
Old can be Gold: Better Gradient Flow can Make
Vanilla-GCNs Great Again

Ajay Jaiswal∗, Peihao Wang∗, Tianlong Chen, Justin F. Rousseau, Ying Ding, Zhangyang Wang
University of Texas at Austin

{ajayjaiswal, peihaowang, tianlong.chen, atlaswang}@utexas.edu
{justin.rousseau, ying.ding}@austin.utexas.edu

Abstract

Despite the enormous success of Graph Convolutional Networks (GCNs) in mod-
eling graph-structured data, most of the current GCNs are shallow due to the
notoriously challenging problems of over-smoothening and information squashing
along with conventional difficulty caused by vanishing gradients and over-fitting.
Previous works have been primarily focused on the study of over-smoothening and
over-squashing phenomena in training deep GCNs. Surprisingly, in comparison
with CNNs/RNNs, very limited attention has been given to understanding how
healthy gradient flow can benefit the trainability of deep GCNs. In this paper, firstly,
we provide a new perspective of gradient flow to understand the substandard per-
formance of deep GCNs and hypothesize that by facilitating healthy gradient flow,
we can significantly improve their trainability, as well as achieve state-of-the-art
(SOTA) level performance from vanilla-GCNs [1]. Next, we argue that blindly
adopting the Glorot initialization for GCNs is not optimal, and derive a topology-
aware isometric initialization scheme for vanilla-GCNs based on the principles
of isometry. Additionally, contrary to ad-hoc addition of skip-connections, we
propose to use gradient-guided dynamic rewiring of vanilla-GCNs with skip
connections. Our dynamic rewiring method uses the gradient flow within each layer
during training to introduce on-demand skip-connections adaptively. We provide
extensive empirical evidence across multiple datasets that our methods improve
gradient flow in deep vanilla-GCNs and significantly boost their performance to
comfortably compete and outperform many fancy state-of-the-art methods. Codes
are available at: https://github.com/VITA-Group/GradientGCN.

1 Introduction

Graphs are omnipresent and Graphs convolutional networks (GCNs)[1] and their variants[2, 3, 4, 5,
6, 7, 8, 9, 10] are a powerful family of neural networks which can learn from graph-structured data.
GCNs have been enormously successful in numerous real-world applications such as recommenda-
tion systems [11, 12], social and academic networks[13, 11, 5, 4, 14], modeling proteins for drug
discovery[15, 16, 12], computer vision[17, 18], etc. Despite their popularity, training deep GCNs
are notoriously hard and many classical GCNs[1, 3, 19] achieve their best performance with shallow
depth and completely bilk trainability with increasing stacks of layers and non-linearity[20, 21].

Previous works have focused on studying the roadblocks of training deep GCNs from the perspective
of over-smoothening [20, 21] and information bottleneck [22] and many approaches broadly catego-
rized as architectural [23, 24, 20, 25], and regularization & normalization [26, 27, 28, 29] tweaks has
been proposed for mitigation. In recent work, [30] theoretically validated that the deeper GCN model
is at least as expressive as the shallow GCN model, as long as deeper GCNs are trained properly.

∗Equal Contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/VITA-Group/GradientGCN

Furthermore, [31] studied the training difficulty of GCNs from the perspective of graph signal energy
loss, and proposed modifying the GCN operator, from the energy perspective but it failed to recover
the full potential of vanilla-GCNs. Surprisingly, unlike traditional neural networks (CNNs and RNNs),
limited effort has been given to understand hurdles in the trainability of deep GCNs from the signal
propagation perspective, i.e. gradient flow. In this paper, we comprehensively show that deep GCNs
suffer from poor gradient flow (error signals) under back-propagation across multiple datasets and
architectures, which significantly hurt their trainability and lead to substandard performance. Further,
we are motivated to explore an orthogonal direction: Can we make vanilla-GCNs [1] go deeper and
comparable/better than SOTA, by improvising healthy gradient flow during training?

In this work, we firstly look into the effect of initialization (surprisingly overlooked) in GCNs, and find
that blindly adopting the Glorot initialization [32] from CNNs has critical impacts on the gradient flow
of GCN training, especially for deep GCNs. When the initial weights are not chosen appropriately, the
propagation of the input signal into the layers of random weights can result in poor error signals under
back-propagation [33]. Inspired from the signal propagation perspective, we leverage the principle of
isometry [34, 35] to derive a theoretical initialization scheme for vanilla-GCNs, by incorporating the
graph topological information - which yields a remarkably easy-to-compute form.

Skip-connections have been very resourceful to train deep convolutional networks [36, 37] by
improving the gradient flow, and recently some works [23, 24, 38, 20] have identified their benefits
for deep GCNs. Although their benefits are known, most of the existing works attempt to add skip-
connections in an ad-hoc and non-optimal fashion in deep GCNs which creates additional overhead
of storing multiple activations during training along with substandard performance. Secondly, we
study layerwise gradient flow during the training of deep vanilla-GCNs and identify that there exist
some layers which receive almost zero error signal (i.e. gradients) during backpropagation and lose
trainability and expressiveness. We use computationally efficient Gradient Flow (p-norm of gradients
within a layer) as a metric to dynamically identify such layers during training and propose a principled
way of injecting skip-connections on-demand to facilitate healthy gradient flow in deep GCNs.

Our main contributions can be summarized as:

• Deep GCNs suffer from poor gradient flow during training. We rigorously investigate
the gradient flow during the training of GCNs and observe that GCNs suffer from poor
gradient flow which worsens with the increase in depth. We hypothesize that by improving
the gradient flow in deep vanilla-GCNs, along with effectively improving their trainability,
we can achieve SOTA-level performance from vanilla-GCNs [1].

• Topology-Aware Isometric Initialization of GCNs. Unlike blind adoption of Glorot
initialization [32] for GCNs, we derive a theoretical initialization scheme for vanilla-GCNs
[1] based on the principle of isometry, which relates benign initial parameters with graph
topology. We experimentally validate that our new initialization strategy significantly
improves the gradient flow in deep GCNs and provide huge performance benefits.

• Gradient-Guided Dynamic Rewiring of GCNs. Contrary to ad-hoc addition of skip-
connections to improve GCNs performance, in this paper, we leverage Gradient Flow to
introduce dynamic rewiring strategy of vanilla-GCNs with skip-connections. Our new
rewiring improves gradient flow, reduces the overhead of storing multiple intermediate
activations (dense, initial, residual, jumping skips), as well as outperforms many ad-hoc skip
connection mechanisms.

2 Methodology

In this section, we aim to discuss the trainability of deep GCNs from the signal propagation per-
spective, i.e. gradient flow. We will provide a detailed introduction and theoretical derivation of our
topology-aware isometric initialization. Furthermore, we will present a novel way to incorporate
skip-connections using Gradient Flow to improve the trainability of deep GCNs.

2.1 Preliminaries

We begin by formulating Graph Convolutional Networks (GCN) along the way introducing our
notation. Let G = (V, E) be a simple and undirected graph with vertex set V and edge set E . Let

2

0 20 40 60 80 100 120
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Gr
ad

ie
nt

 F
lo

w

Final Acc = 26.3%

Final Acc = 77.9%

Glorot Initialization
Our initialization

0 20 40 60 80 100 120
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Gr
ad

ie
nt

 F
lo

w

Final Acc = 26.3%

Final Acc
= 80.2%

Vanilla-GCN
Gradient-Guided Rewired GCN

Figure 1: (a) Comparison of Gradient flow in 10-layer vanilla-GCN with default (Glorot initialization)
and our Topology-Aware initialization. (b) Comparison of Gradient flow in 10-layer GCN and GCNs
with our new Gradient Flow Guided Rewiring.

A ∈ RN×N be the associated adjacency matrix, such that Aij = 1 if (i, j) ∈ E , and Aij = 0
otherwise. N = |V| is the number of nodes. We also define di =

∑
j Aij as the node degree of the

i-th vertex. Let X ∈ RC×N be the node feature matrix, whose i-th column represents a d-dimension
feature vector for the i-th node. GCNs aim to learn an embedding for each node via learnable graph
convolutional filters [2, 1]. A graph convolutional layer can be formulated as 2:

f(G,X) = WX(A+ I), (1)

where adding I to adjacency matrix is known as the self-loop trick [1], W ∈ RC′×C is the weight
matrix of this layer, and C ′ is the dimension of output channel. An L-layer GCN cascades L layer of
graph convolutional layers followed by non-linear activations:

Y = f (L) ◦ σ ◦ f (L−1) ◦ · · · f (2) ◦ σ ◦ f (1)(G,X), (2)

where Y ∈ RC′
is the final output of the GCN, and σ(·) denotes a non-linear activation, which

is typically chosen as ReLU. Although there exists lots of message-passing based Graph Neural
Networks (GNNs), which are incorporated with highly sophisticated mechanisms, such as attention
[3] and gating [39, 40], the focus of our work only lies on the most classical GCN model (Eq. 2 or
[1]) that exactly follows the rigorous definition of graph convolutions [41]. As we will show in our
experiments, our proposal will bring this theoretically clean GCN back to the SOTA performance.

2.2 Understanding Gradient Flow in Deep GCNs

0 20 40 60 80 100 120
Epoch

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Gr
ad

ie
nt

 F
lo

w

Final Acc = 81.2%
Final Acc = 26.3%

Final Acc = 26.3%

Layer 2
Layer 10
Layer 16

Figure 2: Gradient flow of vanilla-GCNs
(layer 4,10,16) trained on Cora.

Gradient flow and its associated problems such as ex-
ploding and vanishing gradients have been extensively
explored in the dynamics of learning of neural networks
(CNNs/RNNs) [32, 33, 35]. GCNs [1] are a special
category of neural networks, which uses “graph convo-
lution” operation (linear transformation of all neighbors
of a node followed by non-linear activation) to learn
the graph representation. Despite being powerful in
learning high-quality node representations, GCNs have
limited ability to extract information from high-order
neighbors and significantly lose their trainability and
performance. Recently, many works [20, 21, 22, 24]
have been proposed to address this issue from the perspective of over-smoothing and information bot-
tleneck. However, the signal propagation perspective to understand the trainability and performance
of GCNs has been highly overlooked compared to the attention it has received for CNNs/RNNs.

Gradient flow is used to study the optimization dynamics of neural networks and it has been widely
known that healthy gradient flow facilitates better optimization [32, 33, 35, 42]. Consider an L-layer
GCN (see Eq. 2), we denote the weight parameter for the l-th layer f (l) as W l. Suppose we have
cost function L, we calculate the gradient across each layer and effective gradient flow (GF) as:

g1 =
∂L
W 1

, · · · , gi =
∂L
W i

, · · · , gL =
∂L
WL

Gradient Flow:GFp =
1

L

L∑
n=1

∥gn∥p

(3)

(4)

2Here we consider A is symmetrically normalized by default.

3

where for every layer l, ∂L
∂W l

represents gradients of the learnable parameters W l and we have used
p = 2 in our experiments. Figure 2 represents the gradient flow during training of vanilla-GCNs
with layer 4, 6, and 10 on the Cora dataset. Figure 3 illustrates the comparison of validation loss and
gradient flow in vanilla-GCNs with 2 and 10 layers on Cora, Citeseer, and Pubmed. We consistently
observed across each dataset that with increasing depth, the gradient flow across layers decreases
significantly along with the performance. In this paper, we hypothesize that by improving the gradient
flow in deep vanilla-GCNs, along with effectively improving their trainability, we can achieve SOTA-
level performance from vanilla-GCNs. We propose a new topology-aware initialization strategy based
on the principles of isometry and dynamic architecture rewiring for vanilla-GCNs to improvise the
gradient flow and subsequently performance (Figure 1(a),(b)).

0 20 40 60 80 100 120
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

Va
lid

at
io

n
Lo

ss

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Gr
ad

ie
nt

 F
lo

w

Cora

0 20 40 60 80 100 120
Epoch

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Va
lid

at
io

n
Lo

ss

0.01

0.02

0.03

0.04

0.05

0.06

Gr
ad

ie
nt

 F
lo

w

Citeseer

0 20 40 60 80 100 120
Epoch

0.6

0.7

0.8

0.9

1.0

1.1

Va
lid

at
io

n
Lo

ss

Val Loss
Layer 2
Layer 10

0.01

0.02

0.03

0.04

0.05

0.06

Gr
ad

ie
nt

 F
lo

w

Pubmed

Grad Flow
Layer 2
Layer 10

Figure 3: Comparison of validation loss and gradient flow in vanilla-GCNs with 2 and 10 layers.

2.3 Topology-Aware Isometric Initialization

Recent work of [43] has revealed that initializing network parameters nearly isometric can train very
deep CNNs without any normalization. We are inspired to properly initialize each GCN layer to
make it an isometric mapping. To begin with, we first give the formal definition of isometry below:
Definition 1. [43] A map f : X → Y between two inner-product spaces is called an isometry if

⟨f(x), f(x′)⟩ = ⟨x,x′⟩ (5)

for all x,x′ ∈ X .

Existing isometric initialization techniques are not free lunch for GCNs. Qi et al. [43] showed that a
convolutional operator is isometric if and only if their cross-channel weights are orthogonal to each
other. The straightforward implication is that delta kernel can be served as the isometric initialization.
However, computing delta kernel in graph signal processing needs to involve complex numbers and
eigen-decomposition of the adjacency matrix [44], which is infeasible for a common deep learning
framework. To this end, we re-establish theoretical results for GCNs from Definition 1.

Consider one GCN layer (Eq. 1), our goal is to seek a weight matrix such that pair-wise angles
between node features are invariant after transforming by the layer. First of all, we denote the output
feature of the i-th node as yi = WXai where ai is the i-th column of (A+ I). The inner product
of two node features i, j ∈ [N] can be computed as:

⟨yi,yj⟩ =
[(
a⊤
i ⊗W

)
vec(X)

]⊤ [(
a⊤
j ⊗W

)
vec(X)

]
= Tr

([(
aia

⊤
j

)
⊗

(
W⊤W

)]
vec(X) vec(X)⊤

)
,

(6)

(7)

where vec(·) denotes vectorization of a matrix, Eq. 6 follows from the equality vec(ABC) =

(C⊤ ⊗A) vecB [45]. On the other hand, xi = ICXei where ei is the i-th canonical basis, we can
obtain a similar form of ⟨xi,xj⟩:

⟨xi,xj⟩ = Tr
([(

eie
⊤
j

)
⊗ IC

]
vec(X) vec(X)⊤

)
(8)

To achieve isometry, we hope to solve a W such that Eq. 8 equals to Eq. 7. However, a simple
closed-form solution does not exist in general. Instead, we seek a W to minimize the difference
between Eq. 8 and Eq. 7.

W ∗ = argmin
W∈RC′×C

∑
i,j∈[N]

∣∣⟨yi,yj⟩ − ⟨xi,xj⟩
∣∣2

= argmin
W∈RC′×C

∑
i,j∈[N]

Tr2
([(

aia
⊤
j

)
⊗

(
W⊤W

)
−

(
eie

⊤
j

)
⊗ IC

]
vec(X) vec(X)⊤

)
.

(9)

(10)

4

However, minimizing objective Eq. 10 will involve data matrix into the solution, which limits
computational efficiency and generalization. Hence, we optimize a looser upper bound of Eq. 10 by
minimizing the difference between (aia

⊤
j)⊗ (W⊤W and (eie

⊤
j)⊗ IC . The intuition is that once

this difference reaches zero, Eq. 10 will be minimized to zero as well.

W ∗ = argmin
W∈RC′×C

∑
i,j∈[N]

∥∥∥(aia
⊤
j

)
⊗

(
W⊤W

)
−

(
eie

⊤
j

)
⊗ IC

∥∥∥2
F
. (11)

At the first glance, Eq. 11 is non-convex and Kronecker product will produce a computational
prohibitive matrix, which makes this problem intractable. However, it has not escaped our notice
that the structure of aiaj is highly sparse. Hence, the entire norm minimization can be decomposed
into block-wise minimization problems. We defer the detailed derivation into Appendix ??. As the
consequence, the optimal solution to Eq. 11 should satisfy:

∥wk∥22 =
N2∑

i,j∈[N](di + 1)(dj + 1)
∀k ∈ [C],

w⊤
k wl = 0 ∀k, l ∈ [C], k ̸= l,

(12)

(13)

where wk denotes the k-th column of optimal weight matrix W ∗. Eq. 13 suggests that isometry
requires weights for different channels to be orthogonal, which conforms with the general results
of [43]. But different from [43], our results indicate that the magnitude of channel-wise weights
should be constrained by a degree-related constant (Eq. 12), which binds the initial weights with
topological information. To randomly initialize W in practice, one can draw each column of W from
independent distributions (e.g., white Gaussian) with variance Σ2 = N2/

[
C ′ ∑

i,j(di + 1)(dj + 1)
]

and to initialize weights with bounded values, we suggest employ the following uniform distribution:

W ∼ U

−√√√√ 3N2

C ′
(∑

i,j∈[N](di + 1)(dj + 1)
) ,√√√√ 3N2

C ′
(∑

i,j∈[N](di + 1)(dj + 1)
)
 (14)

2.4 Gradient-Guided Dynamic Rewiring

Graph Convolutions can be considered as a type of Laplacian smoothing, and repeatedly ap-
plying Laplacian smoothing many times in the case of multi-layer GCNs, leads the representa-
tions of the nodes in GCN to converge to a certain value and thus become indistinguishable, i.e.
lose expressiveness and trainability [20, 46]. Despite numerous efforts from architectural, regular-
ization, and normalization perspectives [23, 26, 27, 24, 20, 25, 28, 29], there still exists a wide gap
in fully understanding the trainability issue of deep GCNs which can aid in developing techniques
which can prevent performance deterioration with increasing depth.

In this work, we look for the effect of increasing depth on the error signal propagation during training
and found that deep GCNs suffer from poor gradient flow and it worsens dramatically with increasing
depth, thereby completely blocking the gradient propagation and potentially leading to a catastrophic
failure to update during training. More specifically, we performed gradient flow analysis during
training of deep vanilla-GCNs (Figure 4 (a)) and found that with the progress in training, many deep
GCN layers receive almost zero error signal during backpropagation (i.e. gradients) and unable to
train. Motivated by this finding, we use computationally efficient Gradient Flow as a metric to identify
layers that block healthy error signal back-propagation during training and propose to dynamically
rewire the vanilla-GCNs using skip-connections (widely known to improve gradient flow), which we
call on-demand dynamic rewiring. Our dynamic rewiring technique improves gradient flow, mitigate
sudden feature collapse and significantly helps in training deep vanilla-GCNs with high performance
(Figure 1(b) and 4(c)). Mathematically, our dynamic rewiring can be written as:

X̃
l

t = W l−1X
(l−1)
t (A+ I)

X l
t = 1[GF(X

(l)
t) < p ·GF(X

(l)
0)]αX

(l−1)
t + X̃

l

t

(15)

(16)

where, 1[·] is an indicator function, the subscript t denotes the training epoch, the superscript l
denotes the layer index, GF denotes gradient flow, α denotes skip information ratio, and p denotes
gradient flow drop threshold.

5

Precisely, we observe the Gradient Flow of each vanilla-GCN layer during training, and if the flow
drop by p% (hyperparameter) of its initial value at the start of training, we assist the layer with a
skip-connection. We use a modified version of initial residual connection [47, 24], which we define
as the output feature matrix of first layer of vanilla-GCN (gives better performance than [47, 24]),
to supplement the layers that quickly loses energy. Once the layers which are more prone to lose
expressiveness are identified and rewired using the skip-connections, the vanilla-GCN training can
proceed as normal.

In comparison with previous work [23, 24, 38, 20] which blindly inherits skip-connection techniques
from CNNs/RNNs, our work provides a principled approach to perform architectural rewiring of
vanilla-GCNs. Static skips introduced in [23, 24, 38, 20], by default incorporate skips for training
shallow GCNs with 2-3 layers (which do not require it), and tend to hurt the final performance. For
example, in Table 3, it can be observed that training a 2-layered GCN with initial, jumping, or residual
skips suffers -2.1%, -0.12%, -6.37% performance drop compared to a plain vanilla-GCN (81.10%)
on Cora. Our method only introduces skip-connections when it is required by tracking the gradient
flow of the layer, and thereby overcomes the issue of adding skips in shallow GCNs, and for layers
that receive healthy gradient flow. Our extensive experiments on multiple datasets reveal that our
approach of guided rewiring not only brings benefits on the efficiency front (memory overhead to
store intermediate activations) but also comfortably outperforms all SOTA ad-hoc skip-connection.

3 Experiment

In this section, we first provide experimental evidence to augment our signal propagation hypothesis
and show that our newly proposed methods facilitate healthy gradient flow during the training of
deep-vanilla GCNs. Next, we extensively evaluate our methods against state-of-the-art graph neural
network models and techniques to improve vanilla-GCNs on on a wide variety of open graph datasets.

Settings Cora Citeseer Pubmed OGBN-ArXiv

{Learning rate, Weight Decay, Hidden dimesnion} {0.005, 5e − 4, 64} {0.005, 5e − 4, 64} {0.01, 5e − 4, 64} {0.005, 0, 256}

Table 1: Hyperparameter configuration for our proposed method on representative datasets.

3.1 Dataset and Experimental Setup

We use three standard citation network datasets Cora, Citeseer, and Pubmed [48] in GNN domain for
evaluating our proposed methods against state-of-the-art GNN models and techniques. We have used
the basic vanilla-GCN implementation in PyTorch provided by the authors of [1] to incorporate our
proposed techniques and show their effectiveness in making traditional GCN comparable/better with
SOTA. For our evaluation on Cora, Citeseer, Pubmed, and OGBN-ArXiv, we have closely followed
the data split settings and metrics reported by the recent benchmark [49]. See details in Appendix ??.
For comparison with SOTA models, we have used JKNet [50], InceptionGCN [51], SGC [52], GAT
[3], GCNII [24], and DAGNN [53]. We use Adam optimizer for our experiments and performed a
grid search to tune hyperparameters for our proposed methods and reported our settings in Table 1.
For all our experiments, we have trained our modified GCNs for 1500 epochs and 100 independent
repetitions following [49] and reported average performances with the standard deviations of the node
classification accuracies. All experiments on large graph datasets, e.g., OGBN-ArXiv, are conducted
on single 48G Quadro RTX 8000 GPU, while small graph experiments are completed using a single
16G RTX 5000 GPU.

3.2 Gradient Flow and our proposed methods

Despite significant efforts to improve deep neural networks (CNNs/RNNs) training from the signal
propagation perspective, in-depth analysis of deep GCNs training with a focus on the gradient flow
during back-propagation is highly overlooked. We use Equation 4 to study gradient flow during the
training of GCNs and Figure 2 indicates that with an increase in depth, gradient flow in the network
drop significantly hurting the trainability of GCNs. Figure 3 indicates the relation between gradient
flow and drop in validation loss (performance) for 2-layer and 10-layer GCNs for Cora, Citeseer, and
Pubmed. It can be observed that across all datasets, 10-layer GCN has poor gradient flow compared
to 2-layer GCN and we observed a negligible drop in validation loss during training.

6

Epoch

Layer 1
Layer 3
Layer 5
Layer 7
Layer 9

Vanilla-GCN

0.0

0.5

1.0

Epoch

Layer 1
Layer 3
Layer 5
Layer 7
Layer 9

Vanilla-GCN + Our Init

0.0

0.5

1.0

Epoch

Layer 1
Layer 3
Layer 5
Layer 7
Layer 9

Vanilla-GCN + Gradient Rewiring

0.0

0.5

1.0

Figure 4: Visualization of the gradient flow of layers during the training of 10-layers vanilla GCN,
vanilla-GCN with our new topology-aware initialization and dynamic DE-based rewiring for 500
epochs on Cora. Our methods promote uniform gradient flow across all layers of vanilla-GCNs.

To better understand the behavior of each hidden layer in deep GCN training, we estimated the
gradient flow per layer independently of a 10-layer GCN. To our surprise, we found that many layers
receive zero error signals (gradients) under backpropagation, potentially leading to a catastrophic
failure to update during training. Figure 4(a) illustrate layer-wise analysis of gradient flow in 10-layer
vanilla-GCN on Cora. We observed that within a few epochs of training, the gradient flow saturates,
and then onwards, many layers of GCN receive zero error signal during the backpropagation and they
fail to update leading to no drop in validation loss.

Dataset Settings Layer Number

2 3 4 5 6 7 8 9 10 11 12

Cora GCN 81.1 81.9 80.4 79.9 77.5 77.1 69.5 28.2 27.4 30.1 25.4
GCN + Our Init 83.0 83.4 80.6 80.0 81.2 80.6 80.4 79.9 80.1 79.2 78.5

CiteSeer GCN 71.4 67.6 64.6 63.7 63.9 24.1 20.8 22.3 23.2 22.9 21.6
GCN + Our Init 71.7 78.2 68.3 66.1 66.2 63.3 62.8 63.2 62.9 59.8 61.9

PubMed GCN 79.0 78.9 76.5 76.7 77.1 76.5 61.2 41.8 40.7 43.2 41.0
GCN + Our Init 79.3 80.0 78.5 77.6 77.6 76.7 75.8 76.9 76.2 76.3 75.9

Table 2: Performance Comparison (test accuracy %) of of vanilla-GCNs [1] with and without our
newly proposed topology-aware isometric initialization. Experiments are conducted on Cora, Citeseer,
and PubMed using vanilla-GCNs with layer l ∈ {2, 3, ..., 12}.

Initialization of neural networks is tightly coupled with the propagation of error signals [33] and effect
their trainability. Our newly proposed topology-aware isometric initialization and gradient-guided
rewiring significantly improve gradient flow (Figure 1(a) and (b)) as well as mitigate the issue of
feature collapse of layers in deep vanilla-GCNs. In Figure 4(b) and (c), the detailed layer-wise
analysis of vanilla-GCN with our newly proposed methods clearly illustrate how our methods are
able to uniformly restore healthy gradients across all layers leading to improved trainability and
significant performance gains.

Category Settings Cora Citeseer PubMed

2 16 32 2 16 32 2 16 32

Vanilla-GCN - 81.10 21.49 21.22 71.46 19.59 20.29 79.76 39.14 38.77

Skip Residual 74.73 20.05 19.57 66.83 20.77 20.90 75.27 38.84 38.74
Connection Initial 79.00 78.61 78.74 70.15 68.41 68.36 77.92 77.52 78.18

Jumping 80.98 76.04 75.57 69.33 58.38 55.03 77.83 75.62 75.36
Dense 77.86 69.61 67.26 66.18 49.33 41.48 72.53 69.91 62.99

Normalization BatchNorm 69.91 61.20 29.05 46.27 26.25 21.82 67.15 58.00 55.98
PairNorm 74.43 55.75 17.67 63.26 27.45 20.67 75.67 71.30 61.54
NodeNorm 79.87 21.46 21.48 68.96 18.81 19.03 78.14 40.92 40.93
CombNorm 80.00 55.64 21.44 68.59 18.90 18.53 78.11 40.93 40.90

Random Dropping DropNode 77.10 27.61 27.65 69.38 21.83 22.18 77.39 40.31 40.38
DropEdge 79.16 28.00 27.87 70.26 22.92 22.92 78.58 40.61 40.50
LADIES 77.12 28.07 27.54 68.87 22.52 22.60 78.31 40.07 40.11

Identity Mapping - 82.98 67.23 40.57 68.25 56.39 35.28 79.09 79.55 73.74

Gradient-Guided Rewiring (Ours) 82.79 80.19 80.01 71.06 68.54 68.49 78.90 78.32 78.51
±0.16 ±0.32 ±0.15 ±0.21 ±0.11 ±0.31 ±0.20 ±0.19 ±0.27

Table 3: Performance Comparison of Gradient-guided Rewiring with respect to various proposed
fancy techniques to improve the GCN training. Note that our results are generated using vanilla-GCN
[1]. Experiments are conducted on Cora, Citeseer, and PubMed with 2/16/32 layers GCN.

7

3.3 Vanilla-GCNs and our proposed methods

In this section, we conduct a systematic study to understand the performance gain by improving
gradient flow using our proposed methods: topology-aware isometric initialization and Gradient
Guided Dynamic Rewiring, by incorporating them into the training process of deep vanilla-GCNs.
Table 2 demonstrate the performance comparison of vanilla-GCNs [1] with and without our new
initialization method with an increase in depth. Our experiments on Cora, Citeseer, and PubMed using
vanilla-GCNs with layers l ∈ {2, 3, ..., 12} illustrate how our new initialization has been successful
in retaining the trainability of vanilla-GCNs with increasing depth along with improving performance
at shallow depths. The highlighted (red) box represents the depths at which vanilla-GCNs lose
trainability, i.e, validation loss shows no improvement during training.

Trainability issue of deep GCNs has been extensively studied from the perspective of over-
smoothening [20, 21] and information bottleneck [22] and many approaches broadly categorized as
architectural tweaks [23, 24, 20, 25], and regularization & normalization [26, 27, 28, 29] has been
proposed for mitigation. We defer their detailed description to Appendix ??. Table 3 demonstrates
the performance comparison of our gradient-guided dynamic rewiring using skip-connections with re-
spect to various state-of-the-art techniques to improve deep GCNs training. It can be clearly observed
that our on-demand dynamic rewiring method of introducing new skip-connections significantly
outperforms all fancy normalization and regularization techniques as well as comfortably beats ad-hoc
skip-connections techniques.

Method Cora PubMed

2 4 8 16 32 64 2 4 8 16 32 64

Vanilla-GCN [1] 81.1 80.4 69.5 21.5 21.2 21.9 79.0 76.5 61.2 39.1 38.7 35.3
GAT [3] 81.9 80.3 31.3 30.5 27.1 27.9 78.4 77.4 29.1 26.3 28.7 25.0
JKNet [50] 79.1 79.2 75.0 72.9 73.2 71.5 77.8 68.7 67.7 69.8 68.2 63.4
SGC [52] 79.3 79.0 77.2 75.9 68.5 65.3 78.0 73.1 70.9 69.8 66.6 63.2
InceptionGCN [51] 79.2 77.6 76.5 81.7 81.7 80.0 78.5 77.7 77.9 74.9 74.1 74.3
GCNII [24] 82.2 82.6 84.2 84.6 85.4 85.5 78.2 78.8 79.3 80.2 79.8 79.7

Ours 83.1 82.8 82.4 82.3 82.1 80.4 80.2 79.6 79.8 79.5 79.9 79.7
(std: ±) 0.25 0.23 0.31 0.24 0.30 0.22 0.16 0.29 0.11 0.08 0.17 0.24

Table 4: Performance Comparison (test accuracy %) of our proposed method (topology-aware initial-
ization and gradient-guided rewiring) with other previous SOTA frameworks on Cora & Pubmed.

3.4 Comparison with state-of-the-art methods

To further validate the effectiveness improving gradient flow in vanilla-GCNs, we perform compar-
isons with previous state-of-the-art frameworks, including SGC[52], GAT[3], JKNet[50], APPNP[47],
InceptionGCN[51], GPRGNN[54], and GCNII[24]. We first observe that Gradient guided rewiring
and Topology-aware isometric initialization brings orthogonal benefits and combining them helps
vanilla-GCNs to achieve better performance. Table 4 reports the mean classification accuracy and
the standard deviation on the test set of Cora and Pubmed of our methods using vanilla-GCNs with
layer l ∈ {2, 4, 8, 16, 32, 64}. One key benefit to note is that with the help of our methods, we can
train vanilla-GCNs as deep as 64 layers. It can be observed that vanilla-GCNs with our methods
outperform all SOTA methods on Cora (layers 2 and 4) and Pubmed (layers 2, 4, 8, and 64), while
holding the second position for all other layers. To evaluate on a large graph, we have chosen
OGBN-AxRiv dataset, and Table 5 represents the performance comparison of vanilla-GCNs with our
method against SOTA baselines. It can be observed that with the help of our methods, vanilla-GCNs
can be efficiently trained deeper without any significant loss in performance. Very similar to Cora and
Pubmed, our methods beats all SOTA methods while training 2-layer vanilla-GCNs and holds second
position for all other layers. It is interesting to note that for OGBN-AxRiv dataset, vanilla-GCNs
with our proposed method consistently have performance improvement with an increase in depth
possibly because of being able to capture long-term information effectively, which is in contrast to
most of the SOTA methods whose performance suffers with increased in depth. Note that we are
NOT trying to beat SOTA, but instead, our objective is to reveal the correct initialization and training
scheme for vanilla-GCNs, and scale deep efficiently.

The last sanity check is whether our proposed methods can make deep vanilla-GCNs effective across
multiple different graph datasets. Specially, we evaluate it on seven other open-source graph datasets:
(i) one Co-author datasets [55] (CS), (ii) two Amazon datasets [55] (Computers and Photo), (iii) three

8

Layer GCN[1] SGC[52] DAGNN [25] GCNII[24] JKNet[50] APPNP[47] GPRGNN[54] Ours

2 69.46±0.22 61.98±0.08 67.65±0.52 71.24±0.17 63.73±0.38 65.31±0.23 69.31±0.09 71.59±0.08
16 67.96±0.38 41.58±0.27 71.82±0.28 72.61±0.29 66.41±0.56 66.95±0.24 70.30±0.15 71.76±0.03
32 45.46±4.50 34.22±0.04 71.46±0.27 72.60±0.25 66.31±0.63 66.94±0.26 70.18±0.16 72.03±0.55
64 38.40±7.63 36.17±2.11 70.22±1.54 72.13±0.79 62.97±3.81 65.54±1.74 70.59±2.60 72.28±0.92

Table 5: Performance Comparison (test accuracy %) of our proposed method (topology-aware
initialization and Gradient-guided rewiring) with previous SOTA frameworks using OGBN-AxRiv.

WebKB datasets [56] (Texas, Wisconsin, Cornell), and (iv) the Actor dataset [56]. Table 6 reports the
performance comparison of deep vanilla-GCN with 32-layers with state-of-the-art methods having the
same depth. Our methods universally encourage significant trainability benefits to deep vanilla-GCNs
across all datasets achieving state-of-the-art performance on Computers dataset while performing in
top-2 for all remaining datasets.

Category CS [55] Computers [55] Photo [55] Texas [56] Winconsin [56] Cornell [56] Actors [56]

GCN [1] 24.01±3.42 58.72±4.97 58.64±8.40 60.12±4.22 52.94±3.99 54.05±7.11 25.46±1.43
GAT [3] 11.04±0.94 9.42±0.54 17.11±1.02 11.54±0.72 14.01±0.88 19.78±1.42 6.42±0.39

SGC [52] 70.52±3.96 37.53±0.20 26.60±4.64 56.41±4.25 51.29±6.44 58.57±3.44 26.17±1.15
GCNII [24] 71.67±2.68 37.56±0.43 62.95±9.41 69.19±6.56 70.31±4.75 74.16±6.48 34.28±1.12
JKNet [50] 81.82±3.32 67.99±5.07 78.42±6.95 61.08±6.23 52.76±5.69 57.30±4.95 28.80±0.97

APPNP [47] 91.61±0.49 43.02±10.16 59.62±23.27 60.68±4.50 54.24±5.94 58.43±3.74 28.65±1.28

Ours 89.33±2.10 77.18±1.72 72.77±2.27 64.28±2.93 59.19±9.07 58.51±1.66 30.95±1.04

Table 6: Transfer studies of our proposed method (topology-aware initialization and gradient-guided
rewiring) with deep vanilla-GCNs (32-layers). Comparisons are conducted on seven open-source
widely adopted datasets with other previous state-of-the-art frameworks.

3.5 Dirichlet Energy-based analysis of our proposed methods

In this section, we use Dirichlet Energy to illustrate how our proposed techniques help in mitigating
the issue of losing expressiveness, enable deep GNNs to leverage the high-order neighbors. Node
pair distance has been widely adopted to quantify the embedding similarities, and Dirichlet energy is
simple and expressive metric to estimate the expressiveness of node embeddings learned by GCNs,
in a topology-aware fashion [46, 57]. Following [46], we define Dirichlet Energy as:
Definition 2. [46] Dirichlet energy E(x) of a scalar function x ∈ RN on the graph G is defined as:

E(x) = xTLx =
1

2

∑
(i,j)∈E

(
xi

(1 + di)1/2
− xj

(1 + dj)1/2

)2

(17)

For the vector field X = [x1 · · · xN] ∈ RC×N , where xi ∈ RC , Dirichlet energy is defined as:

E(X) = Tr(XLXT) =
1

2

∑
(i,j)∈E

∥∥∥∥ xi

(1 + di)1/2
− xj

(1 + dj)1/2

∥∥∥∥2
2

(18)

Epoch

Layer 1
Layer 3
Layer 5
Layer 7
Layer 9

Cora + Vanilla-GCN

10

0

Epoch

Layer 1
Layer 3
Layer 5
Layer 7
Layer 9

Citeseer + Vanilla-GCN

10

0

Epoch

Layer 1
Layer 3
Layer 5
Layer 7
Layer 9

Pubmed + Vanilla-GCN

10

0

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

Epoch

Layer 1
Layer 3
Layer 5
Layer 7
Layer 9

Cora + Our proposed Methods

10

0

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

Epoch

Layer 1
Layer 3
Layer 5
Layer 7
Layer 9

Citeseer + Our proposed Methods

10

0

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

Epoch

Layer 1
Layer 3
Layer 5
Layer 7
Layer 9

Pubmed + Our proposed Methods

10

0

Figure 5: Visualization of Dirichlet Energy of layers during the training of 10-layers vanilla GCN
(row 1) and with our proposed methods on Cora, Pubmed, and Citeseer. Plotted using the log scale
for better visualization. Our methods prevent Dirichlet Energy to drop to zero during training and
maintain the expressiveness of feature embeddings.

9

We track the Dirichlet energy of feature matrix w.r.t. the (augmented) normalized Laplacian at
different layers of the vanilla-GCN during training and observed that during training of a deep
vanilla-GCN, the Dirichlet energy of some layers decreases exponentially and becomes close to
zero within a few epochs of training, i.e lose expressiveness (Figure 5 row 1). Our newly proposed
methods: topology-aware isometric initialization and gradient-guided rewiring significantly improve
gradient flow, as well as mitigate the issue of exponentially dropping Dirichlet energy across all the
layers of deep GCNs, thereby restoring the expressiveness of node embeddings (Figure 5 row 2).

4 Other Related Works

GNNs have established state-of-the-art performance in numerous real-world applications [11, 12,
13, 11, 5, 4, 14, 15, 16, 12, 17, 18]. While deep architectures improve the representational power
of neural networks [58, 59], not every useful GNN has to be deep. Many real-world graph are
“small-world”[60], where a node can reach any other node in a few hops, hence a few layers would
suffice to provide global coverage. However, when the graph data has no small-world property, or
the related task requires long-range information, then deeper GNNs become very necessary. Many
works [20, 21] revealed that when we start stacking spatial aggregations recursively in GNNs, the
node representations will collapse to indistinguishable vectors and it will hamper the training of
deep GNNs. More generally, this phenomenon happens for any message-passing mechanism via
stochastic matrices including attention [61]. Recently, there has been a series of techniques developed
to handle the over-smoothing issue, which can be broadly categorized under skip connection, graph
normalization, random dropping. Skip-connections [23, 24, 38, 20] have been applied to GNNs
to exploit node embeddings from the preceding layers, to relieve the over-smoothing issue. Graph
normalization techniques [28, 62, 63, 64, 65] re-scale node embeddings over an input graph to
constrain pairwise node distance and thus alleviate over-smoothing. Dropout methods [66, 26, 27, 67]
can be regarded as data augmentations, which help relieve both the over-fitting and over-smoothing
issues in training very deep GNNs.

5 Conclusion

This paper makes an important step towards understanding the substandard performance of deep
vanilla-GCNs from the signal propagation perspective and hypothesizes that by facilitating healthy
gradient flow, we can significantly improve their trainability, as well as achieve state-of-the-art (SOTA)
level performance or close using merely vanilla-GCNs. This paper derives a topology-aware isometric
initialization scheme for vanilla-GCNs based on the principles of isometry. Additionally, this paper
proposes to use Gradient Flow for the dynamic rewiring of vanilla-GCNs with skip-connections.
Extensive experiments across multiple datasets illustrate that these methods improvise gradient flow
in deep vanilla-GCNs and significantly boost their performance. An interesting direction for future
work includes building theoretical relations between our proposed methods and gradient flow.

References

[1] Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. ArXiv, abs/1609.02907, 2017.

[2] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 29, 2016.

[3] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[4] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. L2-gcn: Layer-wise and learned
efficient training of graph convolutional networks. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2124–2132, 2020.

[5] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018.

10

[6] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 257–266, 2019.

[7] Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and
Karthik Subbian. Cold brew: Distilling graph node representations with incomplete or missing
neighborhoods. arXiv preprint arXiv:2111.04840, 2021.

[8] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks
via importance sampling. arXiv preprint arXiv:1801.10247, 2018.

[9] Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu,
and Zhangyang Wang. A comprehensive study on large-scale graph training: Benchmarking
and rethinking. In Thirty-sixth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2022.

[10] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph
neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735, 2018.

[11] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 974–983, 2018.

[12] Junyuan Shang, Cao Xiao, Tengfei Ma, Hongyan Li, and Jimeng Sun. Gamenet: Graph aug-
mented memory networks for recommending medication combination. ArXiv, abs/1809.01852,
2019.

[13] Lei Tang and Huan Liu. Relational learning via latent social dimensions. In KDD, 2009.
[14] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does self-supervision help

graph convolutional networks? Proceedings of machine learning research, 119:10871–10880,
2020.

[15] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using
graph convolutional networks. In NIPS, 2017.

[16] Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33:i190 – i198, 2017.

[17] Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dimitris N. Metaxas. Semantic graph
convolutional networks for 3d human pose regression. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3420–3430, 2019.

[18] Yixiao Zhang, Xiaosong Wang, Ziyue Xu, Qihang Yu, Alan Loddon Yuille, and Daguang Xu.
When radiology report generation meets knowledge graph. In AAAI, 2020.

[19] Zhiwen Fan, Lingjie Zhu, Honghua Li, Xiaohao Chen, Siyu Zhu, and Ping Tan. Floorplancad: a
large-scale cad drawing dataset for panoptic symbol spotting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10128–10137, 2021.

[20] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

[21] Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass
filters. ArXiv, abs/1905.09550, 2019.

[22] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. ArXiv, abs/2006.05205, 2021.

[23] Guohao Li, Matthias Müller, Ali K. Thabet, and Bernard Ghanem. Can gcns go as deep as
cnns? ArXiv, abs/1904.03751, 2019.

[24] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. ArXiv, abs/2007.02133, 2020.

[25] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020.

[26] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In ICLR, 2020.

11

[27] Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Tackling over-
smoothing for general graph convolutional networks. ArXiv, abs/2008.09864, 2020.

[28] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. ArXiv,
abs/1909.12223, 2020.

[29] Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi
Feng. Understanding and resolving performance degradation in deep graph convolutional
networks. Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, 2021.

[30] Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in
training graph convolutional networks. Advances in Neural Information Processing Systems,
34:9936–9949, 2021.

[31] Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Training matters: Unlocking
potentials of deeper graph convolutional neural networks. arXiv preprint arXiv:2008.08838,
2020.

[32] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In AISTATS, 2010.

[33] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. 2015 IEEE International Conference on
Computer Vision (ICCV), pages 1026–1034, 2015.

[34] Jeffrey Pennington, Samuel S. Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in
deep learning through dynamical isometry: theory and practice. In NIPS, 2017.

[35] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep infor-
mation propagation. ArXiv, abs/1611.01232, 2017.

[36] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[37] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2261–2269,
2017.

[38] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. ArXiv,
abs/1806.03536, 2018.

[39] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

[40] Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

[41] Aliaksei Sandryhaila and José MF Moura. Discrete signal processing on graphs. IEEE
transactions on signal processing, 61(7):1644–1656, 2013.

[42] Ajay Kumar Jaiswal, Haoyu Ma, Tianlong Chen, Ying Ding, and Zhangyang Wang. Spending
your winning lottery better after drawing it. arXiv preprint arXiv:2101.03255, 2021.

[43] Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jitendra Malik. Deep isometric learning
for visual recognition. In International Conference on Machine Learning, pages 7824–7835.
PMLR, 2020.

[44] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst.
Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE,
106(5):808–828, 2018.

[45] Kathrin Schacke. On the kronecker product. Master’s thesis, University of Waterloo, 2004.

[46] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

[47] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In ICLR, 2019.

12

[48] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-
Rad. Collective classification in network data articles. AI Magazine, 29:93–106, 09 2008.

[49] Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and
Zhangyang Wang. Bag of tricks for training deeper graph neural networks: A comprehensive
benchmark study. arXiv preprint arXiv:2108.10521, 2021.

[50] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International Conference on Machine Learning, pages 5453–5462. PMLR, 2018.

[51] Anees Kazi, Shayan Shekarforoush, S Arvind Krishna, Hendrik Burwinkel, Gerome Vivar,
Karsten Kortüm, Seyed-Ahmad Ahmadi, Shadi Albarqouni, and Nassir Navab. Inceptiongcn:
receptive field aware graph convolutional network for disease prediction. In International
Conference on Information Processing in Medical Imaging, pages 73–85. Springer, 2019.

[52] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learning,
pages 6861–6871. PMLR, 2019.

[53] Liqi Yang, Linhan Luo, Lifeng Xin, Xiaofeng Zhang, and Xinni Zhang. Dagnn: Demand-aware
graph neural networks for session-based recommendation. arXiv preprint arXiv:2105.14428,
2021.

[54] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. arXiv preprint arXiv:2006.07988, 2020.

[55] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

[56] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

[57] Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu.
Dirichlet energy constrained learning for deep graph neural networks. Advances in Neural
Information Processing Systems, 34:21834–21846, 2021.

[58] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[59] Peihao Wang, Yuehao Wang, Hua Lin, and Jianbo Shi. Sogcn: Second-order graph convolutional
networks. arXiv preprint arXiv:2110.07141, 2021.

[60] Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo
Silva. The logical expressiveness of graph neural networks. In ICLR, 2020.

[61] Peihao Wang, Wenqing Zheng, Tianlong Chen, and Zhangyang Wang. Anti-oversmoothing
in deep vision transformers via the fourier domain analysis: From theory to practice. arXiv
preprint arXiv:2203.05962, 2022.

[62] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[63] Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper
graph neural networks with differentiable group normalization. Advances in Neural Information
Processing Systems, 33:4917–4928, 2020.

[64] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

[65] Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting
over-smoothing in deep gcns. arXiv preprint arXiv:2003.13663, 2020.

[66] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.,
15:1929–1958, 2014.

[67] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-
dependent importance sampling for training deep and large graph convolutional networks. In
NeurIPS, 2019.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Methodology
	Preliminaries
	Understanding Gradient Flow in Deep GCNs
	Topology-Aware Isometric Initialization
	Gradient-Guided Dynamic Rewiring

	Experiment
	Dataset and Experimental Setup
	Gradient Flow and our proposed methods
	Vanilla-GCNs and our proposed methods
	Comparison with state-of-the-art methods
	Dirichlet Energy-based analysis of our proposed methods

	Other Related Works
	Conclusion

