Systematic improvement of neural network quantum states using Lanczos(Supplementary Material)

Hongwei Chen^{1,2,3} Douglas Hendry¹ Phillip Weinberg¹ Adrian E. Feiguin¹ ¹Department of Physics, Northeastern University, Boston, USA

²Stanford Institute for Materials and Energy Sciences, Stanford University, Stanford, USA ³Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, USA {chen.hongw, hendry.d, p.weinberg, a.feiguin}@northeastern.edu

A Accuracy of ground state energy

To show the energy improvements from restoring different kinds of symmetry, we tried several variational wave functions ψ_s , $\psi_{\mathbf{K}}$, and $\psi_{\mathbf{K}\mathcal{L}}$. Their variational energies are shown in the table 1.

Table 1: The ground state energy per site for the 2D Heisenberg model($J_2 = 0$) on a 6×6 , 8×8 , and 10×10 square lattice obtained from the RBM wave function with different kinds of symmetries restored.

Lattice Size	6×6	8 imes 8	10×10
ψ_s : Spin flip symmetry(SFS)	-0.67762	-0.67154	-0.66737
$\psi_{\mathbf{K}}$: SFS + Translational symmetry(TS)	-0.678844	-0.673425	-0.671288
$\psi_{\mathbf{K}\mathcal{L}}$ SFS + TS + Lattice point symmetry	-0.678868	-0.673482	-0.671519

B Derivation of the Lanczos recursion

Using ψ_0 and ψ_1 as new basis, the Hamiltonian will be a 2 \times 2 symmetric matrix.

$$\begin{pmatrix} \langle H \rangle & (\langle H^2 \rangle - \langle H \rangle^2)^{1/2} \\ (\langle H^2 \rangle - \langle H \rangle^2)^{1/2} & \frac{\langle H^3 \rangle - 2\langle H^2 \rangle \langle H \rangle + \langle H \rangle^3}{\langle H^2 \rangle - \langle H \rangle^2}. \end{pmatrix}$$
(1)

Considering the most generic 2×2 symmetric matrix $\begin{pmatrix} a & c \\ c & b \end{pmatrix}$, the two eigenvalues of this matrix can be written as :

$$\varepsilon_1 = \frac{1}{2}[a+b-((b-a)^2+4c^2)^{1/2}]$$
 and $\varepsilon_2 = \frac{1}{2}[a+b+((b-a)^2+4c^2)^{1/2}].$ (2)

Plugging the expressions for a, b, c, we obtain Eq.(14):

$$\varepsilon_{1} = \frac{1}{2} \left(\langle H \rangle + \frac{\langle H^{3} \rangle - 2 \langle H^{2} \rangle \langle H \rangle + \langle H \rangle^{3}}{\langle H^{2} \rangle - \langle H \rangle^{2}} - \left(\left(\frac{\langle H^{3} \rangle - 3 \langle H^{2} \rangle \langle H \rangle + 2 \langle H \rangle^{3}}{\langle H^{2} \rangle - \langle H \rangle^{2}} \right)^{2} + 4 \left(\langle H^{2} \rangle - \langle H \rangle^{2} \right) \right)^{1/2} \right)$$
(3)

$$= \langle H \rangle + \frac{\langle H^3 \rangle - 3 \langle H^2 \rangle \langle H \rangle + 2 \langle H \rangle^3}{2(\langle H^2 \rangle - \langle H \rangle^2)} - (\langle H^2 \rangle - \langle H \rangle^2)^{1/2} \left(\left(\frac{\langle H^3 \rangle - 3 \langle H^2 \rangle \langle H \rangle + 2 \langle H \rangle^3}{2(\langle H^2 \rangle - \langle H \rangle^2)^{3/2}} \right)^2 + 1 \right)^{1/2}$$
(4)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

$$= \langle H \rangle + (\langle H^2 \rangle - \langle H \rangle^2)^{1/2} \left[\frac{\langle H^3 \rangle - 3\langle H^2 \rangle \langle H \rangle + 2\langle H \rangle^3}{2(\langle H^2 \rangle - \langle H \rangle^2)^{3/2}} - \left((\frac{\langle H^3 \rangle - 3\langle H^2 \rangle \langle H \rangle + 2\langle H \rangle^3}{2(\langle H^2 \rangle - \langle H \rangle^2)^{3/2}})^2 + 1 \right)^{1/2} \right].$$
(5)

The corresponding eigenvector is $\begin{pmatrix} \psi_0 \\ \alpha \psi_1 \end{pmatrix}$, with

$$\alpha = \frac{b-a-\sqrt{(b-a)^2+4c^2}}{2c} = \left[\frac{\langle H^3 \rangle - 3\langle H^2 \rangle \langle H \rangle + 2\langle H \rangle^3}{2(\langle H^2 \rangle - \langle H \rangle^2)^{3/2}} - \left((\frac{\langle H^3 \rangle - 3\langle H^2 \rangle \langle H \rangle + 2\langle H \rangle^3}{2(\langle H^2 \rangle - \langle H \rangle^2)^{3/2}})^2 + 1\right)^{1/2}\right], \quad (6)$$

which is the explicit form of α in Eq.(18). Hence, the new improved eigenvector becomes

$$\tilde{\psi}_0 = \psi_0 + \alpha \psi_1. \tag{7}$$

Notice that $\tilde{\psi}_0$ is not normalized. The normalized form of $\tilde{\psi}_0$ is given by Eq.(15):

$$\tilde{\psi}_0 = \frac{1}{(1+\alpha^2)^{1/2}}\psi_0 + \frac{\alpha}{(1+\alpha^2)^{1/2}}\psi_1,\tag{8}$$