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Abstract

The quantum many-body problem lies at the center of the most important open
challenges in condensed matter, quantum chemistry, atomic, nuclear, and high-
energy physics. While quantum Monte Carlo, when applicable, remains the most
powerful numerical technique capable of treating dozens or hundreds of degrees of
freedom with high accuracy, it is restricted to models that are not afflicted by the
infamous sign problem. A powerful alternative that has emerged in recent years
is the use of neural networks as variational estimators for quantum states. In this
work, we propose a symmetry-projected variational solution in the form of linear
combinations of simple restricted Boltzmann machines. This construction allows
one to explore states outside of the original variational manifold and increase the
representation power with moderate computational effort. Besides allowing one to
restore spatial symmetries, an expansion in terms of Krylov states using a Lanczos
recursion offers a solution that can further improve the quantum state accuracy. We
illustrate these ideas with an application to the Heisenberg J1 − J2 model on the
square lattice, a paradigmatic problem under debate in condensed matter physics,
and achieve state-of-the-art accuracy in the representation of the ground state.

1 Introduction

Understanding correlated quantum systems requires dealing with a large configuration space: datasets
are comprised of all possible electronic configurations ~σ and cannot be stored in the memory of the
largest supercomputer. Hence, the quantum many-body problem can be interpreted as an “extreme
data science” problem [13] from an information processing perspective. In a quantum wave function,
each electronic or spin configuration has an associated complex amplitude ψ(~σ) determined by
solving for the eigenvectors of the Hamiltonian operator. In particular, if one is interested in the
zero temperature properties of the system, the solution is given by the eigenvector with the smallest
eigenvalue. Finding the exact solution of a N quantum bit system with interactions requires solving
for the eigenvectors of a 2N × 2N matrix. Alternatively, one can formulate the calculation as an
optimization problem in which an “energy functional” E(ψ) has to minimized with respect to all the
2N complex amplitudes.

Since the number of configurations d grows exponentially with the number of degrees of freedom
(electrons, spins), this problem quickly becomes intractable. A solution consists of “compressing’ the
wave function by proposing a suitable guess for the amplitudes based on some variational parameters
~α = (α1, α2, · · · , αm). Typically, a functional form ψ(~σ) = f(~σ, ~α) based on some physical
intuition is utilized to represent the amplitude of given configuration/state ~σ. The optimal parameters
αi are determined by solving the system of equations ∇αE = 0. The objective of this solution is to
achieve the lowest possible energy with a number of parameters m� d.
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Some relatively simple wave functions have enjoyed various degrees of success in the past, such
as those of the Jastrow type where the amplitudes can be written as pair products f(~σ, ~α) =∏
ij U(αijσiσj). However, in recent years we have witnessed impressive developments based on the

use of neural network (NN) wave functions as variational estimators [4], which have jump-started
a new vibrant field of research dubbed “quantum machine learning”. Notice that the optimization
of the wave function parameters now translates into the “training” of the NN by minimizing the
energy function that becomes a cost function (we describe the training process below). The power
of NN wave functions lies in the complex non-linear structure that provides them with remarkable
expressivity to represent arbitrary complex many-body states by, at the same time, being completely
agnostic to the physics.

Since restricted Boltzmann machines(RBM) were originally used as a variational ansatz for finding
the ground state of the quantum many-body systems [4], there has been a growing effort to investigate
other forms of neural networks, including convolutional neural networks(CNN)[9, 23], recurrent
neural networks(RNN)[19], graph networks[22], transformers[25], to mention a few. Thus, neural
network quantum states(NNQS) become the most appealing numerical alternative to treat quantum
many body systems since they can be systematically improved by adding new layers or hidden
variables, for instance. In addition to the ground state search, the application of NNQS ranges
from classical simulation of quantum circuits[1, 5, 32], calculation of spectral function[17, 18],
thermodynamics simulation[16, 31], and quantum tomography[44].

Contributions In this work, we show how one can use a mathematically simple structure, a
restricted Boltzmann machine (RBM), and yet obtain values of the ground state energy that beat all
previous estimates by a range of numerical methods, including using convolutional neural networks.
As we describe below, instead of increasing the number of layers or hidden variables, the solution
lies on considering linear combinations of RBMs. The new wave function allows one to explore
a much larger space of solutions. In particular, one can use this construction to restore spatial
symmetries [40, 9, 28, 29]. In addition, we propose implementing a projection method based on a
Lanczos recursion using a “Krylov basis” of RBMs obtained by sequentially applying powers of the
Hamiltonian operator.

The paper is organized as follows: In Sec.2.1 we describe the quantum many-body problem in the
context of the Heisenberg model; in Sec.2.2 we summarize prior attempts to study this problem
using NNQS; in Sec.3 we review the basic formalism, including the structure of neural network wave
functions, how to incorporate the symmetries of the problem into the quantum many-body state,
and the numerical training procedure to optimize it. In Sec.4 we present results of state-of-the-art
calculations for the J1 − J2 Heisenberg model on the square lattice and compare to other numerical
techniques. We finally close with a summary and conclusions.

2 The quantum many-body problem

2.1 Model

In the following, we will focus on quantum spin problems where the degrees of freedom σi can
assume two possible values ±1/2 (or “up” and “down”). Similarly, one can think of them as generic
two-level systems or “qubits”. In particular, we will benchmark our methods in the context of the
spin 1

2 antiferromagnetic Heisenberg model with nearest and next nearest neighbor interactions, the
so-called J1 − J2 model defined by the Hamiltonian:

Ĥ = J1
∑
〈ij〉

~Si · ~Sj + J2
∑
〈〈ij〉〉

~Si · ~Sj , (1)

where ~S = (Ŝx, Ŝy, Ŝz) are spin operators, the first term runs over nearest neighboring sites 〈ij〉 on
a square lattice and the second term runs over next nearest pairs 〈〈ij〉〉 along the diagonals of the
plaquettes. For convenience, in the following, we set J1 = 1 as the unit of energy. In this problem,
the number of possible configurations grows as d = 2N . However, the ground state wave function
lies on the sector with the same number of up and down spins, constraining our search to a smaller
subset of states, albeit still exponentially large.

Without the J2 term, the problem can be numerically solved for hundreds of spins using quantum
Monte Carlo (QMC) [38]. However, the method cannot be applied to problems with frustration since
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it is noticeably affected by the infamous sign problem[24]. In our case, this is due to the presence of
the J2 term that makes some transition probabilities ill-defined (negative). The ground states of this
model are well established in two extreme cases: at small J2/J1 the system antiferromagnetically
orders with wave vector q = (π, π); at large J2/J1 spins prefer columnar order q = (π, 0), (0, π),
in which they aligned antiparallel in one direction, but ferromagnetically in the other. However, in
the maximally frustrated regime J1 ∼ 0.5J2, the system does not display any apparent order and the
nature of this spin liquid state remains controversial despite significant research efforts over the past
three decades[3, 6, 11, 10, 35, 39, 41, 34, 37, 26, 20, 15, 21, 45].

Therefore, we choose this Hamiltonian for two reasons: (i) it realizes a quantum spin liquid in a
parameter regime near J2 ∼ 0.5J1 and (ii) conventional Monte Carlo methods fail, making the model
an ideal testing ground to benchmark new techniques. Variational Monte Carlo(VMC) provides a
suitable alternative that can be scaled up to large two-dimensional systems without being affected
by the sign problem. The quest for relatively simple yet powerful variational states has focused on
neural network states, which have shown a great deal of promise. The complexity of the problem lies
in the fact that many states with similar energy have very different physical properties. Therefore, an
accurate representation of the ground state becomes the key to studying the nature of the quantum
phase.

2.2 Related work

Before the concept of NNQS became a popular new alternative for simulating many-body systems,
the most successful numerical techniques to treat the 2D J1 − J2 model have been the density matrix
renormalization group (DMRG)[15], VMC based on a projected fermionic ansatz[20], and tensor
product states[45]. Recently, some research has focused on improving the accuracy of NNQS by
using deep neural networks such as CNN[9] and group-CNN[36]. The idea of applying quantum
number projection to recover the symmetries of the wave function[40, 46] has proven to be effective
in improving the performance of NNQS[9, 28, 29, 36]. In addition, other alternatives that enhance
the quality of the approximations consist of combining NNQS with Gutzwiller-projected fermionic
wave functions[12], or pair-product wave functions[30].

3 Method

3.1 Neural Network Wave Function with symmetry

An RBM wave function takes a spin configuration – a sequence of N values ±1/2 – and returns a
complex coefficient corresponding to the wave function amplitude. In other words, it is a function
ψ : {−1/2,+1/2}N → IC. This function is highly non-linear and is parametrized by biases ~a,~b and
weights W as:

ψ(~σz,~a,~b,W ) = e
∑N

i=1 aiσ
z
i

M∏
i=1

2 cosh (

N∑
j=1

Wijσ
z
j + bi). (2)

In this expression, the number of “hidden variables” M is a tunable parameter. While RBMs have
remained a simple example of a basic neural network for many decades, it was only recently that
their potential as variational wave functions was appreciated [4]. In this case, unlike conventional
machine learning applications, the biases and weights are complex valued.

It is possible to account for certain symmetries [27] of the problem directly within the internal
mathematical structure of the RBM. In particular:

• Spin flip symmetry: If the z-component of the total magnetization is zero (
∑
i σ

z
i = 0), the

global spin flip operation σzi → −σzi preserves this property. Notice that since cosh(x) is
an even function, we can easily restore the global flip symmetry in RBM wave function by
removing the “magnetic field” terms associated to biases ~a,~b in Eq.(2). Thus, the RBM
wave function coefficients become:

ψs(~σ
z,W ) =

M∏
i=1

2 cosh (

N∑
j=1

Wijσ
z
j ). (3)
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Table 1: Character table of the C4v point group for square lattice.
E 2C4 C2 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 -1 -1
B1 1 -1 1 1 -1
B2 1 -1 1 -1 1
E 2 0 -2 0 0

• Translational symmetry: In translationally invariant systems, the ground state of the Hamil-
tonian is expected to preserve the translational symmetry of the lattice. By applying the
momentum projection, one can construct a variational wave function that preserved the
symmetry with a well-defined momentum K:

ψK =
∑
R

e−iK·Rψs(TR~σ
z,W ), (4)

where the translation operator TR shift all particles by a distance R. For the 2D square
lattice,

R = mx̂ + nŷ. (5)
The operator TR will perform a translation by m steps in the x̂ direction, and n steps in
the ŷ direction. The coefficient ψK now satisfies the translational symmetry at the cost of
requiring a computation time N time larger.

• Lattice point symmetry: As our target model is on the 2D square lattice, the point group
symmetries, which consist of rotation and reflection operations, may also be included:

ψKL =
∑
R,L

e−iK·Rχ(L)ψs(TRL~σz,W ), (6)

where L is the symmetry operation in the C4v point group, and χ(L) is the character of
the irreducible representation I for the symmetry operation L. Since there are 8 operations
in the C4v point group, as shown in table 1, ψKL is 8 times more expensive to calculate
compared to ψK.

Notice that even though the computational cost of optimizing and evaluating observables with the
symmetrized wave function has increased, the resulting state has a much larger expressivity than the
original one, translating into a remarkable accuracy as we shall demonstrate. We should highlight
here that the new states, by being linear combinations of RBMs, are no longer RBMs, and therefore
allow one to explore a much larger space outside the original manifold defined by ψs, Eq.(2).

3.2 Wave Function Optimization

The goal of the calculation is to minimize the cost function defined by the expectation value of the
energy:

Evar =
〈ψKL|H|ψKL〉
〈ψKL|ψKL〉

(7)

=
∑
~σ

P~σEloc(~σ), (8)

where the probability distribution is determined by the normalized wave function coefficients

P~σ =
|〈~σ|ψKL〉|2∑
~σ′ |〈~σ′|ψKL〉|2

(9)

and the local energy is given by

Eloc(~σ) =
〈~σ|H|ψKL〉
〈~σ|ψKL〉

. (10)

By formulating the problem in probabilistic terms, one can resort to Metropolis-Hastings Markov
Chain Monte Carlo to evaluate the averages. The sampling over the spin configurations ~σ is carried
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out by randomly flipping pairs of anti-aligned spins, and using von Neumann rejection according to a
transition probability W = |〈~σnew|ψKL〉|2/|〈~σold|ψKL〉|2.

The wave function optimization can be implemented by a variety of methods. Since the energy
landscape is extremely complex, simple gradient descent tends to get trapped into metastable solutions.
More sophisticated strategies are usually employed, such as natural gradient descent or “stochastic
reconfiguration”[42]. In contrast to the "standard" natural gradient descent method, the Fubini-study
metric[33], which is the complex-valued form of Fisher information, is used to measure the "distance"
between wave functions |ψ〉 and |φ〉:

γ(ψ, φ) = arccos

√
〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

. (11)

The procedure to update variational parameters using natural gradient descent is well described
in literature[4, 8, 30], and we hereby summarize it. The optimization is done by minimizing the
Fubini-study metric between |e−dτHψ(θ)〉 and ψ(θ + δθ)〉 where dτ is a small step in imaginary
time and can be viewed as learning rate in the training of neural network. The optimal choice for δθ
is given by the solution of a system of equations:∑

k′

[
〈O†kOk′〉 − 〈O

†
k〉〈Ok′〉

]
δθk′ = −dτ

[
〈O†kH〉 − 〈O

†
k〉〈H〉

]
, (12)

where the log derivative Ok = 1
ψ(θ)

∂ψ(θ)
∂θ and 〈· · · 〉 means an average over samples. We update the

parameters by θk = θ′k + δθk and repeat until convergence is reached.

3.3 Lanczos recursion

Using the symmetrized RBM wave function combined with the stochastic reconfiguration method, a
good approximation of the ground state can be achieved after hundreds or thousands of iterations.
However, due to the limited representation power of neural network wave functions, and the errors
stemming from the Monte Carlo sampling and the optimization method, the true ground state of the
Hamiltonian H can still differ significantly from the variational one. One possible way to increase
the expressivity of the wave function is to introduce additional hidden variables or layers. However,
an alternative to systematically improve the neural network wave function consists of applying a
modified Lanczos recursion [14, 2, 20]. The procedure begins with a (normalized) trial wave function
ψ0, which in our case is an initial guess for the ground state, ψ0 = ψKL . Then, a new state ψ1 is
constructed by applying the Hamiltonian on ψ0 and subtracting the projection over ψ0 in order to
preserve orthogonality:

ψ1 =
Hψ0 − 〈H〉ψ0

(〈H2〉 − 〈H〉2)1/2
(13)

where 〈Hn〉 = 〈ψ0|Hn|ψ0〉. Notice that ψ1 is orthogonal to ψ0 and also normalized. In the usual
Lanczos method, this recursion can be continued such that a new complete orthogonal basis can be
constructed. In this representation, the Hamiltonian will have a tri-diagonal form. However, we only
use ψ0 and ψ1 as our basis, and thus the Hamiltonian will be a 2× 2 matrix.

The eigenvector ψ̃0 that corresponds to the lowest eigenvalue Ẽ0 of this matrix will be a better
approximation of the true ground state of Hamiltonian compared to ψ0. The lowest eigenvalue and
corresponding eigenvector are

Ẽ0 = 〈H〉+ vα, (14)

ψ̃0 =
1

(1 + α2)1/2
ψ0 +

α

(1 + α2)1/2
ψ1, (15)

where

v = (〈H2〉 − 〈H〉2)1/2 (16)

r =
〈H3〉 − 3〈H2〉〈H〉+ 2〈H〉3

2(〈H2〉 − 〈H〉2)3/2
(17)

α = r − (r2 + 1)1/2, (18)
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Table 2: Ground state energy per site E/Nand the spin structure factor S(q) obtained by our RBM
wave function, CNN[9], RBM+PP[30], and exact diagonalization[39] for the J1− J2 model on 6× 6
square lattice. p represents the number of Lanczos steps applied.

6× 6 J2 = 0.5 J2 = 0.55 J2 = 0.6
Energy(Exact) -0.503810 -0.495178 -0.493239
Energy(CNN) -0.50185(1) -0.49067(2) -0.49023(1))

Energy(RBM+PP) -0.503765(1) -0.495075(1) -
Energy(RBM) -0.50364(2) -0.49501(1) -0.49298(5)

Energy(RBM) p = 1 -0.50376(3) -0.49512(4) -0.49313(5)
Energy(RBM) p = 2 -0.50378(4) -0.49514(4) -0.49318(5)

S(π, π)(Exact) 1.16989 0.89452 0.5545
S(π, π)(RBM) 1.177(8) 0.902(6) 0.555(4)
S(π, 0)(Exact) 0.201907 0.2489 0.48412
S(π, 0)(RBM) 0.200(2) 0.246(2) 0.486(6)

The eigenvector ψ̃0, being a linear combination of ψ0 and ψ1, is the improved neural network wave
function, and Ẽ0 is the new improved variational energy. By considering ψ̃0 as the new trial wave
function replacing ψ0, this method can be repeated to further improve the wave function. The neural
network wave function obtained during the Lanczos recursion can be generalized as

|Ψp〉 = (1 +

p∑
i=1

βiH
i)|ψ0〉, (19)

where p is the maximum number of Lanczos steps, and βi is the wave function coefficient corre-
sponding to Hi|ψ0〉. In this form, one can easily identify the wave function as an expansion on a
Krylov basis.

In practice, taking into account the fact that the computational complexity increases dramatically
with increasing p, only a few steps can be calculated for a large quantum many-body system. In this
study, and for illustration purposes, we shall consider only the p = 1 or p = 2 cases.

3.4 Implementation details

In this work, we focus on the 2D J1 − J2 Heisenberg model on L× L square lattices where L is an
even number. For the neural network, we use ψKL in all simulations and consider three different
values for the number of hidden variables M consisting of 2, 2.5, and 3 times of the number of spins
N = L2 in the system. The parameters W in the RBM are initialized to be randomly chosen random
numbers with a uniform distribution between [−0.01, 0.01] for both real and imaginary parts. The
ground state can belong to theA1 orB1 irreducible representations of the C4v point group, depending
on the value of J2/J1. In our calculations we consider both cases near the transition between the spin
liquid phase and the columnar phase with K = (π, 0), i. e. for J2/J1 ≥ 0.5.

Due to a large number of parameters and the numerical noise in sampling, we implement the
conjugate gradient method to solve the system of equations, Eq.(12). To stabilize the method,
we introduce a ridge parameter λ = 10−6. For each training step, we collect 10000 samples to
evaluate averages as mentioned in Sec. 3.2 including the variational energy and log derivatives.
Since the adjacent states in the Markov chain are highly correlated, the number of the skipped
states between samples Nskip is chosen according to this relation Nskip = 5 × 1.0/r, where r is
the acceptance rate in the previous training step. The typical value for Nskip is from 30 to 100.
As for evaluation, we collect 2 × 105 samples to calculate the average and statistical error. The
learning rate used in the training ranges from 5× 10−4 to 3× 10−2. Once we observe that variational
energy is not decreasing, a smaller learning rate(half of the previous one) is used instead. For
large L, to save training time, we initialize the parameters W in ψKL using the parameters trained
by means of the cheaper wave function ψs. All simulations are performed using Eigen and Intel
MKL on Intel E5-2680v4 and AMD Rome 7702 CPU nodes. Source code will be available at:
https://github.com/hwchen2017/Lanczos_Neural_Network_Quantum_State.
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Table 3: Comparison of the ground state energy per site E/Nand the spin structure factor S(q)
with QMC[38] results for the 2D Heisenberg model(J2 = 0) on 6×6, 8×8 and 10×10 square lattice.

System Size Energy(QMC) S(π, π)(QMC) Energy(RBM) S(π, π)(RBM)
6× 6 -0.678873(4) 2.51799(6) -0.678868(2) 2.51(2)
8× 8 -0.673487(4) 3.7939(2) -0.673482(3) 3.79(4)

10× 10 0.671549(4) 5.3124(3) -0.671519(4) 5.38(6)

Table 4: Ground state energy per site E/Nand the spin structure factor S(q) obtained by our RBM
wave function, CNN[9], RBM+PP[30], VMC[20], and DMRG[15] for the J1 − J2 model on 10× 10
square lattice. p represents the number of Lanczos steps applied.

10× 10 J2 = 0.45 J2 = 0.5 J2 = 0.55
Energy(VMC) -0.50811(1) -0.49521(1) -0.48335(1)

Energy(DMRG) -0.507976 -0.495530 -0.485434
Energy(RBM+PP) - -0.497629(1) -

Energy(CNN) -0.50905(1) -0.49516(1) -0.48277(1)
Energy(RBM) -0.50916(2) -0.49580(2) -0.48410(3)

Energy(RBM) p = 1 -0.5099(5) -0.4968(4) -0.4859(5)
S(π, π)(RBM) 2.06(3) 1.56(2) 1.18(2)
S(π, 0)(RBM) 0.186(1) 0.191(2) 0.200(2)

4 Results

4.1 Comparison with Exact Diagonalization

We benchmark the accuracy of the neural network wave functions for the ground state mainly on
the 6× 6 and 10× 10 square lattices with periodic boundary conditions. For the 6× 6 lattice, the
J1 − J2 is numerically soluble by enumerating the possible spin configurations, constructing the
Hamiltonian matrix, and explicitly solving the eigenvalue problem [39]. Once the ground state (or
its variational approximation) is obtained, the wave function can be used to calculate other physical
quantities besides the energy. Here, for illustration, we compute the spin structure factor, that defines
the sublattice magnetization squared for a finite system

S(q) =
1

N2

∑
i,j

〈σzi σzj 〉eiq·(ri−rj), (20)

where the wave vector q determines spatial structure of the magnetic order. Notice that in all the
tables shown here, we display the results times a factor N for readability.

We first focus on the symmetrized RBM wave function without the Lanczos optimization, and we
start by comparing the ground state energy for a 6×6 lattice as a function of J2/J1, as shown in Fig.1.
In this figure we calculate the relative error as |Enn − Eexact|/|Eexact| using the exact ground state
energy from Ref. [39]. We also include the relative error of the ground state energy obtained using
a convolutional neural network wave function from Ref.[9]. While the relative error of the CNNs
are in order of 10−3, our RBM wave function achieves an accuracy of 10−4 in the frustrated regime.
Even comparing other recent works using CNNs[43, 36, 7], our RBM wave function still outperforms
the CNN wave function. Besides the ground state energy, the spin structure factor computed from
optimized wave functions agree very well with the exact solution as shown in Fig. 2, where the
differences are smaller than the symbol size, and in data table 2.

4.2 Comparison with state-of-the-art quantum Monte Carlo

For larger lattices, the problem is numerically intractable. However, as mentioned before, it can be
solved using QMC[38] for J2 = 0. Thus, for the case without frustration we can compare with QMC
results for several different lattice sizes. From table 3, we can see that even on the 10× 10 lattice the
energy difference is about 3× 10−5, showing the extraordinary accuracy of our RBM wave function.
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Figure 1: Relative error in the ground state energy obtained with variational Monte Carlo using
symmetrized RBM wave functions (this work) and convolutional neural network (CNN) wave
functions, from Ref. [9].

For the frustrated case, J2 6= 0, we compare to other methods, such as those obtained with CNN
wave functions as well as results using the density matrix renormalization groump(DMRG) method
with SU(2) symmetry from Ref. [15] and VMC using an Abrikosov-fermion mean field with a
Z2 gauge structure from Ref. [20]. From the data tables 4 and 5, we observe that our RBM wave
function outperform the CNN wave function again in the entire range of J2/J1. In the frustrated
regime, comparisons with VMC and DMRG using all the data available in literature demonstrate that
the RBM wave functions still yield competitive ground state energies except at J2/J1 = 0.55 where
DMRG yields a lower value.

Figure 2: Static spin structure factor for ordering wave vectors q = (π, π) and (π, 0) obtained with
VMC using symmetrized RBM wave functions, compared to numerically exact results on a 6× 6
lattice as a function of J2/J1. We also include VMC results for 10 × 10. Monte Carlo sampling
errors are smaller than the symbol size.

4.3 Lanczos optimization

Since the most interesting regime lies around the maximally frustrated point J2 ∼ 0.5J1, we choose 3
different values of J2/J1 using 6× 6 and 10× 10 lattices and perform a few Lanczos steps to further

8



Table 5: Ground state energy per site E/Nand the spin structure factor S(q) obtained by our RBM
wave function, exact diagonalization[39], and CNN[9] for the J1 − J2 model on 6× 6 and 10× 10
square lattice.

6× 6 J2 = 0.0 J2 = 0.2 J2 = 0.4 J2 = 0.45 J2 = 0.7
Energy(Exact) -0.678872 -0.599046 -0.529745 -0.51565739 -0.530001
Energy(CNN) -0.67882(1) -0.59895(1) -0.52936(1) -0.51452(1) -
Energy(RBM) -0.678868(2) -0. 599044(3) -0.529687(7) -0.51552(1) -0.529921(8)
S(π, π)(Exact) 2.5180 2.22946 1.6604 - 0.15605
S(π, π)(RBM) 2.51(2) 2.25(2) 1.63(2) 1.412(8) 0.1567(7)
S(π, 0)(Exact) 0.167453 0.1691 0.17784 - 1.26743
S(π, 0)(RBM) 0.1678(7) 0.1681(7) 0.1774(8) 0.1845(8) 1.26(2)

6× 6 J2 = 0.8 J2 = 1.0 J2 = 1.2 J2 = 1.5
Energy(Exact) -0.586487 -0.714360 -0.848364 -1.05268
Energy(CNN) -0.58590(1) -0.71351(1) - -
Energy(RBM) -0.586411(9) -0.71429(1) -0.84830(1) -1.052640(9)
S(π, π)(Exact) 0.07726 0.02318 0.01115 0.00557
S(π, π)(RBM) 0.0779(4) 0.0233(2) 0.0110(1) 0.00556(5)
S(π, 0)(Exact) 1.4402 1.54318 1.5729 1.59
S(π, 0)(RBM) 1.43(2) 1.53(2) 1.57(2) 1.59(2)

10× 10 J2 = 0.0 J2 = 0.2 J2 = 0.4 J2 = 0.6 J2 = 0.7
Energy(CNN) -0.67135(1) -0.59275(1) -0.52371(1) -0.47604(1) -
Energy(RBM) -0.671519(4) -0.592847(9) -0.52388(2) -0.47662(3) -0.51889(2)
S(π, π)(RBM) 5.38(6) 4.24(5) 2.59(4) 0.408(3) 0.1594(9)
S(π, 0)(RBM) 0.1684(9) 0.1702(8) 0.180(2) 0.99(2) 2.33(7)

10× 10 J2 = 0.8 J2 = 1.0 J2 = 1.2 J2 = 1.5
Energy(CNN) -0.57383(1) -0.69636(1) - -
Energy(RBM) -0.57404(2) -0.69670(2) -0.82565(3) -1.02371(3)
S(π, π)(RBM) 0.1004(5) 0.0480(2) 0.0212(2) 0.00760(6)
S(π, 0)(RBM) 2.48(7) 2.59(5) 2.76(5) 3.07(5)

improve the ground state energy. From data table 2 and 4, we see that the Lanczos steps are very
effective regardless of the system size. Remarkably, by performing p = 1 Lanczos steps, we obtain
better energy at J2/J1 = 0.55 for the 10× 10 lattice that improves significantly the best available
data using state-of-the-art DMRG, as shown in data table 4. Besides, compared to the "RBM+PP"
results[30], which is generally considered as the start-of-the-art NNQS method, we obtain slightly
lower variational energy at J2 = 0.5, 0.55 on a 6× 6 lattice while for a 10× 10 lattice at J2 = 0.5,
their variational energy is 8 × 10−4 lower than ours. Additionally, with the help of the Lanczos
recursion, a better estimate of the energy can be obtained by carrying out a variance extrapolation
as illustrated in Ref. [2, 20]. We also try to improve the estimation of spin structure factor using
Lanczos, but the Monte Carlo sampling error makes the improvement not obvious.

5 Conclusion

Neural network wave functions hold a great deal of promise due to their ability to compress complex
quantum many-body states within a relatively simple mathematical structure that, owing to its non-
linearity, can encode an exponentially large amount of information with polynomial resources. In
particular, RBM wave functions, initially deemed too simple, can be used as building blocks for
systematically improved wave functions. These improved states obey the internal symmetries of the
model and the point group symmetries of the lattice. In addition, they may contain contributions from
the state living in a “tangent space” to the original RBM manifold. These tangent vectors are spanned
in terms of powers of the Hamiltonian and form a Krylov basis.

We have demonstrated that we can achieve state-of-the-art accuracy that improves previous results
using convolutional neural networks with a minimal amount of extra computational cost compared
to simple RBMs. The combination of Lanczos and symmetrization offer an effective solution to
problems previously beyond the reach of the most powerful numerical techniques and provide the
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means to bypass the sign problem. These ideas can seamlessly translate to other areas of research
ranging from materials science to quantum chemistry. Besides, our variational solution can be adopted
to calculate the excitation spectrum of a quantum many-body system[17, 18], providing valuable
information that can be directly compared to experiments.

Limitations The computational cost of a single training step scales as O(Nsample ×MN2), where
the number of hidden variablesM is usually proportional to the system sizeN . Thus, the computation
time of calculation may be a bottleneck for its application on larger lattices. In particular, we find that
even though the results for the energy are very accurate, correlation functions have relatively larger
errors. This behavior might be improved by using variational forms with better representation power.
Besides, the Lanczos step procedure is not size consistent, which means that the energy improvement
with respect to the original wave function |ψ0〉 vanishes for fixed p and N →∞. Also, the Lanczos
correction will be smaller and smaller as p increases. Nevertheless, a sizable improvement is obtained
even for rather large clusters with 100 sites as shown in the data table 4.

Negative Societal Impact Our work presents the theoretical simulation of the quantum many-body
problems without any foreseeable negative societal impacts.

Acknowledgments and Disclosure of Funding

AEF and HC acknowledge the National Science Foundation for support under grant No. DMR-
2120501. DH is partially supported by a Northeastern Tier 1 grant.

10



References
[1] Johannes Bausch. Recurrent quantum neural networks. Advances in neural information

processing systems, 33:1368–1379, 2020.

[2] Federico Becca, Wen-Jun Hu, Yasir Iqbal, Alberto Parola, Didier Poilblanc, and Sandro Sorella.
Lanczos steps to improve variational wave functions. Journal of Physics: Conference Series,
640:012039, sep 2015.

[3] Luca Capriotti and Sandro Sorella. Spontaneous plaquette dimerization in the j 1–j 2 heisenberg
model. Physical Review Letters, 84(14):3173, 2000.

[4] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial
neural networks. Science, 355(6325):602–606, 2017.

[5] Juan Carrasquilla, Di Luo, Felipe Pérez, Ashley Milsted, Bryan K Clark, Maksims Volkovs, and
Leandro Aolita. Probabilistic simulation of quantum circuits using a deep-learning architecture.
Physical Review A, 104(3):032610, 2021.

[6] P Chandra and B Doucot. Possible spin-liquid state at large s for the frustrated square heisenberg
lattice. Physical Review B, 38(13):9335, 1988.

[7] Ao Chen, Kenny Choo, Nikita Astrakhantsev, and Titus Neupert. Neural network evolution
strategy for solving quantum sign structures. Physical Review Research, 4(2):L022026, 2022.

[8] Kenny Choo, Giuseppe Carleo, Nicolas Regnault, and Titus Neupert. Symmetries and many-
body excitations with neural-network quantum states. Phys. Rev. Lett., 121:167204, Oct 2018.

[9] Kenny Choo, Titus Neupert, and Giuseppe Carleo. Two-dimensional frustrated J1−J2 model
studied with neural network quantum states. Phys. Rev. B, 100:125124, Sep 2019.

[10] Elbio Dagotto and Adriana Moreo. Phase diagram of the frustrated spin-1/2 heisenberg antifer-
romagnet in 2 dimensions. Phys. Rev. Lett., 63:2148–2151, Nov 1989.

[11] R Darradi, O Derzhko, R Zinke, J Schulenburg, SE Krüger, and J Richter. Ground state phases
of the spin-1/2 j 1–j 2 heisenberg antiferromagnet on the square lattice: A high-order coupled
cluster treatment. Physical Review B, 78(21):214415, 2008.

[12] Francesco Ferrari, Federico Becca, and Juan Carrasquilla. Neural gutzwiller-projected varia-
tional wave functions. Phys. Rev. B, 100:125131, Sep 2019.
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