
A Section 2: Follow the Perturbed Multiple Leaders

Proof of Proposition 1

Proof. Construct a cost sequence inductively for t = 1, 2, . . . , T : Let St ⇢ A be the deterministic
choice of arms the bandit algorithm chooses for round t given the previously chosen cost functions
c1, . . . , ct�1. Now choose ct(a) = 1 if a 2 St, and ct(a) = 0 otherwise. Then the bandit algorithm
achieves cost T . The total cost summed over all arms is

PT
t=1 |St|  BT , so there must exist at least

one a0 2 A such that
PT

t=1 ct(a
0)  BT

N . Thus R⇤
T � T �

BT
N = (1� B

N )T .

Proof of Lemma 3

Proof. Let Ri =
Pi

t=1 ct(S
⇤
t )�mina⇤2A

Pi
t=1 ct(a

⇤) be the regret at the end of round i. Then the
increase in regret in round i is

ri := Ri �Ri�1

=
iX

t=1

⇣
ct(S

⇤
t )� ct(a

⇤,1
i )
⌘
�

i�1X

t=1

⇣
ct(S

⇤
t )� ct(a

⇤,1
i�1)

⌘

= ci(S
⇤
i )� ci(a

⇤,1
i ) +

 
i�1X

t=1

ct(a
⇤,1
i�1)�

i�1X

t=1

ct(a
⇤,1
i )

!

 ci(S
⇤
i )� ci(a

⇤,1
i )

 1[a⇤,1i 62 S⇤
i ]

and the result follows by evaluating
PT

t=1 rt.

Lemma 9. (Proof of independence for Lemma 4) Let X1, . . . , XK be jointly independent continuous
random variables. Let i1, . . . , ik and vi1 , . . . , vik be the indices and values of the largest k < K
random variables, and let X := {Xi|i 62 {i1, . . . , ik} be the smallest K � k random variables.
Then conditional on (ij , vij )j2[k], the values of each Xi 2 X are jointly independent. Moreover, the
marginal distribution Xi|(ij , vij )j2[k] for i 62 {i1, . . . , ik} is Xi|Xi  minj2[k] vij .

Proof. Let M := minj2[k] vij . The conditional joint density function is

f(X1, . . . , XK |(ij , vij )j2[k]) / f(X ^ (ij , vij )j2[k])

=
Y

j2[K]�{i1,...,ik}

f(Xj)
Y

j2{i1,...,ik}

f(Xj = vj)
Y

j2[K]�{i1,...,ik}

1[Xj  M ]

/

Y

j2[K]�{i1,...,ik}

f(Xj)1[Xj  M ]

i.e. the joint density factorizes for each Xj (which implies joint independence), and marginally the
density for Xj 2 X is / f(Xj)1[Xj  M ] which gives the required result.

Proof of Lemma 4

Proof. Fix a round t. Consider the jointly independent random variables Xa = C̃t�1(a) for a 2 A.
Condition on the values and identities of the N�B largest of these random variables, i.e. condition on
E = {(Xa⇤,j

t�1
, a⇤,jt�1)}

N
j=B+1, and let M = Xa⇤,B+1

t�1
be the minimum perturbed cost among these non-

leading arms. Impose an ordering on A and let l1, . . . , lB 2 A� {a⇤,j}Nj=B+1 be the remaining arms
(the top B leaders) ordered lexicographically (i.e. not necessarily in order of cumulative perturbed
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cost). Then it can be shown that the distribution of the random variables Xl1 , . . . , XlB conditioned
on E is jointly independent, and the marginal distribution of Xlj given E is Xlj |(Xlj  M) (see
Lemma 9). Now observe that if Xlj < M � ct(lj) for any j 2 [B], then the event (ã⇤,1t 62 S̃⇤

t ) is
impossible. This is because lj 2 S̃⇤

t , but for any a 62 S⇤
t , C̃t(a) � M but C̃t(lj) = Xlj +ct(lj) < M

(i.e. lj cannot be overtaken by any non-top-B-leader in round t). Therefore we have

E
h
1[ã⇤,1t 62 S̃⇤

t ]|E
i
 P

2

4
B̂

j=1

¬(Xlj < M � ct(lj))

������
E

3

5 (1)

=
BY

j=1

P
⇥
¬(Xlj < M � ct(lj))|Xlj  M

⇤
(2)

=
BY

j=1

(1� P [p(lj) > Ct�1(lj) + ct(lj)�M |p(lj) � Ct�1(lj)�M ]) (3)



BY

j=1

(1� P [p(lj) > ct(lj)]) (4)

=
BY

j=1

 
1�

Z 1

ct(lj)
"e�"xdx

!
=

BY

j=1

(1� e�"ct(lj)) (5)



BY

j=1

("ct(lj))  "Bct(S̃
⇤
t ) (6)

(2) follows by independence, (4) is due to the memorylessness property of the exponential distribution
(with equality unless Ct�1(lj) � M < 0), and (6) follows because 1 � e�x

 x for x � 0 and
ct(S⇤

t ) �
Q

a2S⇤
t
ct(a) =

QB
j=1 ct(lj). The final claim follows by taking the expectation over the

conditioned event E.

Proof of Theorem 2

Proof. Consider a modified version of FPML where pt(a) = p1(a) = p(a) for all t > 1 (i.e. we
keep the random perturbation fixed across rounds). Then this version of FPML picks the set S̃⇤

t in
round t, and the regret can be bounded as

TX

t=1

ct(S̃
⇤
t )� min

a⇤2A

TX

t=1

ct(a
⇤) =

 
TX

t=1

ct(S̃
⇤
t )� min

ã⇤2A

TX

t=1

ct(ã
⇤)� p(ã⇤)

!

+

 
min
ã⇤2A

TX

t=1

ct(ã
⇤)� p(ã⇤)� min

a⇤2A

TX

t=1

ct(a
⇤)

!

The second term is  0. The first term can be interpreted as the regret of a modified version of MAB
with a 0th round with cost function �p, where we are only allowed to pull arms from round t = 1.
The regret increase incurred in the 0th round is at most maxa2A p(a). For the remaining rounds, we
use Lemma 3 followed by Lemma 4 to get

E

"
TX

t=1

ct(S
⇤
t )� min

a⇤2A

TX

t=1

ct(a
⇤)

#


TX

t=1

E
h
1[ã⇤,1t 62 S̃⇤

t ]
i
+ E


max
a2A

p(ã)

�

 "T E

"
TX

t=1

ct(S
⇤
t )

#
+

(1 + ln(N))

"
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Where the inequality on E [maxa2A p(ã)] comes from Kalai and Vempala [2005]. The final step
is to argue that the unmodified version of FPML which chooses independent noise pt(a) in each
round also achieves this bound. This is immediate because both versions of the algorithm incur the
same expected cost in each round, and E

hPT
t=1 ct(FPML)

i
=
PT

t=1 E [ct(FPML)]. Having new
random perturbations in each round is not necessary against oblivious adversaries, but is necessary to
achieve the regret bound against adaptive adversaries.

Lower bound:
Proposition 10. (Lower bounds) In the full feedback setting, any randomized algorithm has R⇤

T �

⌦
⇣�

1
4

�B
(log2(N)� log2(B))

⌘
for T � ⌦(log2(N)� log2(B)).

Proof. First suppose N = 2k for some k 2 N. Let A0 = A. In round t = 1, . . . , T , we let At be a
uniformally randomly chosen subset of At�1 of size max(2k�t, 1), and we let ct(a) = 0 if a 2 At,
1 otherwise. Suppose an algorithm chooses arms St ⇢ A in round t. Then

P [St \At = ;] �
B�1Y

i=0

✓
1�

|At|

|At�1|� i

◆

�

✓
1�

|At|

|At�1|�B

◆B

=

✓
1�

1

2�B/|At

◆B

�

✓
1�

3

4

◆B

=

✓
1

4

◆B

provided that |At| �
3
2B and t  k, which holds when t  k � log2(B) � log2

�
3
2

�
. If we set

T = bk � log2(B)� log2
�
3
2

�
c, then the expected cost of any fixed algorithm ALG is �

�
1
4

�B
T =

⌦
⇣�

1
4

�B
(log2(N)� log2(B))

⌘
. By construction, the cost of the best expert in hindsight is 0. Since

the expected regret is 0, there exists fixed cost functions c1, . . . , cT such that the expected regret of
ALG on this on this sequence is � ⌦

⇣�
1
4

�B
(log2(N)� log2(B))

⌘
. If N is not a power of 2, we

can just let A0 ⇢ A be any subset of size 2blog2(N)c and the asymptotic bounds remain the same.

Proof of Proposition 5

Proof. Fix deterministic cost functions c1, . . . , cT . We first consider the simpler case where the
unbiased cost estimators (ĉ1, . . . , ĉT ) are jointly independent of any random perturbations used by
the algorithm, and the algorithm re-uses random perturbations between rounds, i.e. pt(a) = p(a) for
all a 2 A, t 2 [T ]. Afterwards we will show how to reduce the general problem to this special case.

Writing Ft for the �-algebra generated by all actions and observations (as well as any other ran-
domness) up to and including round t, for each t 2 [T ] let ĉt be a Ft-measurable random function
A ! [0,K] such that E[ĉt(a) | Ft�1] = ct(a) for each a. Assume an oblivious adversary and that
w.l.o.g. instead of perturbations there is a ‘round zero’ with costs (�p(a))a2A where p(a) ⇠ Exp(")
independently for each a; define F0 := �((p(a))a2A to be the �-algebra generated by these and
include it in each (Ft)t�1.
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Writing Ĉi(·) :=
Pi

t=1 ĉt(·) for cumulative estimated reward and Ĉ⇤
i (·) :=

Pi
t=0 ĉt(·) = Ĉi(·)�p(·)

for the same but including the ‘round zero’ random initializations, define

R0
i :=

iX

t=1

ct(St)�min
a2A

Ĉ⇤
i (a)

for each i 2 [T ]. Let Si be the set of arms chosen by the algorithm at round i and a⇤i be the best of
these by perturbed estimated cost. We follow the argument from Lemma 3:

R0
i �R0

i�1 = ci(Si)� ĉi(a
⇤
i ) +

 
i�1X

t=1

ĉt(a
⇤
i�1)�

i�1X

t=1

ĉt(a
⇤
i )

!
 ci(Si)� ĉi(a

⇤
i )

and so

E[R0
i �R0

i�1 | Fi�1]  ci(Si)� E[ĉi(a⇤i ) | Fi�1] = ci(Si)� ci(a
⇤
i )  1[a⇤i 62 Si].

Hence (using the tower law)

E[R0
T | F0] = E

"
TX

t=1

E[R0
t �R0

t�1 | Ft�1] +R0
0

#
 E

"
TX

t=1

1[a⇤t 62 St] +R0 | F0

#

= E[|I| | F0] + max
a2A

p(a),

where I := {t 2 [T ] : a⇤t 62 St}. Noting that by Jensen’s inequality

E[R0
T | F0] �

TX

t=1

ct(St)�min
a2A

E[ĈT (a) | F0] =
TX

t=1

ct(St)�min
a2A

(CT (a)� p(a))

�

TX

t=1

ct(St)� CT (a
⇤) + p(a⇤)

(where a⇤ is the best-in-hindsight arm) hence gives that the algorithm regret satisfies

E[R⇤
T | F0]  E[|I| | F0] + max

a2A
p(a)� p(a⇤).

Since E[p(a⇤)] = 1/" as for any fixed action, and maxa2A p(a) is the maximum of |A| i.i.d. Exp(")
random variables, so has expectation at most (1 + ln |A|)/" as argued in Kalai and Vempala [2005],
taking expectations gives

E[R⇤
T ] 

ln |A|

"
+ E[|I|].

It remains to upper-bound E[|I|].

Fix t 2 [T ] and let V := mina2A�St Ĉ
⇤
t�1(a). So for any a, a 2 St iff Ĉ⇤

t�1(a) < V . Define
Ea := {Ĉ⇤

t�1(a) < V �K}; if this holds then a must have been ahead of every action a0 62 St by
at least K and therefore cannot be overtaken by any such action, since the estimated costs are all
upper-bounded by K. So

{a overtaken by some a0 62 St} ⇢ Ec
a.

Note that

{a⇤t 62 St} = {9a0 2 A� St : 8a 2 St, a
0 overtakes a at round t}

=
[

a02A�St

\

a2St

{a0 overtakes a at round t}

⇢

\

a2St

[

a02A�St

{a0 overtakes a at round t} =
\

a2St

{a overtaken by some a0 62 St}.
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Let Gt := �(St, (Ĉ⇤
t�1(a))a/2St

) be the �-algebra generated by the random set St and the current
perturbed estimated cumulative costs of the actions not in it. So we have

P (a⇤t 62 St | Gt)  P
 
\

a2St

{a overtaken by some a0 62 St} | Gt

!

 P
 
\

a2C

Ec
a | Gt

!

= P
 
\

a2St

{Ĉ⇤
t�1(a) < V �K} | Gt

!
.

But, since V = mina2A�St Ĉ
⇤
t�1(a), applying Lemma 9 gives us that

P
 
\

a2St

{Ĉ⇤
t�1(a) < V �K} | Gt

!
=
Y

a2St

P
⇣
Ĉ⇤

t�1(a) < V �K | Ĉ⇤
t�1(a)  V

⌘
.

By the memoryless property of the exponential distribution, each term here just becomes

1� P
⇣
p(a) � Ĉt�1(a)� V +K | p(a) � Ĉt�1(a)� V

⌘
 1� P(p(a) � K) = 1� e�K".

Where we have used the assumption that the perturbation p(a) is independent of Ĉt�1. Thus
P(a⇤t 62 St | Gt)  (1� e�K")B . Since this expression is deterministic and so trivially independent
from the �-algebra Gt, this immediately implies that P(a⇤t 62 St)  (1� e�K")B .

The result then follows, since E[|I|] =
PT

t=1 P(a⇤t 62 St)  T (1� e�K")B .

We now show how to reduce the general problem to a simpler case where the unbiased cost estimates
(ĉ1, . . . , ĉT ) are jointly independent of the perturbations used by the algorithm, and the algorithm
re-uses random perturbations between rounds, i.e. pt(a) = p(a) for all a 2 A, t 2 [T ]. Consider the
general problem. Let pt be the noise perturbations of the algorithm in round t, so pt(a) ⇠

1
"Exp. Let

ĉ:t = (ĉ1, . . . , ĉt�1) and S(ĉ:t, pt) ⇢ A be the B lowest cost-perturbed arms given ĉ:t, pt (i.e. the
arms chosen by the algorithm in round t if cost vectors ĉ:t are observed and noise perturbation pt is
chosen). We are guaranteed that E[ĉt|p1, ĉ1, p2, ĉ2, . . . , pt] = ct. The expected regret is

Ep1,ĉ1,p2,ĉ2,...,pT

"
TX

t=1

ct (S(ĉ:t, pt))

#
�min

a2A

TX

t=1

ct(a)

Focusing on just the first term, and letting {p0t}
T
t=0 be independent random noise perturbations where

p0t(a) ⇠
1
"Exp, we have
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Ep1,ĉ1,p2,ĉ2,...,pT

"
TX

t=1

ct (S(ĉ:t, pt))

#

=
TX

t=1

Ep1,ĉ1,p2,ĉ2,...,pT [ct (S(ĉ:t, pt))]

=
TX

t=1

Ep1,ĉ1,p2,ĉ2,...,pt [ct (S(ĉ:t, pt))]

=
TX

t=1

Ep1,ĉ1,p2,ĉ2,...,ptEp0
t
[ct (S(ĉ:t, p

0
t))]

=
TX

t=1

Ep0
t
[Ep1,ĉ1,p2,ĉ2,...,ptct (S(ĉ:t, p

0
t))]

=
TX

t=1

Ep0
t
[Ep1,ĉ1,p2,ĉ2,...,pT ct (S(ĉ:t, p

0
t))]

=
TX

t=1

Ep0
0
[Ep1,ĉ1,p2,ĉ2,...,pT ct (S(ĉ:t, p

0
0))]

= Ep0
0

"
Ep1,ĉ1,p2,ĉ2,...,pT

TX

t=1

ct (S(ĉ:t, p
0
0))

#

Therefore the final expected regret is equal to

Ep0
0

"
Ep1,ĉ1,p2,ĉ2,...,pT

TX

t=1

ct (S(ĉ:t, p
0
0))

#
�min

a2A

TX

t=1

ct(a) (7)

Note the expression
PT

t=1 ct (S(ĉ:t, p
0
0)) is precisely the cost incurred by the algorithm

when observing cost estimates ĉ:T and using random perturbations p0 in each round, where
E[ĉt|p0, p1, ĉ1, . . . , pt�1] = ct. We therefore conclude that the expected regret is equal to the
expected regret of the algorithm in the special case where (a) the algorithm fixes an initial perturba-
tion p00 and uses this randomness for all subsequent rounds and (b) where p00 is jointly independent of
ĉ:T .

B Section 3: Generalized regret bounds for Online Submodular Function
Maximization

Proof of Theorem 6

Before proving the theorem, we give a modification to the original result from Streeter and Golovin
[2008]. The problem setting they considered was slightly more general:
Definition 4. Let an action now be an activity-duration pair a = (⌫, ⌧) 2 V ⇥ (0,1) = A for some
fixed finited set of activities V .* The length `(S) of a schedule S 2 S is now the sum of the durations
of all the actions in S. Write Shii for the prefix of length i of schedule S.

The algorithm OG they introduced, which takes a budget B and experts algorithm E , is given in
Algorithm 3 using our notation for ease of reference.

We first prove a lemma generalizing Theorem 6 in Streeter and Golovin [2008]:
*We will enforce integer durations so that there are only finitely many possible actions to choose from given

a duration constraint.
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Algorithm 2 OGhybrid(B, eB)

Require: B � eB � 1. Assume for simplicity that eB | B; define L := B/ eB.
Let B1, . . . ,BL be instances of FPML, each with budget eB.
for rounds t = 1, . . . , T do

Let St,0 = hi be the empty schedule.
for i = 1, . . . , L do

Use Bi to choose eB actions at
(i�1) eB+1

, . . . , at
i eB

.
Set St,i := St,i�1 � hat

(i�1) eB+1
, . . . at

i eB
i.

end for
Set St := St,L; receive the job ft.
for i = 1, . . . , L do

For each action a 2 A feed back the cost c(i)t (a) := 1 � (ft(ha⇤1,t, . . . , a
⇤
i�1,t, ai) �

ft(ha⇤1,t, . . . , a
⇤
i�1,ti)) to FPML instance Bi.

Define a⇤i,t := argminj2[ eB]c
(i)
t (a(i�1) eB+j).

end for
end for

Algorithm 3 OG(B, E)
Require: B � 1.

Let E1, . . . , EB be instances of experts algorithm E (e.g. Hedge).
for rounds t = 1, . . . , T do

Let St,0 = hi be the empty schedule.
for i = 1, . . . , B do

Use Ei to choose an action ati = (⌫, ⌧) 2 A.
With probability 1/⌧ set St,i := St,i�1 � hatii, otherwise set St,i := St,i�1.

end for
Set St := St,B ; receive the job ft.
For each i 2 [B] and each action a = (⌫, ⌧) 2 A feed back the cost c(i)t (a) := (ft(St,i �

hai)� ft(St,i))/⌧ to experts algorithm Ei.
end for

Lemma 11. Let f be any job and let Ḡ = hḡ1, ḡ2, . . .i be an infinite ‘greedy’ schedule satisfying

f(Ḡj � ḡj)� f(Ḡj)

⌧̄j
� max

(⌫,⌧)2V⇥(0,1)

✓
f(Ḡj � h(⌫, ⌧)i)� f(Ḡj)

⌧

◆
� "j , j � 1

for additive errors "1, "2, . . . � 0, where ḡj = (v̄j , ⌧̄j) and Ḡj = hḡ1, . . . , ḡj�1i for each j � 1.

Then for any L,B0 2 N and for B1 :=
PL

j=1 ⌧̄j ,

f(ḠhB1i) >
⇣
1� e�B1/B0

⌘
f(S⇤

B0
)�

LX

j=1

"j ⌧̄j

where S⇤
B0

:= argmaxS2S:`(S)=B0
f(S) is the best schedule of length B0 for f .

Proof. For each j 2 N write �j := f(S⇤
B0

)� f(Ḡj). By Fact 2 from Streeter and Golovin [2008],
for any j 2 N, b > 0 and S 2 S with `(S)  b,

f(S)  f(Ḡj) + b · (sj + "j),

where

sj := max
(v,⌧)2V⇥(0,1)

f(Ḡj � h(n, ⌧)i)� f(Ḡj)

⌧
=

f(Ḡj � ḡj)� f(Ḡj)

⌧̄j
=

f(Ḡj+1)� f(Ḡj)

⌧̄j
,
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so in particular for any j

f(S⇤
B0

) = max
S2S:`(S)=B0

f(S)  f(Ĝj) +B0 · (sj + "j) (8)

= f(Ĝj) +B0

✓
f(Ḡj+1)� f(Ḡj)

⌧̄j
+ "j

◆
(9)

= f(Ĝj) +B0

✓
�j ��j+1

⌧̄j
+ "j

◆
, (10)

giving �j  B0

⇣
�j��j+1

⌧̄j
+ "j

⌘
.

Rearranging gives �j+1  �j

⇣
1� ⌧̄j

B0

⌘
+ ⌧̄j"j for each j, and unrolling this inequality and using

that 1� ⌧̄j
B0

< 1 8j as in Streeter and Golovin [2008] gives us

�L+1  �1

0

@
LY

j=1

1�
⌧̄j
B0

1

A+
LX

j=1

⌧̄j"j .

By definition B1 =
PL

j=1 ⌧̄j"j , and maximizing the product above subject to this constraint results
in ⌧̄j =

B1
L for all j. Thus

LY

j=1

1�
⌧̄j
B0



LY

j=1

1�
B1/L

B0
=

✓
1 +

(�B1/B0)

L

◆L

< e�B1/B0

and so

f(S⇤
B0

)� f(ḠL+1) = �L+1 < �1e
�T1/T0 +

LX

j=1

⌧̄j"j  f(S⇤
B0

)e�B1/B0 +
LX

j=1

⌧̄j"j ,

giving f(ḠhT1i) = f(ḠL+1) > (1� e�B1/B0)f(S⇤
B0

)�
PL

j=1 ⌧̄j"j as required.

Next we prove a generalized regret bound for the original OG algorithm:
Lemma 12. For B � B0 log T the algorithm OG, run using Hedge as the subroutine experts
algorithm, produces a sequence of schedules S1, . . . , SB with regret

E
"

TX

t=1

ft(S
⇤
B0)�

TX

t=1

ft(St)

#
= O

0

@E

2

4
BX

j=1

RT,1(Ej)

3

5

1

A

relative to S⇤
B0 := argmaxS2S:`(S)=B0

PT
t=1 ft(S), the best-in-hindsight fixed schedule of length

B0, where RT,1(Ej) is the 1-regret incurred by the jth experts algorithm.

In particular, when run with Hedge as the subroutine experts algorithm, this is O
�p

BT logN
�
.

Proof. Consider the quantity ⇢B,B0 :=
⇣
1� e�B/B0

⌘PT
t=1 ft(S

⇤
B0) �

PT
t=1 ft(St). As argued

in Streeter and Golovin [2008], we may view the sequence of actions a1i , . . . , aTi selected by each
experts algorithm Ei as a single ‘meta-action’ ãi 2 A

T ; so the schedules S1, . . . , ST output by OG
can be viewed as a single ‘meta-schedule’ S̃ = hã1, . . . , ãBi over AT which is a version of the
greedy schedule ḠB+1 for the job f = 1

T

PT
t=1 ft, and it may be assumed that each meta-action ãt

takes unit time per job. Thus we may write

⇢B,B0 = T
h⇣

1� e�B/B0
⌘
f(S⇤

B0)� f(S̃)
i

(after extending the domain of f appropriately). Applying Lemma 11 with L = B, B0 = B0,
B1 =

PB
j=1 ⌧̄j = B (by the unit-time assumption) then immediately gives

⇢B,B0 < T
BX

j=1

⌧̄j"j = T
BX

j=1

"j .
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Taking expectations,

E[⇢B,B0 ]  T
BX

j=1

E["j ] = T
BX

j=1

E

RT,1(Ej)

T

�

where RT,1(Ej) is the 1-regret incurred by the jth experts algorithm; here we used that E["j ] =
E[RT,1(Ej)/n] as argued in Streeter and Golovin [2008]. So E[⇢B,B0 ]  E

hPB
j=1 RT,1(Ej)

i
.

The result then follows quickly: since B � B0 log T , so e�B/B0
 e� lnT = T�1. Thus

⇢B,B0 �
�
1� T�1

� TX

t=1

ft(S
⇤
B0)�

TX

t=1

ft(St) = RB0 � T�1
TX

t=1

fT (S
⇤
B0)

where RB0 :=
PT

t=1 ft(S
⇤
B0)�

PT
t=1 ft(St) is the regret of interest. Consequently,

RB0  ⇢B,B0 + T�1
TX

t=1

ft(S
⇤
B0)  ⇢B,B0 + T�1

· T = ⇢B,B0 + 1.

and the result follows.

The bound E
hPB

j=1 RT,1(Ej)
i
= O(

p
BT logN) when using Hedge was shown in Streeter and

Golovin [2008].

Finally we prove the theorem on OGhybrid:

Proof of Theorem 6. Note first that under Assumption 1, any job f , any schedule S 2 S and any
sub-schedule S0 of S (i.e. the actions of S0 appear in order in S) satisfy

f(S) � f(S0);
this is immediate using monotonicity and induction.

Suppose for each i 2 [L] there is a fictional experts algorithm (classical full feedback multi-armed
bandit algorithm) Ei which picks a⇤i,t at each round t, and consider a hypothetical instance of the
standard algorithm OG run with time allowance L and these fictional experts algorithms E1, . . . , EL
as subroutines.

Since L � B0 log T (by our assumption that B � B0 eB log T ), by Lemma 12 the B0-regret of our
OG instance is upper-bounded in expectation by

PL
i=1 R1(Ei), where R1(Ei) is the total 1-regret

experienced by Ei.

But the payoff received by this OG instance at each round t is f(ha⇤1,t, . . . , a
⇤
L,ti), which by Ap-

pendix B is upper-bounded by f(St), the payoff of OGhybrid, since the actions a⇤1,t, . . . , a⇤L,t appear
in order in St. So the B0-regret RB0 of OGhybrid must be at most that of our fictional OG instance,
giving the upper bound

E[RB0 ] 
LX

i=1

E[R1(Ei)].

It remains to argue how large each of the regret of each of these ‘fictional’ experts algorithms Ei is.
Writing a⇤⇤i = argmina2A

PT
t=1 c

(i)
t (a) for the best-in-hindsight fixed action under the costs passed

to these subroutines, the regret incurred by Ei is therefore

R1(Ei) =
TX

t=1

c(i)t (a⇤i,t)�
TX

t=1

c(i)t (a⇤⇤i ) (11)

=
TX

t=1

max
j2[ eB]

c(i)t (at
(i�1) eB+j

)�
TX

t=1

c(i)t (a⇤⇤i ) = R1(Bi). (12)

where R1(Bi) is the 1-regret incurred by multitasking bandit algorithm Bi. So by Appendix B

E[RB0 ] 
LX

i=1

E[R1(Bi)] = LE[R1(B)] =
BE[R1(B)]

L
,

where E[R1(B)] is the expected 1-regret of any of the instances B1, . . . ,BL of B.
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Table 2: Sample means and standard deviations of normalized validation scores of FPML, OGhybrid
and OG over black-box optimizers.

(a) B = 1

Mean StD
Best in hindsight 0.574 0

FPML 0.426 0.0202
Exp3 0.351 0.0194

(b) B = 2

Mean StD
Best in hindsight 0.710 0

FPML 0.652 0.0194
OGhybrid ((B1, B2) = (1, 2)) 0.577 0.0187

OG 0.519 0.0179

(c) B = 3

Mean StD
Best in hindsight 0.779 0

FPML 0.751 0.0151
OGhybrid ((B1, B2) = (1, 3)) 0.657 0.0191

OG 0.617 0.0166

(d) B = 4

Mean StD
Best in hindsight 0.836 0

FPML 0.813 0.0108
OGhybrid ((B1, B2) = (2, 2)) 0.756 0.0149
OGhybrid ((B1, B2) = (1, 4)) 0.716 0.0178

OG 0.689 0.0151

(e) B = 5

Mean StD
Best in hindsight 0.874 0

FPML 0.855 0.0094
OGhybrid ((B1, B2) = (1, 5)) 0.756 0.0150

OG 0.734 0.0140

(f) B = 6

Mean StD
Best in hindsight 0.901 0

FPML 0.888 0.0072
OGhybrid ((B1, B2) = (3, 2)) 0.836 0.0111
OGhybrid ((B1, B2) = (2, 3)) 0.814 0.0143
OGhybrid ((B1, B2) = (1, 6)) 0.785 0.0137

OG 0.767 0.0157

Proof of Proposition 7

Sketch proof. This is a special case of the more general result that the expected regret relative to the
best-in-hindsight fixed set of size B0 is at most

1�B0�1 + ln (N/B0)

"
+ T

B0�1X

j=0

✓
B

j

◆
e�j"(1� e�")B�j + errB0

where errB0 is the difference in cumulative cost between the best-in-hindsight set of B0 actions and
the set of the top B0 actions in hindsight on the given problem instance.

The proof of this is a simple adaptation of the 1-regret argument, using “an action not in the top B
enters the best B0-set" as the event of interest; use the harmonic series form of the expectation of the
max of exponential random variables to get a lower bound, and use a binomial counting argument to
bound the probability of the event.

C Experiments

C.1 Full comparison of OGhybrid

In Table 2 we give a more detailed comparison of FPML and OG with various instantiations of
OGhybrid on the hyperparameter-selection task from Section 4. Specifically, we include for each B
and each possible pair (B1, B2) s.t. B1B2 = B a version of OGhybrid with B2 internal boxes and arm
budget B1 per box. As can be seen, in all cases decreasing the greediness and adding more arms per
box is beneficial in this application.

C.2 Synthetic tasks

In this section we evaluate our algorithms on three synthetic tasks. In all cases,

• let S⇤ be the best-in-hindsight set of B arms;
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Table 3: Cost distributions for round types A and B in the first synthetic environment; Beta distribu-
tions are parameterized by mean and variance, not shape.

Arm A-rounds B-rounds Resulting mean
Actions 1 to 5 Beta(0.4, 0.01) Always 1 0.7

Actions 6 to 10 Beta(0.6, 0.01) Always 1 0.8
Actions 11 to 15 Always 1 Beta(0.8, 0.01) 0.9

Figure 1: Performances (1-cost) on the first synthetic task. OGhybrid is run with FPML boxes each
with arm budget 1.

• let Sgreedy be the greedy choice of B arms in hindsight;
• let Stop be the top B arms in hindsight.

Task 1: The first environment is one where S⇤ = Sgreedy and this set does better than Stop;
greediness is better than picking the top B arms. There are |A| = 15 available arms and two types
of round, A and B, which occur with equal probability; costs are distributed within each round
according to Table 3. So the best fixed arm set of any size up to 10 will be split evenly across arms
{1, 2, 3, 4, 5} and arms {11, 12, 13, 14, 15}—and will be the greedy choice—but for B  5 the top
B arms will always be in {1, 2, 3, 4, 5}. We see in Fig. 1 that FPML does not outperform the greedy
algorithms on this task.

Task 2: The second environment is one where (approximately) S⇤ = Sgreedy = Stop; greediness
is good but no better than picking the top B arms. There are |A| = 10 available arms and costs
are distributed according to Table 4; because there are no groups of anticorrelated actions, the
performance gap between the best set and the top B arms is trivially small. The results in Fig. 2 show
that FPML outperforms the greedy algorithms on this task.

Task 3: The third environment is one where S⇤ = Stop and this set does better better than Sgreedy;
greediness is worse than just picking the top B arms. Suppose there are |A| = 4 available arms and a
budget of B = 3. Costs are deterministic and listed in Table 5 for some parameter � which we set
to 0.01. The top 3 arms are Stop = {1, 3, 4} and this is also the best-in-hindsight set S⇤, incurring
minimum cost 0 at each round. A quick calculation shows that the greedy choice Sgreedy is either
{1, 2, 3} or {1, 2, 4}, though, and either of these sets incur an average minimum cost of 1/8� �/4,
substantially higher. Our empirical results in Table 6 show this gap in practice.

C.3 Geometric resampling

The geometric resampling technique used in the second and third partial feedback versions of FPML
in the experiments is adapted from Neu and Bartók [2013]. At each round cost estimates

ĉt(a) :=

(
ct(a)
q̂t,a

if a was pulled,
0 otherwise
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Table 4: Cost distributions in the second synthetic environment.
Arm Distribution

1 Beta(0.4, 0.01)
2 Beta(0.45, 0.01)
3 Beta(0.5, 0.01)
4 Beta(0.55, 0.01)
5 Beta(0.6, 0.01)
6 Beta(0.65, 0.01)
7 Beta(0.7, 0.01)
8 Beta(0.75, 0.01)
9 Beta(0.8, 0.01)

10 Beta(0.85, 0.01)

Figure 2: Performances (1-cost) on the second synthetic task. OGhybrid is run with FPML boxes each
with arm budget 1.

Table 5: Costs in the third synthetic environment, for some parameter � 2 (0, 1/2).
Arm Reward at rounds i ⌘ k mod 4 for... Average

k = 1 k = 2 k = 3 k = 4 cost
1 1� � 1� � 0 0 1/2� �/2
2 1/2� � 1/2� � 1 1 3/4� �/2
3 0 1 0 1 1/2
4 1 0 1 0 1/2

Table 6: Means and standard deviations over 50 trials of performances (1-cost) for various combina-
tions of FPML and online greedy algorithms in the third synthetic environment, with � = 0.01.

Algorithm Mean StD
Best-in-hindsight 1.000 0

Top-of-leaderboard 1.000 0
FPML 0.964 0.0145

OGhybrid ((B1, B2) = 1, 3)) 0.823 0.0200
OG 0.799 0.0202
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are made, where q̂t,a is an estimate of the probability qt,a := P(arm a pulled at round t). These
estimates are made by sampling 1

q̂t,a
⇠ Geom(qt,a), which is done by repeating the algorithm’s

execution at this round and counting how many trials are needed until a is pulled again. In practice,
the number of repetitions must be capped and this introduces some bias to the estimates, but this is
not problematic in practice. In fact, there is a bias variance trade-off, because K = maxa2A |ĉt(a)|
is bounded by the number of samples we take. Therefore more samples lead to lower bias but higher
variance. Using bounds similar to those of Proposition 5 as a guide (the bounds of Proposition 5 were
subsequently refined after the experiments were concluded), we picked the number of samples to be
✓
N
⇣

TN
ln(N)

⌘B̃◆1/(2B̃+1)

, so K =

✓
N
⇣

TN
ln(N)

⌘B̃◆1/(2B̃+1)

and " =

✓
ln(N)

T

⇣
ln(N)
TN

⌘B̃◆1/(2B̃+1)

,

where B̃ is the budget of each FPML-partial box.

These estimators make complete use of the information received at each round, unlike the simple
one-arm uniform sampling, B arms exploiting version of FPML with partial feedback mentioned in
Section 2.1. Moreover, the construction of cost estimates means no explicit exploration is necessary;
an arm that hasn’t been pulled for several rounds will be overtaken in estimated cumulative cost by
ones that have, and so will eventually be pulled again, thus inducing a self-stabilizing property that
would not occur if we used the same technique to estimate rewards rt(a) := 1� ct(a) instead.

C.4 Methods

Reward definitions: For the black-box optimization experiments in Section 4, the reward (1�cost)
for each black-box optimizer on each machine learning task (i.e. round) was defined as follows. This
approach was inspired heavily by the Bayesmark package used in the 2020 NeurIPS BBO Challenge
and which we based our implementation on [Uber, 2020].

Fix a round t and an optimizer a. Let optt be an estimate of the global minimum classifica-
tion/regression loss achievable (at validation, not test) on the task corresponding to round t. Define
randt to be the mean performance of a random hyperparameter search on this task (i.e. the smallest
loss achieved using any hyperparameter in the random search, averaged over trials).* Finally, let
losst(a) be the actual averaged minimum loss of the optimizer a on this problem.

The reward is then defined as

ri(a) :=
losst(a)� optt
randt(a)� optt

.

Conceptually, the reward is 0 when optimizer a performs as badly as a random search, and 1 when it
performs as well as is possible on this task.

As per usual, the reward for a bandit algorithm selecting multiple optimizers at each round is then
calculated as the maximum of the rewards of each optimizer (equivalent to the minimum of costs).

Bayesian optimizers used: The nine black-box optimization algorithms we ran the experiments in
Section 4 over were as follows:

1. Hyperopt [Bergstra et al., 2015]
2. The AUCBanditMetaTechniqueA technique from OpenTuner [Ansel et al., 2014]
3. The PSO_GA_Bandit technique from OpenTuner [Ansel et al., 2014]
4. The PSO_GA_DE technique from OpenTuner [Ansel et al., 2014]
5. PySOT [Eriksson et al., 2019]
6. Scikit-Optimize [Head et al., 2018] using base estimator GBRT and acquisition objective

gp_hedge

7. Scikit-Optimize [Head et al., 2018] using base estimator GP and acquisition objective
gp_hedge

8. Scikit-Optimize [Head et al., 2018] using base estimator GP and acquisition objective LCB

*In reality this is estimated using a more statistically efficient technique than actually performing the random
search, as in the Bayesmark package.
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9. Random search

The default settings of each package were used.

D Section 5: Linear Programming

Proof of Proposition 8 (Note: this proof was given for B = 1 in Arora et al. [2012] with slightly
tighter bounds, and essentially remains unchanged for B � 1).

Proof. We run the FPML oracle with budget B, N = n arms, and " = ((ln(N) + 1)/T )1/(B+1). In
round t 2 [T ] we do the following: Let dt be the joint distribution over N arms returned the FPML
oracle in this round. We pass dt to the (⇢, B)-bounded oracle, and receive either a vector xt 2 P or
that no xt exists which satisfies the oracle problem. Let us first suppose that we always receive an xt

for each round. Then define the cost function ct(i) := Aixt � bi 2 [�⇢, ⇢] and pass this to FPML.
After T rounds, and by scaling and translating the cost functions to lie in [0, 1], Theorem 2 implies
that 8j 2 [N ]

PT
t=1 E(i1,...,iB)⇠dt

⇥
mini2{i1,...,iB} Aix� bi

⇤

T


4⇢T
1

B+1 (1 + ln(N))
B

B+1

T
+

PT
t=1 Ajxt � bj

T

By assumption of the (⇢, B)-bounded oracle, the left hand side is � 0. When T �
�
1
"

�B+1
B (4⇢)

B+1
B (1 + ln(N)), it follows that x :=

PT
t=1 xt

T satisfies 8j 2 [N ], Ajx � bj � ".
Since P is convex, x 2 P and we are done. Now suppose that in some round t we were told the
oracle problem was not solvable. We claim that we can conclude that the problem is not feasible and
we are done. This is because if 9x 2 P s.t. Ax � b, then E(i1,...,iB)⇠d

⇥
mini2{i1,...,iB} Aix� bi

⇤
�

E(i1,...,iB)⇠d

⇥
mini2{i1,...,iB} 0

⇤
= 0 and so the oracle problem would be solvable.
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