the top-k scores by adding the corresponding scores predicted by the knowledge with a balancing
factor λ, and then re-rank the top-k images to improve the rank of matched image.

3.5 Discussion

Note that the proposed MACK defines a general framework for adaptive knowledge representation,
organization, and reasoning. For the knowledge representation, it uses the prototype learning to obtain
pairwise prototypical region representations and semantic words. Then, it potentially organizes the
knowledge in a graph-like manner, in which the dependency relation among different knowledge pairs
are explored. At last, it hierarchically reasons the knowledge in three levels, including domain-level
by fine-tuning on certain datasets, sample-level by using the pretrained models, and instance-level by
performing the max-mean pooling.

4 Experimental Results

To demonstrate the effectiveness of the proposed method, we perform extensive experiments of
image-text matching on two publicly available datasets.

4.1 Datasets and Protocols

The details of datasets and protocols are as follows. 1) Flickr30k [42] consists of 31783 images
collected from the Flickr website. Each image has 5 human annotated texts. We use the public
training, validation and testing splits, which contain 29000, 1000 and 1000 images, respectively. 2)

3The knowledge here could be the pretrained general knowledge or fine-tuned domain knowledge.
4https://www.nltk.org/.

5



Table 1: Unpaired image-text matching by ablation models of MACK on the Flickr30k dataset.
Details about these ablation models are explained in Section 4.3.

Method
Flickr30k dataset

Image Annotation Image Retrieval Rs
R@1 R@5 R@10 R@1 R@5 R@10

Pretrained general knowledge 10.8 26.6 35.8 4.1 10.8 18.0 106.2
- w/o region prototypes 1.5 6.1 9.3 1.1 4.5 9.0 31.7
- w/o adjectives 9.8 25.0 34.8 4.2 10.9 16.8 101.5
- w/o max-mean pooling 4.2 13.4 20.4 2.9 8.4 12.8 62.2

Fine-tuned domain knowledge 12.7 30.4 40.8 10.3 25.1 34.0 153.5
- w/o implicit prior 11.5 30.1 40.6 10.5 24.5 33.9 151.1
- w/o knowledge 0.1 0.5 0.9 0.0 0.6 1.1 3.2

MSCOCO [24] consists of 123287 images, each of which is associated with 5 texts. We use the
public training, validation and testing splits, with 113287, 1000 and 5000 images, respectively.

The image-text matching usually includes two sub-tasks in terms of: 1) image annotation: retrieving
related texts given images, and 2) image retrieval: retrieving related images given texts. The
commonly used evaluation criterions are “R@1”, “R@5” and “R@10”, i.e., recall rates at the top-1, 5
and 10 results. Following other methods, we also use an additional criterion of “Rs” by summing all
the recall rates to evaluate the overall performance.

4.2 Implementation Details

In the pretrained general knowledge, we collect all the words in the Visual Genome dataset, so the
total number of semantic concepts is K = 27801. For each image, we use the pretrained Faster-RCNN
to extract region representations, so the number of detected regions is I = 36 and the dimension of
(prototypical) region representation is F = 2048. In the fine-tuned domain knowledge, we perform
the model training in a minibatch manner. Each minibatch includes unpaired 128 images and 128
texts that are randomly sampled from the whole training set. We use the Adam algorithm [15] to
optimize the only parameter matrix W with a learning rate of 2e−4 for 30 epochs. When re-ranking
existing models, we empirically set k = 15 and λ = 0.1. The knowledge-based unpaired image-text
matching is very efficient, which does not need GPUs for acceleration.

4.3 Unpaired Image-text Matching

Since existing models are all proposed for paired image-text matching, we compare several ablation
models of the proposed MACK to verify their effectiveness for unpaired image-text matching. The
first ablation model is pretrained general knowledge, which does not need model training. Then we
design its three model variants including: 1) replacing the prototypical region representation with
a random region representation, similar to existing multimodal knowledge graphs, 2) removing the
adjectives when re-computing the word representations, and 3) replacing the max-mean pooling with
mean-mean pooling. We also present another ablation model as fine-tuned domain knowledge, which
additionally performs a training stage on unpaired images and texts using the concept-level cycle
consistent loss. We also design its two model variants including: 1) using Flickr30k images and
MSCOCO texts for the fine-tuning rather than Flickr30k images and texts, and 2) directly optimizing
the cycle-consistency loss without using the knowledge.

We compare the performance of unpaired image-text matching by all these models on the Flickr30k
dataset in Table 1. It is reasonable that the pretrained general knowledge achieves much worse
performance than existing image-text matching models trained on paired images and texts. The
unpaired image-text matching still needs more research and there is still a lot of room for perfor-
mance improvement. By removing the region prototypes, adjectives, and max-mean pooling5, the
performance all becomes worse. And we find that the region prototypical representation makes the
largest contribution to the performance of pretrained general knowledge. By training on the unpaired

5In addition to the max-mean pooling, we also performed experiments of mean-max pooling, max-max
pooling, and mean-mean pooling, but found they achieve much worse performance.
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Table 2: Image-text matching by re-ranking two state-of-the-art models on the Flickr30k and
MSCOCO datasets. “+” denotes the re-ranking.

Method
Flickr30k dataset MSCOCO dataset

Image Annotation Image Retrieval
Rs

Image Annotation Image Retrieval
Rs

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
CLIP [30] 65.4 87.2 91.7 85.4 97.1 98.7 525.6 35.3 60.0 70.1 55.2 78.7 86.7 386.1
+ MACK 66.8 88.2 92.6 86.2 97.2 98.9 530.0 36.9 61.6 71.7 55.7 79.6 87.1 392.8

ALBEF [21] 59.9 84.8 90.5 78.2 95.5 97.9 506.9 40.2 68.4 78.9 62.4 85.9 92.1 428.3
+ MACK 61.8 85.8 91.4 80.1 96.4 97.7 513.3 41.0 69.0 79.4 62.4 86.1 92.7 430.9

woman wearing 
a yellow hat pink 
shirt and red 
apron is holding 
food in a kitchen

man and woman 
wearing sunglas-
ses sit halfway in 
the water

a group of people 
are sitting on the 
grass outside of a 
rustic building

Query text Query textReturned top-3 images by CLIP Returned top-3 images by CLIP

two people in 
blue shirts are 
outside with a 
bullhorn

Figure 2: Examples of retrieved top-3 images based on text queries by the CLIP. Groundtruth matched
images are marked by red bounding boxes, which can be re-ranked higher by the MACK.

images and texts, the fine-tuned domain knowledge shows significant performance improvements,
especially on the sub-task of image retrieval. By additionally removing the implicit prior that there
exist one-to-one correspondences between images and texts, the results become slightly worse but are
still much better than pretrained knowledge. The results are very bad if we do not use the knowledge
as the cross-modal bridge to correlate images with texts. In the following experiments, we use the
pretrained general knowledge as the default MACK due to its simplicity.

4.4 Re-ranking State-of-the-art Models

The recent state-of-the-art models for image-text matching are variants of multimodal Transformers,
all of which are pretrained on very large-scale datasets containing millions or billions of paired
images and texts. To demonstrate that our knowledge-driven MACK is complementary with existing
data-driven models, we use the MACK to re-rank the retrieval results of two state-of-the-art models
including CLIP [30] and ALBEF [21]6. The original and re-ranked performance of these two models
on the Flickr30k and MSCOCO datasets are shown in Table 2. It should be noted that, we use the
zero-shot versions of these two models with the goal to make fair comparisons with the proposed
MACK. The zero-shot means that they are pretrained on large-scale external datasets while directly
perform test on the Flickr30k and MSCOCO datasets. From the table, we can see that although their
original accuracies are very high, re-ranking with our proposed MACK can further improve them. For
the CLIP, the re-ranking can lead to 1.4% and 1.6% improvements in R@1 of image annotation on
the two datasets, respectively. For the ALBEF, the re-ranking can lead to overall 6.4% improvement
in Rs on the Flickr30k dataset.

These evidences demonstrate that the MACK does show complementary properties when combining
with existing models. To further explain this, we show some examples of retrieved images based on
text queries by the CLIP in Figure 2. These examples are selected based on the following rules: 1)
ranks of groundtruth matched images (marked by red bounding boxes in the figure) by the CLIP are
not top-1, and 2) our proposed MACK can re-rank these matched images higher. In the first example,
it seems that the CLIP cannot well understand the “yellow hat”, “red apron” or “pink shirt” in the
query text, since the first retrieved image does not contain either of these semantic concepts but ranks

6Note that the original ALBEF is a hybrid model that includes both dual-stream architecture and single-stream
architecture. Here we only use the dual-stream one with the goal to make a fair comparison with the two-stream
CLIP.
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Table 3: Cross-dataset image-text matching by re-ranking existing models on the Flickr30k and
MSCOCO datasets. “+” denotes the re-ranking. MSCOCO -> Flickr30k: training existing models on
the MSCOCO dataset and testing them on the Flickr30k dataset. Flickr30k -> MSCOCO: training
existing models on the Flickr30k dataset and testing them on the MSCOCO dataset.

Method
MSCOCO -> Flickr30k Flickr30k -> MSCOCO

Image Annotation Image Retrieval
Rs

Image Annotation Image Retrieval
Rs

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
VSRN [30] 42.3 69.3 78.1 53.1 79.5 87.5 409.9 14.0 31.7 42.2 20.4 40.0 50.0 198.4
+ MACK 42.6 69.8 78.5 53.3 79.7 87.7 411.7 14.4 32.6 43.1 20.5 40.5 50.2 201.4

SAEM [40] 41.4 70.2 80.0 53.4 80.9 89.6 415.5 14.8 34.0 45.0 23.2 45.4 57.4 219.8
+ MACK 41.8 70.7 80.0 54.2 81.2 89.9 417.9 15.4 34.9 45.9 23.6 46.0 57.7 223.4

higher than the groundtruth one. While our MACK especially focuses on these semantic concepts
and can improve the corresponding similarity between the matched image and query text.

4.5 Cross-dataset Image-text Matching

We also try to re-rank existing image-text matching models when applying them to the scenario of
cross-dataset image-text matching. The experimental settings are explained as follows: 1) selecting
two representative image-text matching models (VSRN [30] and SAEM [40]) and training them on a
source dataset (e.g., Flickr30k or MSCOCO), 2) performing model test on a different target dataset
(e.g., MSCOCO or Flickr30k), and 3) using the proposed MACK to re-rank their results on the target
dataset. Note that either our MACK or the two models do not use the target dataset for model training.

In Table 3, the results of two directions of cross-dataset generalization, i.e., MSCOCO -> Flickr30k
and Flickr30k -> MSCOCO, are both presented. We can find that using the MACK to re-rank the
VSRN and SAEM can improve their generalization abilities in the cross-dataset scenario. Although
the relative improvements might be a little bit small, they are substantial in all 7 evaluation criterions.
Comparing Table 3 with Table 2, it seems that the performance improvements of re-ranking partially
depend on the performance of base models. When the base models are more accurate, the performance
improvements of re-ranking are larger.

4.6 Prototypical Representation Analysis

Most words only have less than 20
related regions to computer their
prototypical region representations

Figure 3: Logarithmic number of regions v.s. word
indexes. (best viewed in colors).

In the proposed MACK, one of the most im-
portant part is the prototypical region represen-
tation. Even the same object could have com-
pletely different appearances in images, so using
how many regions to compute each region proto-
type is crucial. We count the number of regions
for each word in the Visual Genome dataset and
show the statistical result in Figure 3, in which
the horizontal axis is word index and vertical
axis is logarithmic transformed number of re-
gions. From the figure, we can see that about
80% words have very small numbers of regions,
i.e., less than 20 (denoted by the dashed line).
Therefore, for most semantic concepts in the
knowledge, computing their prototypical region
representations is data-efficient.

To verify whether using small numbers of re-
gions has large impact on the performance, we define a threshold f that controls the maximum
number of regions. We use the ALBEF + MACK as the base model and select f from {20, 50,
100, ∞ }, where ∞ is the default setting of ALBEF + MACK. The experimental results on the
Flickr30k and MSCOCO datasets are shown in Table 4, in which p is the percentage of how many
word-region annotations of Visual Genome dataset are used. We can see that as the f becomes larger
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Table 4: Image-text matching by ALBEF + MACK on the Flickr30k and MSCOCO datasets. f is
the maximum number of used regions when computing a prototypical region presentation. p is the
percentage of how many word-region annotations of Visual Genome dataset are used.

f p

Flickr30k dataset MSCOCO dataset
Image Annotation Image Retrieval

Rs
Image Annotation Image Retrieval

Rs
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

20 15% 60.0 85.1 91.2 79.7 96.0 97.7 509.8 39.7 68.0 79.1 62.2 85.6 92.7 427.5
50 37% 60.2 85.3 91.1 79.9 96.0 97.7 510.3 39.7 68.1 79.1 62.2 85.7 92.7 427.8
100 73% 60.7 85.3 91.2 80.1 95.9 97.7 510.9 39.9 68.3 79.2 62.5 86.0 92.7 428.8
∞ 100% 61.8 85.8 91.4 80.1 96.4 97.7 513.3 41.0 69.0 79.4 62.4 86.1 92.7 430.9

Table 5: Image-text matching by re-ranking CLIP using different k and λ on the Flickr30k dataset. k
is the length of re-ranked images/texts. λ is the balancing factor between knowledge and CLIP.

k
Image Annotation Image Retrieval

Rs λ
Image Annotation Image Retrieval

Rs
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

10 66.8 88.2 91.7 86.2 97.2 98.7 528.8 0.1 66.8 88.3 92.7 86.2 97.2 98.9 530.1
15 66.8 88.3 92.7 86.2 97.2 98.9 530.1 0.2 66.6 88.6 92.9 86.4 97.1 98.8 530.5
20 66.8 88.3 92.7 86.2 97.2 98.9 530.1 0.3 66.6 88.4 93.0 83.5 97.0 98.7 527.1

the performance becomes slightly better. It seems that different numbers of regions do not have a
significant impact on the performance. It is reasonable since computing the mean might not need
too many samples. This is also a good property for the knowledge, since if we want to add a new
semantic concept, we only have to annotate a limited number of regions.

4.7 Hyperparameter Analysis

In Table 5, we perform the experiment of image-text matching by re-ranking CLIP using different
k and λ on the Flickr30k dataset, to study the impact of these two hyperparameters on the final
performance. In the table, k is the length of re-ranked images/texts, and λ is the balancing factor
between knowledge and CLIP. In the table, we vary k ∈ {10, 15, 20} and λ ∈ {0.1, 0.2, 0.3}, and
find that the final performance is not very sensitive to the hyperparameters.

4.8 Knowledge Visualization

At last, we visualize the pretrained general knowledge and fine-tuned domain knowledge (trained
on the Flickr30k dataset) in Figure 4, to illustrate major changes after the training. In the figure,
there are two low-dimensional word distributions (surrounded by solid boxes) corresponding to
the pretrained general knowledge and fine-tuned domain knowledge, respectively. The two word
distributions are obtained by using the t-SNE method [34] to embed two set of prototypical region
presentations (i.e., {vk} or {uk}, k = 1,...,K). For clear illustration, we set K = 100 and only select
the most frequently used 100 semantic concepts in the Flickr30k dataset. For each semantic concept,
we show the corresponding word in the two-dimensional coordinate. We also group semantically
related words and show them with different colors.

In the left word distribution, we can see that semantically related words stay nearby. For example, the
words in the three groups (marked by dash lines) are about animals, indoor objects and transports,
respectively. In the center area, there are many words (marked by the green color) about colors.
However, there are still some related words that have remote distances. For example, in the bottom
there are also several words about animals such as bird, dog, bear and cat, which are far from the
words in the first group. After fine-tuning the knowledge with unpaired data, we find the word
distribution is semantically more compact. We can see that all the words about animals are very close
staying together in the first group. In the second group, more words about transports such as plane
and boat are added. These evidences indicate that by training with the concept-level cycle consistency,
related semantic concepts are able to leverage their potential relations to make the prototypical region
representations more discriminative.
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Figure 4: Visualization of pretrained general knowledge and fine-tuned domain knowledge. Each
word indicates its corresponding prototypical region representation embedded by the t-SNE method.
In the two word distributions, we divide words into semantically related groups and represent them
using different colors. We also mark three representative groups by dashed lines, which contain
words about animals, indoor objects and transports, respectively.

5 Conclusion and Future Work

This work has studied a practically important but seldom investigated problem as unpaired image-text
matching, in which paired images and texts are not available during model training. To deal with this
problem, inspired by the knowledge used in human brain, we have proposed a simple yet effective
method namely Multimodal Aligned Conceptual Knowledge (MACK). Compared with existing
multimodal knowledge methods, the MACK has two major properties in terms of conceptual level
and one-to-one alignment. It can either perform test directly or perform training based on unpaired
data, as well as re-rank existing image-text matching models to improve their performance. We have
demonstrated its effectiveness with extensive experiments.

To the best of our knowledge, this might be the first work to study the unpaired image-text matching.
So the goal of this initial work is not pursuing high performance but to explore the modeling of
knowledge. In the future, we will study more effective strategies to improve the relatively low
accuracy. In addition, we will also consider to mine more useful information from the knowledge
from the aspects of dynamic knowledge updating and advanced knowledge reasoning.
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