
Appendix: CEIP: Combining Explicit and Implicit Priors for Reinforcement
Learning with Demonstrations

This Appendix is organized as follows. First, we reiterate and highlight our key observations.
In Sec. A, we then provide the pseudocode for training the implicit prior and the downstream
reinforcement learning. Afterwards, we provide additional implementation details of the proposed
method and major baselines in Sec. B, and additional details of experimental settings in Sec. C. In
Sec. D, we provide additional experimental results and ablation studies. In Sec. E, we describe the
computational resources consumed by and the training time of each method. Finally, in Sec. F, we
describe the licenses of assets which we used to develop our code.

The key findings of our work include the following:

• Is a task-specific flow necessary? In environments where the episode length is relatively
short and the dynamics are relatively simple, CEIP works better without the task-specific
flow, explicit prior, and push-forward technique as the training complexity is unnecessarily
increased. This is shown in Sec. D.2.

• When is a task-specific flow helpful? In environments where some tasks of the task-specific
dataset are not part of the task-agnostic dataset, a flow trained on the task-specific dataset
improves performance. This is shown in Sec. D.3.

• How related should the tasks in the task-agnostic dataset be to the task at hand?
For both PARROT and CEIP, more related data in the task-agnostic dataset are beneficial.
However, CEIP can automatically discover and compose related flows; in contrast, PARROT
works better only when the dataset fed into the normalizing flow is manually picked to be
more relevant to the target task. This is shown in Sec. D.2.

• Will ground-truth labels help the performance of CEIP? Ground-truth labels will some-
times improve the performance of CEIP; however, this is not always the case. This is shown
in Sec. D.3.

• How will simple baselines, e.g., behavior cloning and replaying demonstrations do?
We find those simple baselines to not work very well, which indicates the non-trivial
nature of our testbed. However, introducing an explicit prior will significantly improve the
performance of behavior cloning. This is shown in Sec. D.3.

• How robust is CEIP with respect to the precision of task-specific demonstrations?
Similar to prior work such as FIST, imprecise task-specific demonstrations will affect
performance. Nevertheless, we find CEIP to be more robust than prior work. This is shown
in Sec. D.3.

• What is the impact of using an explicit prior in PARROT? PARROT results improve
when an explicit prior is used, which further supports the design of CEIP. See ablation
studies in Sec. D.2 and Sec. D.3.

To easily compare CEIP to baselines, we summarize all results achieved at the end of the training
process for the proposed method and baselines on all testbeds in Table 1. To better understand the
behavior of each method, please also see the code and videos of trajectories which are part of this
Appendix.

A Algorithm Details

Alg. 1 provides the pseudocode for training the implicit prior. Alg. 2 illustrates how we use the policy
π(z|s) and the flows to compute the real-world action a, when an explicit prior is available (i.e.,
condition u = [s, snext]) and when using the push-forward technique.

B Additional Implementation Details

We provide our code in the github repository https://github.com/289371298/CEIP for refer-
ence.

15

https://github.com/289371298/CEIP

Environment CEIP (ours) PARROT+TA PARROT+TS FIST SKiLD

Fetchreach-4.5 −10.03†±0.64 −19.33±9.59 −20.30±10.62−34.80±8.33−39.91±0.14

Fetchreach-5.5 −9.76†±0.47 −20.49±11.51 −14.32±7.53 −39.86±0.50−38.38±2.81

Fetchreach-6.5 −9.08†±0.36 −14.52±9.44 −18.52±2.34 −38.30±5.28−40.00±0.00

Fetchreach-7.5 −10.29†±0.67 −10.34±0.79 −10.24±0.69 −39.87±0.72−38.45±2.67

Kitchen-SKiLD-A 4.00±0.00 2.52±0.96 0.51±0.46 2.70±1.23 0.06±0.10

Kitchen-SKiLD-B 3.93±0.08 1.13±0.35 1.25±0.60 1.17±0.93 0.48±0.48

Kitchen-FIST-A 3.95±0.05 1.94±0.07 2.40±0.31 0.33±0.70 0.67±1.15

Kitchen-FIST-B 3.89±0.07 0.00±0.00 1.85±0.05 1.20±0.54 0.00±0.00

Kitchen-FIST-C 3.92±0.06 0.96±0.06 2.07±0.23 0.00±0.00 0.33±0.57

Kitchen-FIST-D 3.94±0.07 1.92±0.06 2.27±0.24 0.53±0.50 1.67±0.58

Office 6.33±0.30 2.05±0.31 1.97±0.22 5.50±1.12 0.50±0.50

Table 1: Summary of the results of each method on all environments at the end of training (higher is better). For
CEIP (our method), we are not using the explicit prior, task-specific single flow, and push-forward technique for
fetchreach (which is denoted by ‘†’). We use all of them for the other experiments. For PARROT, we are not
using the explicit prior, task-specific single flow, and push-forward technique, as all of them are our contributions.
However, as shown in ablation study in Sec. D, these components are general and can be used to improve the
performance of PARROT.

B.1 CEIP

B.1.1 Architecture. We use slightly different architectures for fetchreach and kitchen/office, be-
cause the number of dimensions of the states and actions in fetchreach is much smaller than that in
the other two experiments. Moreover, the size of fetchreach is much smaller too. Hence, a smaller
network is used for fetchreach to prevent overfitting.

Fetchreach. For each single flow, we use a pair of simple Multi-Layer Perceptron (MLP), one for
ci(u) and the other one for di(u). Each network has two hidden layers of width 32 for each single
flow. The number of dimensions for the feature is 20 (with explicit prior) or 10 (without explicit
prior). For the combination of flows, we use one fully-connected neural net with two hidden layers of
width 32, which outputs both µ and λ. µ has an additional softplus activation and a 10−4 offset. If
not otherwise specified, all activation functions in this section are ReLU.

Kitchen and Office. The architecture for the kitchen and office environments is roughly the same as
that for the fetchreach environment. The difference is that we use three hidden layers of width 256
for ci and di of each single flow, and that we use two hidden layers of width 64 for µ and λ. Also, we
use a batchnorm function before each ReLU activation. See Fig. 8 for an illustration.

B.1.2 Flow Training. We use the standard flow training method [24] for training the task-agnostic
and task-specific single flows f1, . . . , fn+1, which is to maximize the (empirical) log-likelihood

max
fi

E(u,a)∼Di
log pa(a|u),

where log pa(a|u) = log pz(f
−1
i (a;u)) + log

∣∣∣∣∂f−1
i (a;u)

∂a

∣∣∣∣ = log pz(f
−1
i (a;u))− ci(u)

T1, and

f−1
i (a;u) = z =

a− di(u)

exp{ci(u)}
.

(4)
Here, ci(u) ∈ Rq, di(u) ∈ Rq are trainable deep nets. The exp function and division are applied
elementwise. We use a standard normal distribution over the latent space, i.e., pz = N(0, I).
Moreover, we use maximization w.r.t. fi to denote maximization w.r.t. the parameters of the deep
nets ci, di. To train the combined flow, we use a similar loss function to Eq. (4), i.e.,

max
fTS

E(u,a)∈DTS log pa(a|u), where log pa(a|u) = log pz(f
−1
TS (a;u)) + log

∣∣∣∣∂f−1
TS (a;u)

∂a

∣∣∣∣ . (5)

Again, pz is a standard normal distribution. Here, maximization w.r.t. fTS denotes maximization w.r.t.
the parameters of the deep nets µ and λ as shown in Fig. 8.

16

Algorithm 1: Training of Implicit Prior
Input :dataset D1, D2, ..., Dn, DTS
Input : training epoch for single flow M , for combination M2

Input : learning rate a
Output :normalizing flow fTS , parameterized by µ(u), λ(u), ci(u), and di(u) where

i ∈ {1, 2, . . . , n+ 1}
begin

// Training single flows
1 for i ∈ {1, 2, . . . , n+ 1} do // recall that we denote DTS = Dn+1

2 for j ∈ {1, 2, . . . ,M} do // for loop over epochs
3 foreach (u, a) ∼ Di do // for each data point
4 z0 ← a−di(u)

exp{ci(u)} // elementwise division
5 L = log pz(z0)− ci(u)

T1 // z ∼ N(0, I)

6 ci ← ci + a× ∂L
∂ci

7 di ← di + a× ∂L
∂di

// Training the combination of flows
8 for j ∈ {1, 2, . . . ,M2} do // for loop over epochs
9 foreach (u, a) ∼ DTS do // for each data point

10 µ0 ← µ(u)
11 λ0 ← λ(u)

12 c =
∑n+1

i=1 µ0,ici(u)

13 d =
∑n+1

i=1 λ0,idi(u)

14 z0 ← a−d
c // elementwise division

15 L← log pz(z0)− cT1 // z ∼ N(0, I)

16 µ← µ+ a× ∂L
∂µ

17 λ← λ+ a× ∂L
∂λ

Training Hyperparameters. To train each single flow, we use 1000 epochs on each cluster of the
task-agnostic dataset D1, D2, . . . , Dn and task-specific Dn+1 with a batchsize of 256. We use the
Adam [21] optimizer with a learning rate of 0.001 and a gradient clipping at norm 10−4. For each
dataset, we randomly draw 80% of the state-action pairs / transitions (regardless of which trajectory
they are in) as the training set and use the rest for validation. We use an early stopping that triggers
when the current number of batches fed into the network is greater than 1000 (fetchreach) or 4000
(kitchen/office) and the validation loss does not improving during the last 20% of the batches. The
model with the lowest loss on the validation set is stored and utilized. Each flow is trained separately
and parameters are not shared. Note, we did not optimize the implementation for efficiency, but this
can be accelerated via parallelization.

B.1.3 Reinforcement Learning. We use a well-established reliable implementation of RL al-
gorithms, stable-baselines32, to carry out reinforcement learning. As stable-baselines3 needs a
bounded action space, we set the latent (action) space Z of the RL agent π(z|s) to be [−3, 3] on each
dimension.

B.2 PARROT

PARROT can be seen as a special case of CEIP, where the number of single flows is 1 and µ = 1, λ =
1. This single flow is trained on all task-agnostic data. The original PARROT does not use an explicit
prior or a push-forward technique, which are our contribution in this work. But these components
can be added to PARROT in the same way as they are used in our method. For a fair comparison,
PARROT uses exactly the same architecture and training paradigm of a single flow as CEIP.

2https://stable-baselines3.readthedocs.io/en/master/

17

Algorithm 2: Step Function of Reinforcement Learning
Input :current state s, RL policy π(z|s)
Output :action in actual action space a
begin

// r is the last step referred to in the trajectory
if A new episode begins then

foreach τ ∈ DTS do
// reset last reference in each trajectory

r(τ)← −1

1 foreach τ ∈ DTS do
2 foreach (skey, a, snext) ∈ τ do

// Assume this is the i-th step
3 if (s0, j0, τ0) undefined or (skey − s)2 + [i ≤ r(τ)] < (s0 − s)2 + [j0 ≤ r(τ0)] then

// The second term is an indicator function
4 s0 ← skey
5 j0 ← i
6 τ0 ← τ

7 r(τ0)← j0 // update last reference for the chosen trajectory
8 µ0 ← µ(u)
9 λ0 ← λ(u)

10 c←
∑n+1

i=1 µ0,ici(u)

11 d←
∑n+1

i=1 λ0,idi(u) // get transformation from latent to action space
12 Sample z0 from RL policy π(z|s)
13 a← c⊙ z0 + d

B.3 SKiLD

As CEIP, SKiLD also uses an implicit prior. However, different from CEIP which is flow-based,
SKiLD uses a VAE-based architecture where the latent space is for an action sequence called “skill,”
and the decoder of the VAE maps actions from latent space to actual action sequences. In addition,
SKiLD uses two implicit priors that take the current state as input and mimic the state-action
sequence encoder, one for the entire task-agnostic dataset and the other for the task-specific dataset.
To utilize both priors, a discriminator that takes the current state as input is trained. This discriminator
approximates the confidence of the task-specific prior. A reward shaping in the downstream RL
stage is then used to drive the agent back to states similar to those in the task-specific dataset, where
the discriminator reports higher confidence for the task-specific prior. The reward shaping also
encourages the RL agent to form a policy similar to the task-agnostic prior when the confidence is
low, and a policy similar to the task-specific prior when the confidence is high. SKiLD does not
use an explicit prior or the push-forward technique. However, in a similar spirit, the reward-shaping
mechanism encourages the agent to visit states similar to those in the task-specific dataset. We follow
the settings described by SKiLD [34], except for some minor modifications to better adapt SKiLD to
the environments. These modifications are discussed next.

We change the configuration mostly for the fetchreach environment, because skills with 10 steps
are too long for the fetchreach environment with 40 steps in an episode, and because the number
of dimensions of the data and the number of datapoints are much smaller than they are in other
environments. Therefore, we shorten a skill from 10 to 3 steps, and reduce the size of the skill
prior and posterior, which are now 3-layer MLPs with width 32 instead of the original 5-layer MLP
with width 256. Also, as the dataset size decreases, we change the number of epochs. For the skill
prior, we use a batchsize of 20, and train for 7500 cycles over the task-agnostic dataset (for each
cycle, one sub-trajectory of length 3 is sampled for each trajectory).3 For the posterior, we use 30K

3See “RepeatedDataLoader” in SKiLD’s official repository https://github.com/clvrai/spirl/blob/
5cd34db7c5e48137550801bf5ac3f8c452590e2c/spirl/utils/pytorch_utils.py and https://
github.com/clvrai/spirl/blob/5cd34db7c5e48137550801bf5ac3f8c452590e2c/spirl/train.py
for the meaning of “cycles.”

18

https://github.com/clvrai/spirl/blob/5cd34db7c5e48137550801bf5ac3f8c452590e2c/spirl/utils/pytorch_utils.py
https://github.com/clvrai/spirl/blob/5cd34db7c5e48137550801bf5ac3f8c452590e2c/spirl/utils/pytorch_utils.py
https://github.com/clvrai/spirl/blob/5cd34db7c5e48137550801bf5ac3f8c452590e2c/spirl/train.py
https://github.com/clvrai/spirl/blob/5cd34db7c5e48137550801bf5ac3f8c452590e2c/spirl/train.py

Figure 8: Illustration of our architecture used for kitchen and office environments.

training cycles over the task-specific dataset. The discriminator is trained for 300 epochs, sampling
both task-agnostic and task-specific datasets. For RL, we use the settings employed for the kitchen
environment in the original paper of SKiLD, where the hyperparameter α = 5 is fixed. For the
kitchen and office environments, we follow the original paper and use the same architecture: a 5-layer
MLP with width 128 for the skill prior and posterior, a linear layer and long-short term memory
(LSTM) with width 128 for the encoder, and a 3-layer MLP with width 32 for the discriminator. The
training paradigm is almost the same as the one in the original paper, except that the cycles over the
task-specific dataset are increased due to a decreased dataset size. We also use exactly the same RL
settings as the original paper.

B.4 FIST

Conceptually, FIST can be viewed as SKiLD combined with an explicit prior. However, FIST
uses pure imitation learning, while SKiLD includes a reinforcement learning phase. Also, different
from SKiLD, FIST only uses one prior, which is first trained on the task-agnostic dataset and then
fine-tuned on the task-specific dataset. To decide which key is the “closest” to the query in dataset
retrieval, FIST conducts contrastive learning for the distance metric between states using the InfoNCE
loss [53], where the positive sample is the future state (exactly H steps later, where H is the length of
a skill) of a state in a dataset, and the negative samples are the future states of other states in the same
dataset. This metric is trained on the combined task-agnostic and task-specific data. However, in our
experiment we found that using Euclidean distance as the metric suffices to achieve good result.

For FIST, we mostly follow the settings described in the original paper [16], with the exception of
some minor modifications. Similar to SKiLD, on fetchreach we use 3 steps for a skill, and a lighter
architecture for the skill prior and posterior network with 2 hidden layers of width 32 instead of 5
hidden layers of width 128 for the other experiments. We use the settings for the kitchen environment
in the original paper for all other experiments. Moreover, the original FIST is occasionally unstable
at the beginning of skill prior training in the office environment, due to an initial loss being too large.
To remove this instability, we add gradient clipping at norm 10−3 during the first 100 steps.

19

(a) Fetchreach (b) Kitchen (c) Office

Figure 9: Illustration of each environment. For fetchreach, the task-agnostic dataset consists of demonstrations
which move the gripper in the directions of the red arrows, and the task-specific dataset contains demonstrations
which move the gripper in the directions of the yellow arrows. For the kitchen environment, the agent needs
to complete four out of seven tasks mapped on the picture in the correct order. For the office environment, the
agent needs to put items in the container as illustrated in the figure, using the correct order.

C Additional Details of Experimental Settings

In this section, we introduce additional details related to the environment settings and dataset settings
for each environment.

C.1 Fetchreach

Environment Settings. In our version of fetchreach (illustrated in Fig. 9(a)), we need to train a robot
arm to move its gripper to a given but unknown location as quickly as possible, and stay there once
the goal is reached. The state is 10-dimensional, with the first three dimensions describing the current
location of the gripper. The other dimensions are the openness of the gripper and the current velocity.
For each of the 40 steps, the agent needs to output a 4-dimensional action a ∈ [−1, 1]4, where the
first three dimensions are the direction which the gripper is moving to and the fourth is the openness
of the gripper (unused in this experiment). The agent receives a reward of 0 if the Euclidean distance
between the gripper and the target is smaller than 0.05, and −1 otherwise. A perfect agent should
achieve a reward of around −10. The goal denoted as direction d (e.g., direction 4.5) is generated by
first assigning a direction d ∈ [0, 8), then selecting the goal with the Euclidean distance being 0.3
away and the azimuth being dπ

4 , and finally applying a uniform noise of U [−0.015, 0.015] on each of
the three dimensions. In order to test the robustness of the algorithms and increase difficulty, before
each episode begins, we first sample a random action from a normal distribution, and then let the
agent execute the action for x steps, where x ∼ U [5, 20]. This greatly increases the variety of the
trajectories, as shown in Fig. 10.

Dataset Settings. The dataset is acquired by first training an RL agent with soft actor critic (SAC)
which receives the negative current Euclidean distance as a reward until convergence, and then
sampling trajectories on the trained RL agent. For each direction in {0, 1, 2, . . . , 7}, 40 trajectories
(1600 steps) are sampled. For each direction in {4.5, 5.5, 6.5, 7.5}, 4 trajectories (160 steps) are
sampled.

C.2 Kitchen-SKiLD

Environment Settings. We adopt the same setting as SKiLD [34] and FIST [16], where an agent
needs to finish four out of seven tasks in the correct order. The tasks are: open the microwave, move
the kettle, turn on the light switch, turn on the bottom burner, turn on the top burner, slide the right
cabinet, and hinge the left cabinet. The agent needs to complete all four tasks within 280 timesteps,
and a +1 reward is given when one task is completed. The state is 60-dimensional, where the first 9
dimensions describe the current location of the robot, the next 21 dimensions describe the current
object location (the unrelated objects will be zeroed out), and the rest are constant and describe the
initial location of each object. The action a is 9-dimensional where a ∈ [−1, 1]9, which controls the

20

(a) No randomization (b) Random action at each step

x

1.0 1.1 1.2 1.3 1.4 1.5

y

0.4
0.6

0.8
1.0

z

0.2

0.4

0.6

0.8

1.0

gripper location
0
1
2
3
4
5
6
7
4.5

(c) Our randomization

Figure 10: Illustration of expert trajectories with no start randomization (left), sampling a randomized action
for 10 steps (middle), and our way of randomization (right). Note that our randomization greatly increases the
variation of the trajectories.

Task Subtask Missing Target Task Dataset Size

A Top Burner Microwave, Kettle, Top Burner, Light Switch 66823 / 210
B Microwave Microwave, Bottom Burner, Light Switch, Slide Cabinet 52898 / 200
C Kettle Microwave, Kettle, Slide Cabinet, Hinge Cabinet 53576 / 246
D Slide Cabinet Microwave, Kettle, Slide Cabinet, Hinge Cabinet 45267 / 246

Table 2: List of four different settings in Kitchen-FIST. The dataset size format is “task-agnostic / task-specific.”
The dataset size is counted in state-action pairs.

joints of the arm. A uniform noise of [−0.1, 0.1] is applied to the observation of the robot in every
step.4

Dataset Settings. We use exactly the same task-agnostic dataset as SKiLD, which includes 33 differ-
ent task sequences with a total of 136950 state-action pairs generated by ‘relay policy learning’ [14].
We choose the first trajectory from the task-specific dataset of SKiLD as our task-specific dataset,
which includes 214 state-action pairs for task A and 262 state-action pairs for task B. Task A is “move
the kettle, turn on the bottom burner, turn on the top burner, and slide the right cabinet;” task B is
“open the microwave, turn on the light switch, slide the right cabinet, and hinge the left cabinet.”

C.3 Kitchen-FIST

Dataset Settings. We use exactly the same task-agnostic dataset as FIST [16]. There are four pairs
of task-agnostic and task-specific datasets, which are illustrated in Table 2.

C.4 Office

Environment Settings. We adopt the settings from SKiLD, where we need to train a robot arm to
put three out of seven items into three containers (illustrated in Fig. 9(c)), which are the two trays and
one drawer. The robot arm receives a 97-dimensional state and has 8 dimensions of actions which
control the position and angle of the gripper, as well as the continuous gripper actuation. There are
8 subtasks in the experiments: pick up the first/second item, drop the first/second item in the right
place, open the drawer, pick up the third item, drop the third item correctly, and close the drawer. The
agent will receive a +1 reward upon completion of each subtask. The episode length is at most 350
steps, and will finish as soon as all the tasks are finished.

Dataset Settings. We use the same task-agnostic dataset and a subset of the task-specific dataset. We
use a subset of the task-specific dataset because SKiLD, CEIP, PARROT+TS, and FIST can all solve
the problem very well with the whole task-specific dataset, making it hard to compare. The task-
agnostic dataset contains 2417 trajectories from randomly-generated tasks, which has 7×6×5 = 210
possibilities and contains 456033 state-action pairs. The task-specific dataset contains 5 trajectories
with 1155 state-action pairs.

4See SKiLD’s official repository https://github.com/kpertsch/d4rl/blob/master/d4rl/
kitchen/adept_envs/franka/robot/franka_robot.py for details.

21

https://github.com/kpertsch/d4rl/blob/master/d4rl/kitchen/adept_envs/franka/robot/franka_robot.py
https://github.com/kpertsch/d4rl/blob/master/d4rl/kitchen/adept_envs/franka/robot/franka_robot.py

Method
Task-specific

flow
Explicit

prior
Push-

forward

CEIP
CEIP+EX ✓

CEIP+EX+forward ✓ ✓
CEIP+TS ✓

CEIP+TS+EX ✓ ✓
CEIP+TS+EX+forward ✓ ✓ ✓

Table 3: Abbreviations for variants of CEIP. See Fig. 4 for difference between CEIP, CEIP+2way, and
CEIP+4way; the latter two only appear in the fetchreach ablation.

Method
Use

task-agnostic data
Use

task-specific data
Explicit

prior
Push-

forward

PARROT+TA ✓
PARROT+TS ✓

PARROT+(TS+TA) ✓ ✓
PARROT+TA+EX ✓ ✓
PARROT+TS+EX ✓ ✓

PARROT+(TS+TA)+EX ✓ ✓ ✓
PARROT+TA+EX+forward ✓ ✓ ✓
PARROT+TS+EX+forward ✓ ✓ ✓

PARROT+(TS+TA)+EX+forward ✓ ✓ ✓ ✓
PARROT+2way+TS two most related directions ✓
PARROT+4way+TS four most related directions ✓

PARROT+2way two most related directions
Table 4: Abbreviations for variants of PARROT. All variants of PARROT only use a single flow for all data,
which is the key difference between CEIP and PARROT with explicit prior. “2way” and “4way” only appear in
the fetchreach environment where there are 8 directions in the task-agnostic dataset.

D Additional Experimental Results

This section includes additional experimental results, which are ablation studies and auxiliary metrics
that help to better understand the properties of different methods. See the beginning of the Appendix
for a summary of the key findings. Please also see our supplementary material for sample videos of
each trained method on the kitchen and office environments.

D.1 Abbreviations for Ablation Tests

In our experiments, we test multiple variants of CEIP and PARROT for a more thorough ablation.
To more easily differentiate the variants of both methods with different components, we will use
abbreviations as listed in Table 3 and Table 4.

D.2 Fetchreach

Ablation on components of our method. Fig. 11 shows the ablation study on different components
of our method. Results for our method show that using an explicit prior and the push-forward
technique slows down the reward growth during RL training, if applied on a relatively easy and
short-horizon environment. This is likely because we unnecessarily add training complexity to an
environment with a relatively easy task, short horizon, and well-clustered task-agnostic datasets.
However, our method with those components still works better than many baselines and performs
well given more steps.

Ablation on components and data relevance in PARROT. To better understand the properties
of PARROT, we ablate the data used when training PARROT (see Fig. 12). We select a subset of
the task-agnostic data that is more relevant to the task-specific dataset, and study how data in the

22

0 5000 10000 15000 20000 25000 30000
Steps

24

22

20

18

16

14

12

10

8

Re
wa

rd
CEIP+EX
CEIP+EX+forward
CEIP
CEIP+TS+EX
CEIP+TS+EX+forward
CEIP+TS

(a) Direction 4.5

0 5000 10000 15000 20000 25000 30000
Steps

25

20

15

10

5

Re
wa

rd

CEIP+EX
CEIP+EX+forward
CEIP
CEIP+TS+EX
CEIP+TS+EX+forward
CEIP+TS

(b) Direction 5.5

0 5000 10000 15000 20000 25000 30000
Steps

45

40

35

30

25

20

15

10

Re
wa

rd

CEIP+EX
CEIP+EX+forward
CEIP
CEIP+TS+EX
CEIP+TS+EX+forward
CEIP+TS

(c) Direction 6.5

0 5000 10000 15000 20000 25000 30000
Steps

35

30

25

20

15

10

Re
wa

rd

CEIP+EX
CEIP+EX+forward
CEIP
CEIP+TS+EX
CEIP+TS+EX+forward
CEIP+TS

(d) Direction 7.5

Figure 11: Ablation on architecture and components of our method. We observe that the reward actually grows
slower when using the task-specific single flow, explicit prior, and push-forward technique, likely because the
training complexity is unnecessarily increased.

0 5000 10000 15000 20000 25000 30000
Steps

45

40

35

30

25

20

15

10

Re
wa

rd

PARROT+TA
PARROT+TS+EX
PARROT+TS+EX+forward
PARROT+TS
PARROT+(TS+TA)
PARROT+2way
PARROT+4way+TS
PARROT+2way+TS

(a) Direction 4.5

0 5000 10000 15000 20000 25000 30000
Steps

45

40

35

30

25

20

15

10

5

Re
wa

rd

PARROT+TA
PARROT+TS+EX
PARROT+TS+EX+forward
PARROT+TS
PARROT+(TS+TA)
PARROT+2way
PARROT+4way+TS
PARROT+2way+TS

(b) Direction 5.5

0 5000 10000 15000 20000 25000 30000
Steps

45

40

35

30

25

20

15

10

5

Re
wa

rd

PARROT+TA
PARROT+TS+EX
PARROT+TS+EX+forward
PARROT+TS
PARROT+(TS+TA)
PARROT+2way
PARROT+4way+TS
PARROT+2way+TS

(c) Direction 6.5

0 5000 10000 15000 20000 25000 30000
Steps

45

40

35

30

25

20

15

10

Re
wa

rd

PARROT+TA
PARROT+TS+EX
PARROT+TS+EX+forward
PARROT+TS
PARROT+(TS+TA)
PARROT+2way
PARROT+4way+TS
PARROT+2way+TS

(d) Direction 7.5

Figure 12: Ablation on the data used for PARROT. “2way” and “4way” mean that we feed the two/four directions
in the task-agnostic dataset that are closest to the target direction (e.g., if the target direction is 4.5, we refer to
data from directions 4 and 5 as “2way,” and data from directions 3, 4, 5, 6 as “4way”). Note, PARROT with the
task-specific data and “2way” data is significantly better than other variants of PARROT. However, PARROT is
only improved when such data are selected manually, while our method can automatically combine the flows and
select useful priors. Also, PARROT with “2way” data from the task-agnostic dataset but without task-specific
dataset works well, but it is unstable, which emphasizes the importance of the task-specific dataset even if it is
small.

task-agnostic dataset with different levels of relevance to the downstream task affect results. We also
test the effect of the explicit prior and the push-forward technique using task-specific data only. The
results can be summarized as follows: 1) using the explicit prior and the push-forward technique
slows down the reward growth during RL training, if applied on a relatively easy and short-horizon
environment; 2) selecting more relevant data for PARROT is an effective way to improve PARROT,
which supports our motivation to combine the flows to select the most useful prior.

Illustration of trajectories. To validate the effect of the implicit prior, Fig. 13 shows the trajectories
generated by our method and PARROT without any RL training. We clearly observe that the
trajectories generated by PARROT become more accurate when the data are more related (from left
to right), which is achieved by manual selection but can be done automatically in CEIP. Our method
improves when more flows are used (from right to left), as more flows increase expressivity.

Fig. 14 illustrates the trajectories generated by each method after RL training. As shown in the figure,
our method exhibits smoother trajectories after RL training, enabling the agent to reach its goal faster.
FIST, SKiLD, and naïve RL fail to generate trajectories that steadily converge to the goal. Although
PARROT+(TS+TA) (PARROT with both task-agnostic and task-specific datasets) struggles at the
beginning of RL, the prior enables the agent to reach the goal occasionally. Because of this, it learns
to rule out other infeasible directions. PARROT+TA fails to reach the goal when the starting location
is too far, as it has no idea about how to reach the goal.

D.3 Kitchen and Office

Ablation on components of CEIP. Fig. 15 shows the difference of performance using different
architectures for our method. We observe that the explicit prior plays a crucial role in both Kitchen-
SKiLD and Kitchen-FIST. Also, for Kitchen-FIST, where one of the target sub-tasks is only part of
the task-specific data, the presence of the task-specific single flow fn+1 is also crucial for success.
We do not find the push-forward technique to help much in this setting.

23

1.0 1.1
1.2

1.3
1.4

1.5 0.4
0.6

0.8
1.0

1.2

0.3
0.4
0.5
0.6
0.7
0.8

PARROT+(TS+TA)
demo

(a) PARROT+(TS+TA)

1.0
1.1

1.2
1.3

1.4
1.5

0.5
0.6

0.7
0.8

0.9
1.0

1.1

0.3
0.4
0.5
0.6
0.7
0.8

ours
demo

(b) ours

1.0
1.1

1.2
1.3

1.4
1.5 0.4

0.5
0.6

0.7
0.8

0.9
1.0

1.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

PARROT+4way+TS
demo

(c) PARROT+4way+TS

1.0 1.1 1.2
1.3

1.4
1.5

0.5
0.6

0.7
0.8

0.9
1.0

1.1

0.3
0.4
0.5
0.6
0.7
0.8

ours_4way
demo

(d) ours with 4 flows

1.0 1.1 1.2 1.3 1.4 1.5 0.4
0.5

0.6
0.7

0.8
0.9

1.0
1.1

0.3
0.4
0.5
0.6
0.7
0.8

PARROT+2way+TS
demo

(e) PARROT+2way+TS

1.0 1.1 1.2
1.3

1.4
1.5

0.5
0.6

0.7
0.8

0.9
1.0

1.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8

ours_2way
demo

(f) ours with 2 flows

Figure 13: Illustration of trajectories generated by our method and PARROT under the direction 4.5 setting
in the fetchreach environment without any RL training. Both methods do not use the explicit prior or the
push-forward technique. Our method does not use the task-specific single flow. For PARROT, 2/4way means the
two/four most related directions in the task-agnostic dataset (i.e., directions 4, 5 / 3, 4, 5, 6). For our method,
2/4 flows are trained on the two/four most related directions in the task-agnostic dataset. The orange line is the
task-specific dataset for reference. All orange lines converge at the red star, which is the goal.

Ablation on components in PARROT. Fig. 16 shows the difference when different architectures are
used. As one target sub-task is completely missing from the task-agnostic data, PARROT+TA fails as
expected. Also note that the explicit prior boosts the results of PARROT, making it comparable to our
method if given enough training time.

Ablation on the effect of using ground-truth labels. Table 5 and Table 6 show the performance
comparison between using ground-truth labels and labels acquired by k-means in the kitchen envi-
ronment.5 As we are using 24 labels in the main paper, but not all the task-agnostic datasets have
24 ground-truth labels, we also show the result using ground-truth pruned to 24 labels for a fair
comparison. For Kitchen-SKiLD where the number of ground-truth labels is 33, there are exactly 9
labels that have no more than 3 demonstrations. We merge each of them into the label that is next
to them in the dictionary order of concatenated task names. For kitchen-FIST where the number
of ground-truth labels is x, x < 24, we select the 24− x labels with the most demonstrations, and
divide them evenly into two halves; each half is a new label. Note, no task information is taken into
account when merging.

For readability, we use some suffixes in Table 5 and Table 6 to differentiate variants of CEIP in the
“label” column. The meaning of the suffixes are as follows:

• GT24: Ground-truth labels, but merged or split to form 24 labels;

• GT: Ground-truth labels; the number of subtasks differs;

• KM: K-means labels.

5The office environment has 210 ground-truth labels, which is hard to train.

24

1.0
1.1

1.2
1.3

1.4
1.5

0.5
0.6

0.7
0.8

0.9
1.0

1.1

0.3
0.4
0.5
0.6
0.7
0.8

ours
demo

(a) ours

1.0 1.1
1.2

1.3
1.4

1.5
0.5

0.6
0.7

0.8
0.9

1.0
1.1

0.3
0.4
0.5
0.6
0.7
0.8

PARROT+(TS+TA)
demo

(b) PARROT+(TS+TA)

1.1
1.2

1.3
1.4

1.5 0.5
0.6

0.7
0.8

0.9
1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

SKiLD
demo

(c) SKiLD

1.0
1.1

1.2
1.3

1.4
1.5

0.5
0.6

0.7
0.8

0.9
1.0

1.1

0.3
0.4
0.5
0.6
0.7
0.8

PARROT+TA
demo

(d) PARROT+TA

0.4 0.6 0.8 1.0 1.2 1.4 0.0
0.2

0.4
0.6

0.8
1.0

0.2
0.3
0.4
0.5
0.6
0.7
0.8

naive
demo

(e) naive

0.4 0.6 0.8 1.0 1.2 1.4 0.4
0.6

0.8
1.0

1.2

0.2

0.4

0.6

0.8

FIST
demo

(f) FIST

0.4 0.6 0.8 1.0 1.2 1.4 0.0
0.2

0.4
0.6

0.8
1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

PARROT+TS
demo

(g) PARROT+TS

Figure 14: Illustration of trajectories generated by all methods after RL training; similar to Fig. 13, the blue
curves are the trajectories, the orange curves are the demonstrations, and the red star is the goal. Our method and
PARROT do not use the explicit prior or the push-forward technique. Our method does not use the task-specific
single flow.

The result suggests that for Kitchen-SKiLD, ground truth (both 24 flows and 33 flows) helps as CEIP
with ground-truth labels works better than CEIP with k-means label (Table 5 shows higher reward).
For Kitchen-FIST, the reward is similar before and after RL training, and the precise label does not
matter.

Performance of behavior cloning and replaying demonstrations. We test behavior cloning and
replaying demonstrations (which is duplicating actions regardless of current state) on the kitchen
and office environment to see if the task-specific dataset already provides the optimal solution for
our testbeds. Table 7 shows the result of vanilla behavior cloning (BC), behavior cloning with
explicit prior (BC+EX), with explicit prior and push-forward (BC+EX+forward), and replaying
demonstrations (replay). The result shows that: 1) behavior cloning and replay are very brittle, and
cannot directly solve our testbed; 2) an explicit prior significantly improves the performance of
behavior cloning, which proves the validity of our design.

25

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
wa

rd
CEIP
CEIP+EX
CEIP+EX+forward
CEIP+TS
CEIP+TS+EX
CEIP+TS+EX+forward

(a) Kitchen-SKiLD-A

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0

1

2

3

4

Re
wa

rd

CEIP
CEIP+EX
CEIP+EX+forward
CEIP+TS
CEIP+TS+EX
CEIP+TS+EX+forward

(b) Kitchen-FIST-B

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0

1

2

3

4

Re
wa

rd

CEIP
CEIP+EX
CEIP+EX+forward
CEIP+TS
CEIP+TS+EX
CEIP+TS+EX+forward

(c) Kitchen-SKiLD-B

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
wa

rd

CEIP
CEIP+EX
CEIP+EX+forward
CEIP+TS
CEIP+TS+EX
CEIP+TS+EX+forward

(d) Kitchen-FIST-C

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0

1

2

3

4

Re
wa

rd

CEIP
CEIP+EX
CEIP+EX+forward
CEIP+TS
CEIP+TS+EX
CEIP+TS+EX+forward

(e) Kitchen-FIST-A

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0

1

2

3

4

Re
wa

rd

CEIP
CEIP+EX
CEIP+EX+forward
CEIP+TS
CEIP+TS+EX
CEIP+TS+EX+forward

(f) Kitchen-FIST-D

Figure 15: Ablation on the components of our method in the kitchen environment. For both environments,
the presence of an explicit prior greatly enhances the results; for kitchen-FIST where part of the target task
disappears from the task-agnostic dataset, a task-specific flow is also very important.

Label Method
Kitchen-
SKiLD-A

Kitchen-
SKiLD-B

Kitchen-
FIST-A

Kitchen-
FIST-B

Kitchen-
FIST-C

Kitchen-
FIST-D

GT CEIP+TS+EX 4 3.96 3.59 4 3.94 3.6
GT CEIP+TS+EX+forward 4 3.95 3 4 3.81 3.4

GT24 CEIP+TS+EX 4 4 3.68 3.76 3.8 3.96
GT24 CEIP+TS+EX+forward 4 4 3.24 3.75 3.85 3.9
KM CEIP+TS+EX 4 3.81 3.44 3.8 4 3.75
KM CEIP+TS+EX+forward 4 3.32 3.41 4 3.94 3.76

Table 5: Ground-truth label and k-means label impact for CEIP+TS+EX and CEIP+TS+EX+forward before RL.

Robustness of CEIP with respect to the precision of task-specific demonstrations. We test the
robustness of CEIP and FIST with imprecise task-specific demonstrations in the office environment.
The original office environment uses a [−0.01, 0.01] uniformly random noise for the starting position
of each dimension for each item in the environment. We increase this noise at test time (which the
agent never sees in imitation learning) and summarize the result in Table 8. The result shows that
albeit an improvement upon FIST, CEIP is still not robust to imprecise demonstrations, which is a
limitation that we discussed in the limitation section.

E Computational Resource Usage

All experiments are conducted on an Ubuntu 18.04 server with 72 Intel Xeon Gold 6254 CPUs @
3.10GHz, with a single NVIDIA RTX 2080Ti GPU. Under such settings, our method and PAR-
ROT+TA require around 1.5 − 3.5 hours for training the implicit prior in the kitchen and office
environments, depending on early stopping. FIST requires around 40 minutes for prior training and
5 minutes for the other parts. SKiLD requires around 9 hours for prior training, 6 − 7 hours for
posterior training, and 6− 7 hours for discriminator training. PARROT+TS only needs a few minutes.
As for reinforcement learning / deployment, our method on kitchen needs on average 10 minutes for
each run on fetchreach, and less than 2 hours for the kitchen environment. For the office environment,
we reach a speed of 12 steps per second (including updates); SKiLD and PARROT can reach a speed
of 20 steps per second; FIST can reach a speed of 25− 30 steps per second as it has no RL updates.

26

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
wa

rd CEIP+TS+EX+forward
PARROT+TA
PARROT+TA+EX
PARROT+TA+EX+forward
PARROT+TS
PARROT+TS+EX
PARROT+TS+EX+forward
PARROT+(TS+TA)
PARROT+(TS+TA)+EX
PARROT+(TS+TA)+EX+forward

(a) Kitchen-SKiLD-A

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
wa

rd

CEIP+TS+EX+forward
PARROT+TA
PARROT+TA+EX
PARROT+TA+EX+forward
PARROT+TS
PARROT+TS+EX
PARROT+TS+EX+forward
PARROT+(TS+TA)
PARROT+(TS+TA)+EX
PARROT+(TS+TA)+EX+forward

(b) Kitchen-FIST-B

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0

1

2

3

4

Re
wa

rd

CEIP+TS+EX+forward
PARROT+TA
PARROT+TA+EX
PARROT+TA+EX+forward
PARROT+TS
PARROT+TS+EX
PARROT+TS+EX+forward
PARROT+(TS+TA)
PARROT+(TS+TA)+EX
PARROT+(TS+TA)+EX+forward

(c) Kitchen-SKiLD-B

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
wa

rd CEIP+TS+EX+forward
PARROT+TA
PARROT+TA+EX
PARROT+TA+EX+forward
PARROT+TS
PARROT+TS+EX
PARROT+TS+EX+forward
PARROT+(TS+TA)
PARROT+(TS+TA)+EX
PARROT+(TS+TA)+EX+forward

(d) Kitchen-FIST-C

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
wa

rd CEIP+TS+EX+forward
PARROT+TA
PARROT+TA+EX
PARROT+TA+EX+forward
PARROT+TS
PARROT+TS+EX
PARROT+TS+EX+forward
PARROT+(TS+TA)
PARROT+(TS+TA)+EX
PARROT+(TS+TA)+EX+forward

(e) Kitchen-FIST-A

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
wa

rd CEIP+TS+EX+forward
PARROT+TA
PARROT+TA+EX
PARROT+TA+EX+forward
PARROT+TS
PARROT+TS+EX
PARROT+TS+EX+forward
PARROT+(TS+TA)
PARROT+(TS+TA)+EX
PARROT+(TS+TA)+EX+forward

(f) Kitchen-FIST-D

Figure 16: Ablation results for PARROT in the kitchen environment. For convenience, we also list
CEIP+TS+EX+forward for reference. Note, CEIP+TS+EX+forward outperforms all variants of PARROT.
Similar to CEIP, PARROT can be improved by using an explicit prior. Note, in Kitchen-FIST-B, PARROT+TA
cannot learn anything, because the very first subtask in the target task sequence is missing in the task-agnostic
dataset. It can only learn all subtasks before the missing subtask.

Label Method
Kitchen-
SKiLD-A

Kitchen-
SKiLD-B

Kitchen-
FIST-A

Kitchen-
FIST-B

Kitchen-
FIST-C

Kitchen-
FIST-D

GT CEIP+TS+EX 4 3.87 3.93 3.8 3.94 3.71
GT CEIP+TS+EX+forward 4 3.87 3.9 3.74 3.96 3.93

GT24 CEIP+TS+EX 4 4 3.92 3.97 3.99 3.87
GT24 CEIP+TS+EX+forward 4 4 3.99 3.88 3.95 3.96
KM CEIP+TS+EX 4 4 3.94 3.92 3.93 3.95
KM CEIP+TS+EX+forward 4 4 3.95 3.89 3.92 3.94

Table 6: Ground-truth label and k-means label impact for CEIP+TS+EX and CEIP+TS+EX+forward after RL.

F Dataset and Algorithm Licenses

We developed our code on the basis of multiple environment testbeds and algorithm repositories.

Environment testbeds. We adopt fetchreach using the gym package from OpenAI, which has an
MIT license. For the kitchen environment, we are using a forked version of the d4rl package which

Environment BC BC+EX BC+EX+forward Replay CEIP+TS+EX+forward

Kitchen-SKiLD-A 0.02±0.04 1.52±1.15 2.2±0.62 1.0±0.82 4.0±0.00

Kitchen-SKiLD-B 0.03±0.08 1.03±0.90 0.8±0.75 0.67±0.94 3.93±0.08

Kitchen-FIST-A 0.67±0.76 2.17±0.06 3.03±0.15 2.33±0.47 3.95±0.05

Kitchen-FIST-B 0.4±0.59 2.13±0.47 1.87±0.29 0.67±0.47 3.89±0.07

Kitchen-FIST-C 0.5±0.75 2.2±1.61 1.9±0.96 2.33±0.94 3.92±0.06

Kitchen-FIST-D 0.67±0.39 1.63±1.42 2.17±1.67 2.33±0.94 3.94±0.07

Office 0.62±0.59 0.53±0.42 1.83±0.49 4.67±0.83 6.33±0.30

Table 7: Performance of behavior cloning and replaying demonstrations. For convenience, we also list
CEIP+TS+EX+forward for reference.

27

Noise level CEIP+TS+EX CEIP+TS+EX+forward FIST

0.01 (original) 4.17 6.33 5.6
0.02 4.20 4.17 3.8
0.05 0.57 0.83 0.6
0.1 0.05 0.1 0
0.2 0.01 0.02 0

Table 8: Comparison of the reward for CEIP and FIST when noise increases.

has an Apache-2.0 license. For the office environment, we are using a forked version of the roboverse,
which has an MIT license.

Algorithm repositories. We implement PARROT from scratch as PARROT is not open-sourced.
For SKiLD and FIST, we use their official github repositories. SKiLD has no license, but we have
informed the authors and got their consent for using code academically. FIST has a BSD-3-clause
license.

28

	Algorithm Details
	Additional Implementation Details
	CEIP
	PARROT
	SKiLD
	FIST

	Additional Details of Experimental Settings
	Fetchreach
	Kitchen-SKiLD
	Kitchen-FIST
	Office

	Additional Experimental Results
	Abbreviations for Ablation Tests
	Fetchreach
	Kitchen and Office

	Computational Resource Usage
	Dataset and Algorithm Licenses

