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Abstract

Unsupervised out-of-distribution (OOD) detection is essential for the reliability
of machine learning. In the literature, existing work has shown that higher-level
semantics captured by hierarchical VAEs can be used to detect OOD instances.
However, we empirically show that, the inheirt “posterior collapse” of hierarchical
VAEs would seriously limit their capacity for OOD detection. Based on a thorough
analysis, we propose an informative hierarchical VAE to alleviate this issue through
enhancing the connections between the data sample and its multi-layer stochastic
latent representations during training. Furthermore, we propose a novel score
function for unsupervised OOD detection, referred to as Adaptive Likelihood Ratio,
which can selectively aggregate the semantic information on multiple hidden layers
of hierarchical VAEs, leading to a strong separability between in-distribution and
OOD samples. Experimental results demonstrate that our method can significantly
outperform existing state-of-the-art unsupervised OOD detection approaches.

1 Introduction

Despite achieving great success in real-world applications recently, existing machine learning (ML)
systems are still designed to be tested on the in-distribution dataset, whose statistics are similar
to those of the training set [1]. However, when applied to deal with the dataset consisting of out-
of-distribution (OOD) samples, whose statistics are extremely different from those of the training
set, these ML systems would produce a series of incorrect judgments [2, 3, 4]. Considering the
fact that OOD data is very common in real-world applications, pre-execution OOD detection is
increasingly attractive to make sure the reliability and safety of ML systems. Although several
supervised methods [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] have achieved great success in OOD
detection, the unsupervised ones are more practical since the category labels of in-distribution samples
are often missing in real-world applications, which brings more challenges for OOD detection and is
also the focus of this work.

Without labels, likelihood-based models could be a promising way for unsupervised OOD detection,
such as flow-based models [17], auto-regressive models [18, 19], and variational autoencoders
(VAEs) [20, 21, 22, 21, 23]. Unfortunately, some recent studies have shown that, in some cases,
these generative models tend to achieve higher likelihoods on certain types of OOD samples [1,
24, 25, 26, 27], which makes the OOD detection methods based on thresholding likelihood scores
problematic. To address this issue, based on the prior knowledge collected from OOD samples, some
improvements have been made for unsupervised OOD detection, i.e., Ren et al. [1] take additional
datasets as the OOD validation sets for choosing the best hyperparameters; Hendrycks et al. [28]
introduce an auxiliary dataset to teach the network to learn more expressive representations for
OOD detection; However, the behaviour of borrowing the prior knowledge of OOD data is usually
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unreasonable in practice, because we will never know the statistic information of OOD samples to be
dealt with.

To conduct purely unsupervised OOD detection without the labels or prior assumptions, deep
ensemble method named WAIC [24] is developed by making full use of the difference between the
density estimations of multiple independent models trained on the in-distribution data. Recently,
through capturing the semantic information with multi-layer latent variables, Maaløe et al. [29]
and Havtorn et al. [27] develop various score functions based on Likelihood-Ratio, which help
hierarchical VAEs achieve competitive performance in unsupervised OOD detection. However, in our
implementation, we find that the phenomenon of “posterior collapse” in hierarchical VAEs still limits
their performance on OOD detection, where the main reason could be that “posterior collapse” will
make the high-level latent variables meaningless and cannot provide faithful summaries for the data.

With this insight in hand, in this paper, we start from rethinking the cause of “posterior collapse”
in hierarchical VAEs, and then theoretically explain why “posterior collapse” will limit the OOD
detection performance of these Likelihood-Ratio based methods. Further, we develop an informative
hierarchical VAE to alleviate “posterior collapse” and a novel Adaptive Likelihood Ratio score
function for unsupervised OOD detection. The major contributions of this work include:

• With a thorough analysis of “posterior collapse” in hierarchical VAEs, we enhance the
connections between the data sample and its multiple latent representations in the expected
log-likelihood term of evidence lower bound (ELBO) for training, and develop a novel
informative hierarchical VAE to extract more expressive hierarchical latent representations.

• We theoretically explain why alleviating “posterior collapse” in hierarchical VAEs can help
the performance of Likelihood Ratio on OOD detection, and then develop a novel score
function for fully unsupervised OOD detection, termed Adaptive Likelihood Ratio, which
owns fewer hyperparameters to be tuned and can make full use of the semantic divergences
between in-distribution and OOD samples across all hidden layers of hierarchical VAEs.

• Combing the informative hierarchical VAE with the Adaptive Likelihood Ratio, we demon-
strate that our method can achieve state-of-the-art OOD detection performance across a
wide range of benchmarks in an unsupervised manner.

2 Background and Related Works

2.1 Hierarchical Variational Autoencoder

Preliminary: Extending the basic VAE [20], a hierarchical VAE [30, 31] is defined by the observation
x that depends on a hierarchy of stochastic latent variables z = z1, ...,zL, where the generative model
is defined with a top-down structure, formulated as pθ(x, z) = pθ(x|z1)

∏L−1
l=1 pθ(zl|zl+1)pθ(zL);

the inference model is designed to approximate the posterior over these latent variables, commonly
factorized with a top-down structure as qϕ(z|x) =

∏L−1
l=1 qϕ(zl|zl+1)qϕ(zL|x) or a bottom-up

structure as qϕ(z|x) =
∏L−1

l=1 qϕ(zl+1|zl)qϕ(z1|x). The demonstration of these structures could be
seen in Fig. 1. The parameters of the generative and infernce models, denoted as θ and ϕ respectively,
can be jointly optimized by maximizing the evidence lower bound (ELBO) expressed as

L = Ep(x) [Lx(x; θ, ϕ)], (1)
where Lx is denoted as

Lx = log p(x)−DKL(qϕ(z|x)||pθ(z|x)) = Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)||pθ(z)), (2)
where DKL(·||·) denotes the KL divergence and maximizing ELBO is equivalent to minimize the
divergence between the varaitional distribution qϕ(z|x) and true posterior pθ(z|x).
Related Works: While the hierarchy of latent stochastic variables can improve the generation
capability of standard VAEs, in practice, the posterior of higher-level stochastic latent variables have
a tendency to collapse into the prior, called “posterior collapse”. To address this issue, Sønderby
et al. [30] propose a Ladder VAE (LVAE) to change the bottom up inference process into a top-down
one; Vahdat and Kautz [31] develop a variant of the LVAE, which carefully designs a sophisticated
network architecture to achieve better generation quality; Maaløe et al. [29] combine the bottom-
up inference with the top-down inference by proposing a bidirectional inference scheme. Despite
obtaining performance improvements with more flexible inference networks, these hierarchical VAEs
still lack a theoretical guide to alleviate the phenomenon of “posterior collapse”.
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Figure 1: Illustration of the usual structures of both inference network and generative model in
hierarchical VAEs.

2.2 Out-of-distribution Detection with Variational Autoencdoer

Problem Formulation: Suppose that there are a set of N training samples {xi}Ni=1 drawn from
the data distribution xi ∼ p(x), after training a VAE to model the generation of these data samples,
the generative model pθ(x) is supposed to detect whether a testing sample x is an outlier, where
the outlier should have a low density estimation under the true data distribution p(x). However,
on the contrary, former likelihood-based methods found the generative model always assign higher
pθ(x) for OOD data than in-distribution data [1, 24, 25, 26]. Luckily, although the likelihood based
methods with VAE are rarely investigated, they have revealed the potential to better address this
problem without the help of labels or assumptions about the prior.

Related Works: A pioneering VAE-based OOD detection method is Likelihood Regret (LRe) [32]
obtained by iteratively finetuning the decoder parameters of VAE, which is time-consuming but
achieves competitive performance in an unsupervised manner. Maaløe et al. [29] reveal the potential
of hierarchical VAE for OOD detection and Havtorn et al. [27] further propose a score function to
improve the model performance, which needs to specify the backbone model. The backbone models
in likelihood-based methods [1, 24, 33] can be directly replaced with VAEs, but these methods usually
underperform flow-based models like Glow [17] or autoregressive models like PixelCNN [19].

3 From Informative Hierarchical VAE to Adaptive Likelihood Ratio

3.1 Rethinking of “posterior collapse” in Hierarchical VAEs

Firstly, let’s understand the cause of “posterior collapse” in hierarchical VAEs theoretically. Taking
an L-layer hierarchical VAE with a top-down inference network as an example, the set of latent
variables can be separated as the lower-level variables z≤k = {z1, ...,zk} and the higher-level ones
z>k = {zk+1, ...,zL}, where k ∈ {0, ..., L− 1}, then the ELBO in Eq. (1) can be reformulated as

L = Ep(x)

[
Eqϕ(z≤k|z>k)qϕ(z>k|x) [log pθ(x|z1)]−

∑L

l=1
DKL(qϕ(zl|zl+1)||pθ(zl|zl+1))

]
, (3)

where qϕ(zL|zL+1) := qϕ(zL|x), pθ(zL|zL+1) := pθ(zL), and the main contribution to the
expected log-likelihood term is coming from the lower-level latent variables z≤k before the kth hidden
layer [29]. Once the generation capacity of the generative model pθ(x|z≤k) is powerful enough to
reconstruct the observation x well, the variational posteriors of higher-level latent variables z>k

will be optimized to be close to their priors, i.e., qϕ(z>k|x) ≈ pθ(z>k), leading the representations
learned by VAE at higher layers to be meaningless and cannot provide faithful summaries for x, which
is well-known as the phenomenon of “posterior collapse” or “latent variable collapse” [30, 34].

To find the potential solutions to alleviating “posterior collapse”, in the following, we reinterpret this
phenomenon from the perspective of information theory [35] by extending the findings in [34] to a
hierarchical VAE scenario. For ease of undertanding, we define the mutual information between the
data x and the higher-level latent variables z>k as

Iq(x, z>k) = −Hq(z>k|x) +Hq(z>k) = Ep(x)qϕ(z>k|x) log qϕ(z>k|x)− Eqϕ(z>k) log qϕ(z>k),
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Figure 2: Illustration of “posterior collapse” in a 5-layer hierarchical VAE trained on FashionMNIST
(in) by visualizing its reconstructions conditioned on various z>k for both in-distribution and OOD
samples. The first row is the input x, and the other rows are generated from the partial generative
model pθ(x|z>k) by taking z>k drawn from qϕ(z>k|x) as input, where k ∈ {0, ..., 4}.

which is induced by the variational posterior qϕ(z>k|x). Then KL term in Eq. (3) can be rewritten as

Ep(x)

[∑L

l=1
DKL(qϕ(zl|zl+1)||pθ(zl|zl+1))

]
=Ep(x)

[∑k

l=1
DKL(qϕ(zl|zl+1)||pθ(zl|zl+1))

]
+ Ep(x) [DKL(qϕ(z>k|x)||pθ(z>k))]

=Ep(x)

[∑k

l=1
DKL(qϕ(zl|zl+1)||pθ(zl|zl+1))

]
+ Iq(x,z>k) +DKL(qϕ(z>k)||pθ(z>k)),

(4)

where qϕ(z>k) = Ep(x) [qϕ(z>k|x)] and the detailed derivation can be found in Appendix A. By
substituting Eq. (4) into Eq. (3), due to the non-negativity of mutual information and KL divergence,
we can find that maximizing the ELBO is opposite to maximizing the mutual information Iq(x, z>k).
When Iq(x, z>k) is minimized to zero, the variational posterior qϕ(z>k|x) will be independent of
the data x, which leads to the phenomenon of “posterior collapse”.

3.2 Why “posterior collapse” limits Likelihood-Ratio for OOD Detection

OOD detection has become one of the most important applications of VAEs, which can be applied
to filter OOD samples by setting a threshold on the score of log-likelihood term. However, some
recent studies have shown that, in some cases, VAEs tend to achieve higher likelihoods on certain
types of OOD samples [36], which makes the OOD detection rules based on likelihood threshold
problematic. Recently, Havtorn et al. [27] reinterpreted this problematic behavior by providing
evidence that the low-level features learned by VAEs generalize well across datasets and dominate the
estimated likelihoods. Inspired by the alternative log-likelihood lower bound [29] that partly replaces
the inference network with the generative model to highlight high-level features, formulated as

L>k
x = log p(x)−DKL(pθ(z≤k|z>k)qϕ(z>k|x)||pθ(z|x)), (5)

Havtorn et al. [27] considered to subtract L>k
x from Lx to cancel out the data distribution log p(x),

resulting in a likelihood-ratio score for unsupervised OOD detection as

LLR>k = DKL(pθ(z≤k|z>k)qϕ(z>k|x)||pθ(z|x))−DKL(qϕ(z≤k|z>k)qϕ(z>k|x)||pθ(z|x)), (6)
which discards the likelihood term to prevent the low-level features from dominating and measures
divergence in the latent space to ensure that data should be in-distribution across all feature levels.

To intuitively understand the nature of success in the likelihood-ratio score and illustrate why
alleviating “posterior collapse” in hierarchical VAEs can improve its performance on OOD detection,
we provide an insightful analysis on LLR>k in Eq. (6) by reformulating it as follows:

LLR>k = Eqϕ(z>k|x) [DKL(pθ(z≤k|z>k)||pθ(z≤k|z>k,x))−DKL(qϕ(z≤k|z>k)||pθ(z≤k|z>k,x)]

≈ Eqϕ(z>k|x) [DKL(pθ(z≤k|z>k)||qϕ(z≤k|z>k))] ,

(7)
where the detailed derivations can be found in Appendix B. Eq. (7) shows that, when the inference
network qϕ(z≤k|z>k) can approximate the true posterior pθ(z≤k|z>k,x) very well, thorough equiv-
alent replacement, LLR>k will approach the expected KL divergence between the prior pθ(z≤k|z>k)
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and variational posterior qϕ(z≤k|z>k). More specifically, conditioned on the expectation of z>k

drawn from its variational posterior qϕ(z>k|x), LLR>k is developed to calculate the summation of
k KL divergence terms, measuring the distance between the lower-level variables z≤k drawn from
the generative model pθ(z≤k|z>k) and those from the variational inference network qϕ(z≤k|z>k).

The premise of applying LLR>k to OOD detection is that, after training a hierarahical VAE on
in-distribution samples, for each OOD sample, the latent variables z≤k generated from the generative
model pθ(z≤k|z>k) will be clearly distinct from those drawn from the variational inference network
qϕ(z≤k|z>k). For ease of understanding the principle, after training a 5-layer hierarchical VAE
on FashionMNIST, for each hidden layer, we exhibit the reconstructions of both in-distribution
(FashionMNIST) and OOD (MNIST) data samples with the partial generative model pθ(x|z>k)
conditioned on the latent variables z>k drawn from qϕ(z>k|x) as shown in Fig. 2. From the results,
we can find that, when setting k = 2, the reconstructions of MNIST samples tend to reflect the
high-level semantic structures learned from FashionMNIST, indicating that the generation mechanism
of pθ(x|z>2) seems to prevent accurate reconstruction of out-of-distribution data, which implies
that a score function based on the distance between pθ(z≤2|z>2) and qϕ(z≤2|z>2), like LLR>2 in
Eq. (7), could be a promising metric for OOD detection.

However, when the phenomenon of “posterior collapse” occurs, the variational posterior qϕ(z>k|x)
will be independent of the data x, resulting in qϕ(z>k|x) ≈ pθ(z>k), and the reconstructions of
in-distribution and OOD samples, which are generated from the partial generative model pθ(x|z>k),
will be almost the same, such as the visualization examples shown in Fig. 2 by setting k = 3 or
k = 4. In that case, for each in-distribution sample, the latent variables z≤k generated pθ(z≤k|z>k)
will be clearly distinct from those drawn from qϕ(z≤k|z>k), and similar conclusions can also be
achieved by OOD samples, which will reduce the variance of LLR>k scores between in-distribution
and OOD samples and further bring troubles for OOD detection with LLR>k.

3.3 Informative Hierarchical VAE to Alleviate “posterior collapse”

Recall to the conflict between the ELBO objective and Iq(x, z>k) as discussed in Sec. 3.1, which
causes “posterior collapse” in hierarchical VAEs, there could be two main approaches to alleviate
this phenomenon, including: 1) downweight the KL term, like applying a warm-up scheme on it
[37], which is the most common heuristic in practice but still cannot essentially address this issue; 2)
enhance the connections between the observation and its multi-layer stochastic latent representations
in the expected log-likelihood term, like modifying the generative process described by pθ(x|z) [29].

In this paper, focused on exploring the potential of alleviating “posterior collapse” with the second
approach, we try to introduce skip-connection-liked structures into expected log-likelihood term to
enhance the connections between the data x and the latent variables z = z1, ...,zL. However, con-
strained by the layer-by-layer generation process of hierarchical VAE, there remains a great challenge
to introduce physical skip connections into the generative model pθ(x|z), because arbitrarily adding
or concatenating the stochastic hidden layers at different semantic levels will hurt the hierarchy of
these multi-layer latent representations. We emphasize that the skip connections between the single
stochastic layer and multiple deterministic layers [34] cannot be extended for hierarchical VAEs with
multiple stochastic hidden layers, but our developed method below can be applied to any existing
hierarchical VAE, which is one of the main contributions of this paper.

Generally speaking, moving beyond downweighting Iq(x, z>k) included in the KL term or modifying
the structure of generative model pθ(x|z), our main idea is to upweight the mutual information
between the data x and the higher-level variables z>k, which is denoted as

Ip(x, z>k) = −Hp(x|z>k) +Hp(x) = Ep(x)pθ(z>k|x) log pθ(x|z>k)− Ep(x) log p(x), (8)
in the objective function of hierarchical VAEs. In Eq. (8), the first item can be approximated by
Hp,q(x|z>k) = Ep(x)qϕ(z>k|x) log pθ(x|z>k) and Hp(x) is a constant, leading to the optimization
direction of Ip(x, z>k) is consistent with Hp,q(x|z>k). Thus, targeted at directly maximizing
multiple Hp,q(x|z>k), we develop an informative loss for training hierarchical VAEs, denoted as

Lin = Ep(x)

[
1

L

∑L−1

k=0
Eqϕ(z>k|x) [log pθ(x|z>k)]−

∑L

l=1
DKL(qϕ(zl|zl+1)||pθ(zl|zl+1))

]
(9)

where pθ(x|z>k) = Epθ(z≤k|z>k) [pθ(x|z≤k)] describes a partial generative model to reconstruct
the observation x taking z>k drawn from the variational inference network qϕ(z>k|x) as input; the
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weight 1/L before each expected term is introduced to keep numerical stability. The developed Lin

not only inherits the terms of ELBO in Eq. (1), which helps preserve the original model properties of
VAE, but also introduces virtual skip-connection-liked structures with partial generative models to
enhance the connections between x and z>k, contributing to alleviating “posterior collapse”.

To avoid directly calculating pθ(x|z>k) in practice, inspired by [27, 29], the informative loss in
Eq. (9) can be optimized by maximizing its lower bound L̂in, expressed as

Lin ≥ L̂in =Ep(x)

[
1

L

∑L−1

k=0
Epθ(z≤k|z>k)qϕ(z>k|x) [log pθ(x|z≤k)]

]
− Ep(x)

[∑L

l=1
DKL(qϕ(zl|zl+1)||pθ(zl|zl+1))

]
, (10)

where the expected log-likelihood term is the summation of L components and each component de-
noted as LL>k = Epθ(z≤k|z>k)qϕ(z>k|x) [log pθ(x|z≤k)] can be obtained by replacing the inference
network qϕ(z≤k|z>k) in the original log-likelihood term as described in Eq. (3) with the generative
model pθ(z≤k|z>k). Intuitively, for each expected log-likelihood term LL>k, after sampling the
top variables z>k from the variational posterior qϕ(z>k|x), these variables z>k will be forced
to reconstruct the observation x with the partial generative model pθ(x|z>k), which builds the
straightforward connections between x and z>k to alleviate “posterior collapse”.

We refer to the hierarchical VAE trained with the lower bound of informative loss in Eq. (10) as
informative hierarchical VAE. We note that this method is applicable for hierarchical VAEs with
either top-down or bottom-up inference network to explicitly utilize the generative hierarchy of the
multi-layered stochastic variables during training, and can be flexibly extended in future works.

3.4 Adaptive Likelihood Ratio for OOD detection

Besides “posterior collapse”, an inappropriate choice of k in the likelihood-ratio score function,
denoted as LLR>k in Eq. (6), will also bring negative impact on the performance of applying
hierarchical VAEs for OOD detection. Recall to the visualization examples in Fig. 2, when setting
k = 0 or k = 1, the reconstruction quality of either in-distribution or OOD samples is surprisingly
high, leading to the LLR>k scores of both in-distribution and OOD samples are relatively small and
further making it difficult to distinguish whether the data sample is OOD or not. Moving beyond
cherry picking the hyperparameter k on testing OOD samples, which is unreasonable for unsupervised
OOD detection, we develop a novel adaptive likelihood-ratio score function LLRada, described as

LLRada =
∑L−1

k=0

R(x, z>k−1)

R(x, z>k)
(LLR>k − LLR>k−1), (11)

where R(x, z>k) is designed to measure the relevance between the data sample x and its latent
variables z>k sampled from the variational posterior qϕ(z>k|x), specifically defining LLR>−1 := 0
and R(x, z>−1) := R(x, z>0). More specifically, there are many choices for the definition of
R(x, z>k), but in the following experiments, we only use the log-likelihood score for brevity, by
specifically defining R(x, z>k) := 1/ log pθ(x|z>k).

The intuition of designing LLRada is to move beyond the choose of k but adaptively enhance
the importance of some discriminative terms, like LLR>2, in the overall score function for OOD
detection. With R(x, z>k) to measure the relevance between x and z>k, we find that the adaptive
weight R(x,z>k−1)

R(x,z>k)
will be relatively large when the data information drop rapidly at the current

hidden layer, like k = 2 in Fig. 2, which can be naturally applied as the importance weights to
enlarge the gap between the metric scores of in-distribution and OOD samples. Compared to the
previous score functions for OOD detection [27, 32], the developed LLRada in Eq. (11) owns less
hyperparameters to be tuned, making its performance more stable on various benchmarks. More
discussions about LLRada can be found in Appendix C.
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Table 1: The comparisons of the 5-layer informative hierarchical VAE with LLRada and other
OOD detection methods. The state-of-the-art results achieved by the methods of the category “Not
ensembles” of “Unsupervised” have been bold.

FashinMNIST(in)/MNIST(out) CIFAR10(in)/SVHN(out)
Labels Prior Unsupervised Labels Prior Unsupervised

Method AUROC↑ Mehod AUROC↑ Method AUROC↑ Method AUROC↑ Mehod AUROC↑ Method AUROC↑
CP [5] 73.4 LR(PC) [1] 99.4 -Ensembles MD [9] 99.7 LR(PC) [1] 93.0 -Ensembles
CP(Ent) [5] 74.6 LR(BC) [1] 45.5 WAIC(5VAE) [24] 76.6 LMD [38] 27.9 LR(VAE) [1] 26.5 WAIC(5Glow) [24] 99.0
ODIN [8] 75.2 CP(OOD) [1] 87.7 WAIC(5PC) [24] 22.1 EN [11] 98.9 OE [28] 98.4 WAIC(5PC) [24] 62.8
VIB [6] 94.1 CP(Cal) [1] 90.4 -Not Ensembles iDE [14] 95.7 IC(Glow) [33] 95.0 -Not Ensembles
MD(CNN) [9] 94.2 IC(Glow) [33] 99.8 LRe [32] 98.8 IC(PC++) [33] 92.9 LRe [32] 87.5
MD(DN) [9] 98.6 IC(PC++) [33] 96.7 HVK [27] 98.4 IC(HVAE) [33] 83.3 HVK [27] 89.1
DE [5] 85.7 LLRada(Ours) 98.0 LLRada(Ours) 94.2

Table 2: The comparisons of the 3-layer informative hierarchical VAEs with various score functions
and other unsupervised OOD detection methods.

FashinMNIST(in)/MNIST(out) CIFAR10(in)/SVHN(out)
Method AUROC↑ AUPRC↑ FPR80↓ Method AUROC↑ AUPRC↑ FPR80↓
WAIC(5PC) [24] 22.1 40.1 91.1 WAIC(5PC) [24] 62.8 61.6 65.7
HVK [27] 98.4 98.4 1.3 HVK [27] 89.1 87.5 17.2
-Ours: -Ours:
L 55.3 51.8 67.9 L 49.9 51.0 79.4
LLR>1 97.5 97.0 2.8 LLR>1 68.4 71.3 61.8
LLR>2 97.4 97.7 1.2 LLR>2 93.0 92.5 10.8
LLRada 97.0 97.6 0.9 LLRada 92.6 91.8 11.1

4 Experiments

4.1 Experimental setup

Datasets: Following [1, 27, 32], we compare our method with previous works on two dataset pairs,
including: FashionMNIST [39] (in) / MNIST [40] (out) and CIFAR10 [41] (in) / SVHN [42] (out),
where the suffix “in” and “out” denote the in-distribution dataset and OOD dataset, respectively. To
better evaluate the generalization ability of these methods, we introduce additional OOD datasets: for
FashionMNIST/MNIST pair, we add KMNIST [43], notMNIST [44], Omniglot [45] and SmallNORB
[46] datasets; for CIFAR10/SVHN pair, we add CelebA [47], Places365 [48], Flower102 [49] and
LFWPeople [50] datasets. More details about datasets can be found in Appendix D.

Evaluation and Metrics: We follow the evaluation procedure in Havtorn et al. [27], where all
methods are trained on the training split of the in-distribution dataset, and their OOD detection
performance is evaluated on both the testing split of the in-distribution dataset and OOD dataset. Fol-
lowing previous works’ evaluation approaches [5, 6, 28], we adopt two popular threshold-independent
evaluation metrics, including Area Under the Receiver Operator Characteristic (AUROC↑) and Area
Under the Precision Recall Curve (AUPRC↑), and another metric False Positive Rate at 80% true
positive rate (FPR80↓), where the arrow indicates the direction of improvement.

Baselines: The comparisons in our experiments mainly include two aspects: i) the comparisons with
previous OOD detection methods to see whether our method can achieve competitive performance;
ii) the comparisons with several hierarchical VAEs to see whether the new training objective of our
method can lead to better performance. For the comparisons in i, the baselines can be divided into
three categories: “Labels”: methods using in-distribution data labels [5, 6, 8, 9, 38, 51]; “Prior”:
methods using the prior knowledge collected from OOD data [1, 28, 33]; and “Unsupervised”:
methods without any OOD-specific assumptions [24, 27, 32]. For the comparisons in ii, we compare
our method with a normal bottom-up inference hierarchical VAE (HVAE) [20], which is also the
backbone of our method, and its two major variants: a top-down inference hierarchical VAE named
Ladder VAE (LVAE) [30] and a bidirectional inference hierarchical VAE (BIVA) [29]. More details
of these baselines and the categories they belong to can be found in Appendix E.

Implementation Details: For the comparisons on FashionMNIST(in)/MNIST(out), we set the
network structure of hierarchical VAEs as [16, 8, 4] and [32, 24, 16, 8, 4] from shallow to deep,
respectively. For CIFAR10(in)/SVHN(out), we set the network structure as [128, 64, 32] and [128, 64,
32, 28, 24], respectively. For optimization, we adopt the same Adam optimizer [52] with a learning
rate of 3e-4. We train all models in comparison by setting the batch size as 128 and the max epoch as
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Table 3: The comparisons of the OOD detection performance of various 3-layer hierarchical VAEs
with the same LLRada score function. “M1” refers to the metric AUROC↑, “M2” refers to the metric
AUPRC↑, and “M3” refers to the metric "FPR80↓".

Trained on FashionMNIST. Trained on CIFAR10.
OOD KMNIST Omniglot notMNIST SmallNORB CelebA Places365 Flower102 LFWPeople
Model M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3
HVAE [27] 86.4 89.7 29.0 99.8 99.9 0.00 85.3 88.1 29.2 100 100 0.00 39.8 44.7 90.0 40.1 46.6 94.0 45.2 51.7 92.0 42.5 48.2 92.5
LVAE [30] 85.9 87.7 24.8 93.1 96.0 0.5 94.0 93.6 6.0 97.3 97.7 0.8 53.1 54.2 80.5 56.2 53.7 74.4 56.5 52.3 70.9 63.0 65.8 61.6
BIVA [29] 86.5 87.0 27.0 100 100 0.00 96.4 97.0 2.4 98.7 98.6 1.9 70.5 67.8 53.2 60.1 63.0 74.6 61.9 69.2 84.4 75.2 74.0 44.6
Ours 95.0 95.1 7.1 100 100 0.00 99.7 99.8 0.00 100 100 0.1 72.1 70.5 49.0 63.3 62.1 62.6 63.4 70.1 71.2 83.0 83.4 29.0
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Figure 3: Plots of the ROC curves on the OOD detection performance of various hierarchical VAEs.
(a)∼(b): ROC curves on FashionMNIST (in) / MNIST (out) and CIFAR10 (in) / SVHN (out) with
the same score function LLR>2. (c): ROC curves on CIFAR10 (in) / SVHN (out) with various score
functions (LLR>k and LLRada). "M1" denotes for the AUROC value.

1000. All experiments are performed on a PC with an NVIDIA RTX 3090 GPU and the our code is
implemented with PyTorch [53]. More implementation details can be found in Appendix F.

4.2 Quantitative Comparisons

Overall Comparisons: Following the experimental settings in Sec. 4.1, we exhibit the experimental
results in in Tab. 1. From the results, we can find that our method with the LLRada score function is
comparable with those non-ensemble completely unsupervised methods in FashionMNIST/MNIST,
and significantly outperform them in CIFAR10/SVHN. We emphasize that, without utilizing the
labels of in-distribution samples [5, 6, 8, 9, 38, 51] or the prior knowledge collected from OOD
samples [1, 28, 33], our method can still achieve competitive performance with these methods.

Effectiveness of LLRada: Focused on the comparison between LLR>k and LLRada exhibited in
Tab. 2 and Fig. 3(c), when the performance of LLR>k is sensitive to the selection of k, we can find
that the performance of LLRada can approach the best performance achieved by LLR>k with the
optimal k, as shown in the right part of Tab. 2 (CIFAR/SVHN). Furthermore, when the performance of
LLR>k is stable, the developed LLRada can still achieve comparable OOD detection performance,
as shown in the left part of Tab. 2 (FashionMNIST/MNIST) and Fig. 3(c). The experimental results
above demonstrate the adaptability of our developed LLRada.
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Figure 4: Empirical densities under the score function LLR>2 on FashionMNIST (in)/MNIST (out)
and CIFAR10 (in)/SVHN (out) dataset pairs.
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Figure 5: Comparisons of reconstructions with 3-layer hierarchical VAEs trained on FashionMNIST,
where the leftmost column in each subfigure is the input x and the column noted with z>k means the
generation from the partial generative model pθ(x|z>k) with k ∈ {0, 1, 2}.
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Figure 6: Comparisons of the degree of “posterior collapse” in 5-layer hierarchical VAEs. For each
subfigure, the 1st row is the input image x and the ith row is generated from pθ(x|z>k).

Effectiveness of Informative Hierarchical VAE: Taking the same LLRada as the score function,
we compare the performance of informative hierarchical VAE with other hierarchical VAEs in Tab. 3.
From the results, we can find that our model outperforms others, indicating the effectiveness of
alleviating “posterior collapse” with informative hierarchical VAE for OOD detection.

To evaluate the degree of “posterior collapse”, we use the ROC curves in Fig. 3 and the empirical den-
sities in Fig. 4 to compare the performance of LLR>2 scores based on the top-level latent variables z2

of these VAEs. The ROC results in Fig. 3 demonstrate the superiority of the informative hierarchical
VAE, confirming that our model can provide more expressive higher-level latent representations for
OOD detection. The empirical densities in Fig. 4 show that z2 learned by our model on the CIFAR10
(in)/SVHN (out) pairs owns better separability than those learned by BIVA.

4.3 Qualitative Analysis

Meaningful Semantic Space Learned by Informative Hierarchical VAE: Following the same
procedure as Fig. 2, we visualize more reconstructed samples on various benchmarks in Fig. 5. From
the visualized results, for both in-distribution and OOD samples, we can find that the quality of the
reconstructions generated from pθ(x|z>0) is surprisedly high, indicating that these reconstructions
are almost dominated by the low-level features, which potentially explains the previous problematic
phenomenon that these methods based on single-layer likelihood will assign higher likelihood scores
for OOD samples and fail on OOD detection. Focused on the reconstructions generated by pθ(x|z>2),
we can find that the developed informative hierarchical VAE can provide more realistic and clear
reconstructed samples for both in-distribution and OOD inputs, indicating that our model can learn
a more meaningful high-level latent semantic space than other models. Furthermore, based on
providing higher-quality reconstruction for OOD samples, the gap between the metric scores of

9



in-distribution and OOD samples in informative hierarchical VAE tend to be larger than other models,
leading to a better OOD performance as shown in Tab. 3.

Alleviating “Posterior Collapse” with Informative Hierarchical VAE: As discussed in Sec. 3.1,
“posterior collapse” will cause the higher-level latent variables to become uninformative. Considering
the developed informative hierarchical VAE shares the same network structure with the basic HVAE,
in this part, we focus on evaluating whether our model can alleviate “posterior collapse” in higher
layers when the network depth becomes deeper. As shown in Fig. 6, for both in-distribution data and
OOD data samples, the overall quality of the reconstructions generated by our model is significantly
higher than those generated by the basic HVAE. Specifically, for FashionMNIST (in)/MNIST (out),
the reconstructions generated by pθ(x|z>3) and pθ(x|z>4) of HVAE are almost the same, indicating
that its posterior described by qϕ(z>3|x) or qϕ(z>4|x) tend to collapse to a prior distribution about
T-shirts. On the contrary, the reconstructions generated by the our model are still realistic, where
the reconstructions of MINST (out) samples generated by qϕ(z>3|x) or qϕ(z>4|x) preserve the
semantic structural information learned form FashionMNIST (in), explaining the underlying reason
why our model can achieve better OOD detection performance. Similar conclusions can be achieved
by the experimental results on CIFAR10 (in)/SVHN (out) as shown in Fig. 6.

5 Conclusion

In this paper, after presenting a thorough analysis of “posterior collapse”, we develop a novel
informative hierarchical VAE to extract more expressive hierarchical latent representations by alle-
viating “posterior collapse”. Then we theoretically explain why “posterior collapse” will limit the
performance of existing hierarchical VAEs, and develop a novel Adaptive Likelihood Ratio score
function for unsupervised OOD detection. Experiments demonstrate the effectiveness of our method,
whose main thought can be borrowed other hierarchical VAEs to improving their performance on
downstream tasks relied on the hierarchy of latent representations.
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(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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