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Abstract

Neural networks (NNs) struggle to efficiently solve certain problems, such as learn-
ing parities, even when there are simple learning algorithms for those problems.
Can NNs discover learning algorithms on their own? We exhibit a NN architec-
ture that, in polynomial time, learns as well as any efficient learning algorithm
describable by a constant-sized program. For example, on parity problems, the NN
learns as well as Gaussian elimination, an efficient algorithm that can be succinctly
described. Our architecture combines both recurrent weight sharing between layers
and convolutional weight sharing to reduce the number of parameters down to
a constant, even though the network itself may have trillions of nodes. While in
practice the constants in our analysis are too large to be directly meaningful, our
work suggests that the synergy of Recurrent and Convolutional NNs (RCNNs)
may be more natural and powerful than either alone, particularly for concisely
parameterizing discrete algorithms.

1 Introduction

Neural networks (NNs) can seem magical in what they can learn. Yet, humans have designed simple
learning algorithms, even for binary classification, which they cannot match. A well-known example
is the class of parity functions over the d-dimensional hypercube, i.e., d-bit strings. In that problem,
there is an unknown subset S of the d bits, and the label of each example x is 1 if x has an odd
number of 1’s in S. While gradient-based learning struggles to learn parity functions (Kearns and
Valiant, 1993) even over uniformly random x, row reduction (i.e. Gaussian elimination) can be used
to find S using only O(d) examples and O(d2) runtime.

A tantalizing question is whether a NN can discover an efficient learning algorithm itself, thereby
learning classes such as parities. We refer to this as Turing-optimality, since algorithms can be
described by Turing machines. More specifically, we will give an example of a simple NN architecture
that achieves Turing-optimality. In particular, this is the first NN architecture that provably discovers
a efficient parity learning algorithm in polynomial time. The parity learning algorithm is efficient, like
row reduction, requiring O(d) examples and O(d2) runtime. Our learning architecture would be quite
simple to describe with a modern library such as PyTorch. However, we do not expect our specific
architecture to be especially good in practice, as the constants in our analysis are much too large to
be practical. Nonetheless, it does suggest that the ingredients used in the architecture, especially
the combination of recurrent weight-sharing across layers and convolutional weight-sharing within
layers, may be useful in designing practical architectures for NNs to learn algorithms.
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Figure 1: (Left) A simple RCNN, in which one small set of parameters is repeated within each layer
and across layers. (Right) A Turing-optimal algorithm must output a classifier that is as accurate, on
future examples from D, as that which is output by any other succinct efficient learning algorithm.
Such classifiers are only a tiny subset of the set of all classifiers, some of which may be more accurate
but cannot even be stored in a computer. Moreover, even competing with the best poly-sized NN is
intractable, assuming the existence of one-way functions (Kearns and Valiant, 1994); it is not possible
for any learning algorithm to efficiently compete with the region depicted in green.

Figure 1 illustrates the difference between classifiers, such as NNs, and the learning algorithms that
learn their parameters, such as Stochastic Gradient Descent (SGD) with a given architecture (we
use the term architecture broadly to include other algorithmic features including learning random
initialization, learning rate schedule, restarts, and hyperparameter search). As classifiers, two-layer
NNs can compute any Boolean function on d binary inputs, including parity functions. However,
it is unclear whether these architectures can learn such functions efficiently using gradient-based
approaches without any priors encoded in the architectures.

More formally, a Turing-optimal learning algorithm is one which learns as well as any bounded
learning algorithm, specifically a constant-sized Turing machine that outputs a binary classifier in
polynomial time, such as row reduction for parity learning. Our key contribution is a simple recurrent
convolutional (RCNN) architecture which combines recurrent weight-sharing across layers and
convolutional weight-sharing within each layer. The number of weights in the convolutional filter can
be very few, even a constant, but these weights can determine the activations of a very wide and deep
network. We show that any algorithm A represented by a constant-sized TM has a corresponding
constant-sized convolutional filter for which the RCNN computes the same function as A. Because
the convolutional filter is constant-sized, with constant probability random initialization will find it
(or something even better, assuming our reduction is not optimal). Thus, using a validation set and
random restarts, the RCNN will find a filter which performs as well as A, with high probability.

Unfortunately, the above argument would apply to an RCNN architecture that strangely takes the
entire training set as input at once, and outputs a classifier. Fortunately, Abbe and Sandon (2020)
show how to use a few additional simple NN components and SGD updates to memorize relevant
information in the weights of these components. Similarly, we add a few extra non-convolutional
layers to our architecture so that it can be learned “normally” with SGD rather than requiring the
entire dataset at once. Fortunately, the implementation of this functionality is compatible with the
RCNN with only a constant overhead in terms of size.

Probably Algorithmically Optimal (PAO) learning. To define Turing-optimality, it is convenient
to formalize a weaker requirement than PAC learning which we call PAO learning, that in some sense
turns PAC learning on its head. Rather than requiring optimality among the space of all classifiers
c 2 C, it requires only optimality compared to classifiers output by learning algorithms A 2 A. In
many cases |C| � |A|, as log |C| and log |A| are the number of bits required to encode the parameters
(modern models approaching terabytes) and the learning program source code (e.g., kilobytes),
respectively (see Arora and Zhang (2021) for a more detailed discussion). In these cases, matching
the performance of the classifier output by the best learning algorithm (within some family) may be
more reasonable matching the performance of the best overall classifier. Turing-optimality is the
special case of A consisting of the set of succinct programs, specifically constant-sized time-bounded
Turing machines. In Section 5, we also discuss how this approach can be used across multiple
problems to discover a learning algorithm that can be reused on future problems, so the search need
not be repeated for each learning problem.
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Like any asymptotic notion, Turing-optimality does not guarantee efficient learning. Just as a
polynomial-time algorithm is not guaranteed to be faster than an exponential-time algorithm on
inputs of interest, such notions can still provide a useful lens to understand algorithms. If learning
algorithm A1 is Turing-optimal and A2 is not, then A1 can nearly match (or exceed) the performance
of A2 on any distribution, with polynomial overhead. Data distributions where A2 requires super-
polynomially resources to match A1’s performance would need to be examined to see if they are
important. We show that a Recurrent Convolutional Neural Network (RCNN) architecture, with
random initialization, is Turing-optimal. The contribution of this work is showing that a definition of
Turing-optimality is achievable by a simple NN architecture. In future work, it would be interesting
to better understand which other combinations of architectures, initializations, and learning rates are
Turing-optimal.

1.1 Related work

We review some prior lines of work which establish or use other notions of computational universality.
We note that most of the notions defined in these works apply to representations rather than algorithms.

Universal function approximation. The first line of work relevant to our results is the basic theory
of universal function approximation, which quantifies the ability to fit any sufficiently well-behaved
function for neural networks (Hornik et al., 1989; Cybenko, 1989; Funahashi, 1989), nearest neighbors
(Devroye et al., 1994) and SVMs with RBF kernel (Wang et al., 2004). However, they lack statistical
insight, e.g., lookup tables are universal over X = {�1, 1}d but offer little statistical power. Further
refinements (Barron, 1993, 1994; Lee et al., 2017) consider Fourier-analytic criteria for functions to
be representable by smaller neural networks. The goal of subsequent lines of work described in this
section, as well as the present work, is to investigate the computationally efficient approximation of
functions—in other words, the ability of neural networks to emulate efficient learning algorithms.

Turing-completeness of neural architectures. Siegelmann and Sontag (1995) establish that re-
current neural networks are Turing-complete, using a trick to store the entire TM tape in a single
rational number, therefore requiring an extreme amount of bit precision. More recently, Graves
et al. (2014) construct a differentiable TM-inspired architecture. A number of recent works establish
Turing-completeness (a classical and weaker notion) for variants of the Transformer architecture (De-
hghani et al., 2018; Yun et al., 2019; Bhattamishra et al., 2020a,b), motivated by empirical advances
in discrete reasoning tasks found in natural language processing, theorem proving, and program
synthesis. Recently, Wei et al. (2021) propose a notion of statistically meaningful (SM) approximation
which requires the approximation to be statistically learnable as well. They show that Transformer
architectures can “SM-approximate” time bounded TMs with sample complexity logarithmic in the
time. Unlike our notion, Turing-completeness does not take computational efficiency into account.

Enumerative program search. A folklore argument, similar to Levin’s classic universal search
(Levin, 1973), states that one can achieve Turing-optimality by enumerating all Turing machines of a
fixed size, run them all on a training set, and choose the one which performs best on a validation set.
The algorithm, however, is also completely infeasible in normal programming languages because the
probability of even generating a single program that compiles is minuscule.

Efficient universality of deep learning. Most closely related to our work is that of Abbe and
Sandon (2020), which shows how, given any circuit C, e.g., encoding a learning algorithm for parity,
one can initialize the weights of a NN so that it emulates C when the NN is trained by SGD. This
emulator requires C to be given as input. Now, row reduction, like any polynomial-time algorithm,
can be converted to a circuit C. However, the size of this circuit is polynomial in the runtime of the
algorithm. This is why C is required as input, e.g., one has no hope of discovering the Gaussian
elimination algorithm by random initialization as its probability would be exponentially small in the
dataset size. Thus, their algorithm does not “discover” the learning algorithm itself–it is hard-coded
into the network. As they discuss, they could encode in the circuit C an enumerative program search,
but this is also a parity learning algorithm that needs to be encoded into the network (and is in fact
significantly more involved to encode as a circuit). Their work was recently extended to mini-batch
SGD by Abbe et al. (2021), and it would be interesting to see if our result could be similarly extended.
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2 Preliminaries

For simplicity, we focus on binary classification with Y := {�1, 1}. For domain X , a (binary)
classifier is a function c : X ! Y . For any distribution D over X ⇥ Y , the error of c is, errD(c) :=
Pr(x,y)⇠D [c(x) 6= y] 2 [0, 1]. A learning algorithm takes as input m � 1 labeled training examples
in (X ⇥ Y)+ =

S
m�1(X ⇥ Y)m and outputs a classifier. For further simplicity, we focus on data

on the hypercube Xd := {�1, 1}d. The powers of 2 less than 1 are denoted by 2�N = {2�i | i 2 N}.
We say an algorithm is poly-time if it runs in time polynomial in its input length, which is poly(dm)
for a learning algorithm when run on m examples in d dimensions.

2.1 Turing machines, circuits, and efficient computability

Since our main results require the simulation of an arbitrary efficient learning algorithm, we will need
to establish formal notation for relevant concepts from the theory of computation. Various notions of
computational efficiency may be used. To be concrete, we may use a 2-tape Turing Machine (TM)
where the input is on the first tape and the 2nd tape is used for computation (e.g. see Hopcroft et al.
(2001) for a standard reference on Turing machines).

One issue that complicates runtime analysis of learning algorithms is that a classifier may be very slow
to evaluate, even if the learning algorithm is fast.1 There are two solutions to this issue, which are
equivalent up to polynomial time. The first is learning algorithms that output classifiers, which we rep-
resent as Boolean circuits. Circuits circumvent this technicality because they can be evaluated in time
nearly linear in the time it takes to output them. Thus time spent on classification is folded into training
time. Moreover, any binary classifier on Xd can be represented as a circuit, and it is straightforward to
convert a NN to a circuit with linear blowup. It is also well-known that other universal representations
such as (time-bounded) TMs can be converted to Boolean circuits in polynomial time using unrolling.
Other succinct representations could be used, but this choice simplifies runtime analysis.

Formally, we assume that each classifier output by a learning algorithm c : Xd ! Y is represented as
Boolean circuit, with False representing �1 and True representing 1. If the output of the learner is
not a valid circuit classifier, then by default we assume it classifies everything as 1. We also consider
learners that can be simulated by a TM with size  s in time t using only m labeled examples.

Definition 1 ((s,m, t)-bounded learner). A learner A is a s-bounded learner which outputs a
classifier circuit in at most t steps on any dataset consisting of at most m labeled examples.

2.2 Components of deep learning

In this section, we establish some notation for the building blocks of common deep learning pipelines.

Feedforward layers. A fully-connected feedforward layer Rdin ! Rdout , with activation function
� : R ! R is parameterized by a matrix W 2 Rdout⇥din and bias b 2 Rdout , specifying the map
x 7! �(Wx+b), where �(·) is applied entrywise. A feedforward network is the iterative composition
of feedforward layers, possibly omitting an application of � at the final layer.

Convolutional layers. Our main construction will apply the same constant depth feedforward
network repeatedly to each 3⇥ 3 patch of a 2-dimensional “image”. This can be viewed as applying
multi-channel convolutional layers followed by non-linear activation consecutively. Due to weight
sharing across patches, the number of parameters do not depend on the input dimension but rather on
the patch dimension and the number of channels. Often in practice, to ensure same output dimension
as input, it is common to add a constant padding (say p) around the boundaries. This is crucial for
our construction. More formally, a convolutional layer specifies a k ⇥ k patch-wise linear maps from
Rk⇥k⇥Cin to RCout ; in particular, when k = 1, a convolutional layer specifies a pixel-wise linear
map from RCin to RCout . We let Conv2D be the application of the linear maps extended to the entire
input. We overload Conv2D to also allow for patch-wise fully-connected feedforward layers.

1Natural examples where inference is more computationally expensive than learning arise in nonparametric
models such as nearest-neighbors or Gaussian processes.
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Recurrent layers. Finally, our construction will use recurrent weight sharing: for a function
f : Z ⇥⇥ ! Z and a positive integer L, we use f

(L) : Z ⇥⇥ ! Z to denote the L-times iterated
composition of f , sharing the parameters ✓ 2 ⇥ between iterations; for example,

f
(3)(X; ✓) := f(f(f(X; ✓); ✓); ✓).

The training pipeline: SGD with random initialization. Finally, we establish some notation for
stochastic gradient descent, whose variants form the predominant class of methods for training neural
networks. Given a continuously differentiable2 loss function ` : Y ⇥ Y ! R and continuously
differentiable function f : X ⇥⇥ ! Y where ⇥ = Rd, a step of stochastic gradient descent (SGD)
on a single example (x, y) 2 X ⇥ Y , with learning rate ⌘ 2 R, maps the current iterate ✓ to

✓
0 := ✓ � ⌘r✓`(f(x, ✓), y).

SGD on a sequence of examples {(xt, yt)}Tt=1 is defined by applying this recurrence iteratively from
an initialization ✓0 (usually selected randomly from a specified distribution), giving a sequence of
iterates {✓t}Tt=1. It is routine to specify a subset S ✓ [d] of the parameters to be optimized; in this
case, the parameters in S are updated according to the above equation, while the rest are unchanged.

3 Algorithm learning and Turing-optimality

In this section, we adopt a model of learning which turns PAC learning upside down. A learning
algorithm is a function A that, for any d,m � 1, outputs a classifier A(Z) : Xd ! Y for any
dataset Z = {(x(i)

, y
(i))}mi=1 2 (Xd ⇥ Y)m of m � 1 labeled d-dimensional examples. Recall that

Xd = {�1, 1}d and Y = {�1, 1}.

The following definition captures efficient learnability of a class of learning algorithms A. The
run-time of the algorithm is required to be polynomial in its input size poly(dm). An important
feature of this definition is that it requires the number of examples to be polynomial in the dimension
d, avoiding the curse of dimensionality. Since we will soon consider ✏, � as inputs, we consider only
powers of 2 to avoid having to represent arbitrary real numbers.
Definition 2 (PAO-learner). Poly-time learning algorithm A is a Probably Algorithmically Optimal
(PAO) learner for family A if there is a polynomial p such that for any ✏, � 2 2�N, for any d � 1, any
distribution D over Xd ⇥ Y , and any dataset sizes m � 1,M � p(d,m, 1/✏, 1/�),

Pr
Z⇠Dm,Z0⇠DM


errD(A(Z;Z 0))  min

B2A
errD(B(Z)) + ✏

�
� 1� �,

where Z;Z 0 is the concatenation of the two datasets Z,Z 0. We further assume that d,m and M can
be determined from the PAO-learner’s input.

We now observe that one can equivalently design a learning algorithm that has ✏, � > 0 as inputs.
Observation 1 (✏, �-PAO-learner reduction). Let A✏,� be an “✏, �-PAO learner” for A meaning that
it is a poly-time learning algorithm that takes additional inputs ✏, �, and there exists some constant k
such that: for any ✏, � 2 2�N, any dataset sizes m � 1,M � (dm/✏�)k,

Pr
Z⇠Dm,Z0⇠DM


errD(A✏,�(Z;Z 0))  min

B2A
errD(B(Z)) + ✏

�
� 1� �.

Then, for r = 2b�
1
3k logMc, Ar,r is a PAO-learner for A.

The proof is straightforward and can be found in Appendix A. The M � (dm/✏�)k requirement is a
convenient equivalent to a polynomial bound M � p(d,m, 1/✏, 1/�).

Although we only analyze PAO learning for the family A of bounded Turing machines, it can be
analyzed even for continuous classes A. For instance, it would be straightforward to show that grid
search can PAO learn a constant number of bounded hyperparameters of a given algorithm if the

2It is routine to extend these definitions to continuous functions which are piecewise continuously differen-
tiable, such as neural networks with ReLU activations. We omit the details in this paper, as our constructions
will never evaluate a gradient of f at a discontinuity.
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algorithm’s error is Lipschitz continuous in those hyperparameters, using a separate validation set
to choose the best hyperparameters. PAO learning, as defined, does not specify how classifiers are
represented, and could apply to any classifier representation. Recall that we represent classifiers
by Boolean circuits as discussed in Section 2.

We next define Turing-optimal learners, which are PAO-learners for the class of bounded TMs
(constant size, run in polynomial time, and output a circuit classifier).
Definition 3 (Turing-optimal). Fix constants s, k 2 N. Let the set Bs,k be the set of Turing machines
which have  s states and, run in time  (2dm)k on a dataset Z 2 (Xd ⇥ Y)m and output a circuit.
Learning algorithm A is (s, k)-Turing-optimal if A PAO-learns (or equivalently ✏, �-PAO learns)
Bs,k. Learning algorithm A is Turing-optimal if A is (s, k)-Turing-optimal for all constants s, k 2 N.

Note that a Turing-optimal learner A must run in poly-time, but the number of examples required to
learn each Bs,k can be different, i.e., it will learn Bs,k using M � (dm/✏�)esk additional examples,
for a different constant esk for each s and k. Similar to Observation 1, a Turing-optimal learner can
be constructed from an (s, k)-Turing optimal learner. The claim below, together with Observation 1,
imply that a (✏, �, s, k)-Turing-optimal learner can be converted to a Turing optimal learner. Algorithm
2 and its proof are presented in Appendix A.
Claim 1 ((s, k)-Turing-optimal reduction). Let As,k be an algorithm that takes inputs s, k and is
(s, k)-Turing optimal for each pair of constants s, k 2 N. Then, Algorithm 2(As,k) is Turing-optimal.

Finally, it is not difficult to see that a Turing-optimal learner also PAC-learns any concept class C
that is PAC-learnable. Following standard conventions, the PAC learning algorithm is given target
accuracy ✏ and failure probability � as inputs. Also, say a distribution D is said to be consistent with
set C of classifiers if there is some c 2 C with errD(c) = 0.
Definition 4 (PAC-learning). Let C =

S
d�1 Cd, where c : Xd ! Y for each c 2 Cd. oly-time3

learning algorithm A✏,� PAC-learns C if A✏,� and there is a polynomial p such that, for any ✏, � 2 2�N,
d 2 N, m � p(d, 1/✏, 1/�) and distribution D consistent with Cd:

Pr
Z⇠Dm

[errD(A✏,�(Z))  ✏] � 1� �.

The computational polynomial-time efficiency requirement on A✏,� means that its runtime is polyno-
mial in its input size, poly(dm + log 1/✏�), because it takes O(log 1/�) bits to describe � 2 2�N.

Claim 2. Suppose there is some learning algorithm that PAC-learns C and suppose that A is a
polynomial-time Turing-optimal learner. Then A PAC-learns C as well.

We defer the proof to the Appendix A.

4 Turing-optimality of SGD on randomly initialized RCNNs

In this section, we will design a Turing-optimal leaner in the form of a NN and a corresponding
training pipeline. Our NN will be of the form of a RCNN (see Figure 2) with very few trainable
parameters and our training pipeline (see Algorithm 1) will use random initialization, and random
restarts to find good parameters. Let us present our main result.
Theorem 1. There exists constants c1, c2, c3 > 0 such that the following holds. For any d, s,m, t 2
N, there exists learning rate ⌘ 2 R, L = c1(t +m + d), and Us ✓ R4 where: for any probability
measure D on Xd⇥{�1, 1}, (s,m, t)-computable learner A, and training set S 2 (Xd⇥{�1, 1})m
drawn i.i.d. from D, Algorithm 1 returns a function f such that with probability at least s�c2s

2

,

errD(f)  errD(A,S).
The bit precision required by Algorithm 1 is dlog(s)e+ c3.

3The standard PAC learning definition requires the learner to run in time also q(d, 1/✏, 1/�) for some
polynomial q, which would admit an algorithm that is not poly-time, e.g., if it uses m = 1 examples but runs in
time q(d, 1/✏, 1/�). However, such an algorithm can trivially be converted to a poly-time algorithm by padding
its input with an additional q(d, 1/✏, 1/�) examples.

4This set can be constructed with knowledge of only s.
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Algorithm 1 SGD on randomly initialized RCNN

Input: training set S := {(x(i)
, y

(i))}mi=1, size s, initialization set Us, depth L, learning rate ⌘

Create dummy sample (x(m+1)
, y

(m+1)) = ( d, 1)

Initialize f 2 Fd+1,m+1,100s,100,L
RCNN (see Definition 5) with parameters ⇥(1)

mem,⇥rc,⇥head such that
W

(1) = 0, and all entries of V1, V2, V3, V4, V5, U1, U2 are sampled uniformly from Us

for i = 1 to m+ 1 do

Update parameters in the memory layer:

W
(i+1) = W

(i) � ⌘ rW `

✓
f

✓h
x
(i)> 1

i>
;W,⇥rc,⇥head

◆
, y

(i)

◆�

W=W (i)

where ` : R⇥ R ! R is the squared loss, that is, `(ŷ, y) = 1
2 (y � ŷ)2

Output: function f(·;W (m+2)
,⇥rc,⇥head)

Figure 2: Recurrent convolutional neural network from our construction. A dense weight matrix W

is applied to the input to convert it into 2D followed by adding padding of 1s to the right. This is
followed by L applications of a 3⇥ 3 convolutional layer where each layer applies a 5-layer NN to
each patch. This is followed by a pixel-wise convolutional layer consisting of a 2-layer NN. Lastly,
the output corresponding to the main grid is summed.

Remark. Our Algorithm 1 sets the learning rate of 0 for the shared weights in the RCNN part of the
NN and updates only the dense memory layer. Since our result is constructive, it is entirely possible
that a search for an optimal-learning rate may perform better in practice.

Finally, we will use Theorem 1 to create a (s, k)-Turing optimal learner with the help of random
restarts and an additional validation set,
Corollary 2. For fixed constants c1, c2 > 0, Algorithm 1 can be converted to an (✏, �, s, k)-Turing-
optimal learner for any fixed s, k, time bound t = (2dm)k and ✏, � 2 (0, 1) by running it sc1s log(1/�)
times with random restarts, and selecting the classifier that performs best on a validation set of size
c2s log s log(1/�)/✏2.

Claim 1 converts this to a Turing-optimal learner. Because our formal definition of Turing-optimality
applies only to deterministic circuit classifiers, one must also convert the NN to a circuit and
derandomize the algorithm (which can be done using random bits extracted from additional iid
random labeled examples (Kearns and Vazirani, 1994)).

Next we give a detailed description of the architecture and a proof overview of Theorem 1. The proof
of Corollary 2 and the complete proof of Theorem 1 can be found in Appendix B.

4.1 Network architecture: RCNN with a memory layer

Let us first describe the neural network architecture that Algorithm 1 uses in more detail. The archi-
tecture comprises of a dense layer of size linear in m (the number of samples) and d (the dimension
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of the input) as the first layer. The output of this layer is padded with 1s on the right, and then fed
into a RCNN (recurrent weight-sharing across depth and convolutional weight sharing across width).
The RCNN has only poly(s) shared parameters, due to its recurrent and convolutional nature. These
shared parameters are in the form of a 5-layer NN applied as a convolutional layer to 3⇥ 3 patches of
the input.5 This convolutional layer is applied recurrently L = p(t, d,m) times for some polynomial p
(with the same parameters) where t is the bound on the runtime of the TM. The final outputs from the
RCNN are then passed through a pixel-wise 2-layer NN and finally summed to give a scalar prediction.
Definition 5 (RCNN with a memory layer). For din, dmem, drc, dhead, l > 0, define the function class
Fdin,dmem,drc,dhead,l

RCNN of RCNNs where each f 2 Fdin,dmem,drc,dhead,l
RCNN is parameterized by memory layer

parameters ⇥mem = {W} with W 2 Rdmem⇥din , RC layer parameters ⇥rc := {V1, V2, V3, V4, V5}6

with V1 2 Rdrc⇥9, V2, V3, V4 2 Rdrc⇥drc , V5 2 R1⇥drc , and head layer parameters ⇥head = {U1, U2}
with U1 2 Rdhead⇥1

, U2 2 R1⇥dhead). The local convolutional operation is denoted by fConv2D :
R3⇥3 ! R and is applied on the 3 ⇥ 3 grid centered at each coordinate of the dmem ⇥ (din + l)
input (with padding p for the edge coordinates). We overload the notation fConv2D to denote the
dmem ⇥ (din + l) output post the local application on the input.

f(z;⇥mem,⇥RCNN;⇥head) = sum
⇣
fhead

⇣
f
(l)
Conv2D (fmem(z;⇥mem);⇥RCNN):,:din

⌘
;⇥head

⌘

where fmem(z;⇥mem = {W}) = [ Wdiag(z) dmem⇥l ]

fhead(z : ✓ = {U1, U2}) = U1�(U2z)

fConv2D(z;⇥ = {V1, V2, V3, V4, V5}) = V5�(V4V3�(V2V1vec(z))))).

with � being the ReLU activation.

Remark. If our architecture did not have both recurrent and convolutional weight sharing, then the
number of parameters would have dependence on din, dmem and l, which depend on m, d, and T .

4.2 Proof sketch for Theorem 1

Here we present a proof sketch for Theorem 1. Our proof follows by construction, that is, we show
that for each TM A of size s, there exists parameters ⇥rc and ⇥head that ensure that (1) for the first
m+ 1 steps, when ⇥mem is trained with SGD, the gradients assist with memorizing the training set
in the values of Wmem, and (2) given the memorized training set, the RCNN computes the roll-out of
A with the input tape having the training set and the test example giving the prediction of A on the
test example as the output. We finally show that the parameters ⇥rc and ⇥head in our construction for
all TM A of fixed size and runtime belong to a fixed finite set of size O(s) that can be constructed
with knowledge of only s. The following lemma summarizes the aforementioned properties:
Lemma 1. For any d, s,m, t 2 N, � 2 (0, 1), and any (s,m, t)-computable learner A, there exists
⇥rc,⇥head with each parameter belonging to a fixed set Us of size O(s) (that can be constructed with
the knowledge of only s) such that Algorithm 1 with L = satisfies:

1. Memorization: For 1  i  m+ 1, W (i)
ab =

8
><

>:

1
3y

(a)
x
(a)
b if a  i, b  d

1
3y

(a) if a  i, b = d+ 1
0 otherwise.

.

2. Computation: For all x 2 {±1}d, f
✓

x

1

�
;W (m+2)

,⇥rc,⇥head

◆
= A(S)[x].

Theorem 1 follows from the above the computation property of Lemma 1, since it implies that the
error of Algorithm 1 will be exactly equal to the error of A.

What remains is to prove the existence of parameters that satisfy Lemma 1. Let us now briefly
describe the key functionality we require the RCNN to implement for this:

Computation. Each roll-out step of the TM is a local update around the head of the TM. To
implement one step of the TM, we need to compute the transition function of A at the location of the

5Note that we did not optimize our construction. It is quite possible to improve this to a shallower network.
6For ease of presentation, we hide the biases from the parameters. We can assume that the input is padded

with 1 to account for biases.
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head, update the new head and state, and copy the inputs of the rest of the tape. Our first observation
is that this local update can be implemented using a convolutional layer if we interpret the input as
the tape of A (input and working concatenated) with the head and state information stored along with
the tape value. Composing these layers t times (with the same parameters) allows us to simulate t

steps of the TM. More importantly, the convolutional layer requires only O(s) parameters since A

only has s states. In order to decode the tape content, head position, and state from the values fed to
the layers of the RCNN, we interpret the input in base 3 and use different positions to encode the
desired information (see Appendix B.1 for more details).

Memorization. Given that we can simulate the TM, we need to ensure that the input to the RCNN
has the training set and the test example encoded onto it. Similar to Abbe and Sandon (2020), we
can use SGD to memorize the training examples into the weights of the memory layer, with each
row storing one example. We do this by ensuring that the gradient at iteration i through the RCNN is
1 for exactly the ith row and 0 for every other row. We also ensure that the output is 0 through the
memorization phase. By using chain rule, this gives us a gradient of [y(i)x(i)

, y
(i)] for the ith row of

Wmem and 0 otherwise. We can this in a local manner using the RCNN. Note that the memory layer
has O(dm) parameters, however we can learn these parameters from 0 initialization.

Communication. Lastly, we need to ensure that the network can differentiate between memorization
phase (passing meaningful gradients) and computation phase (implementing the roll-out of the TM)
using the local operations in the RCNN layers. We do this by implementing a local communication
protocol: we broadcast a message based on certain conditions, where each RCNN layer implements a
step of the broadcast. In order to broadcast to the entire input, we require ⇡ d+m overhead in terms
of the depth of the network.

Finally, we show that the above mentioned functionality can be achieved by a 5-layer NN with O(s2)
parameters. To do so, we first describe the exact function we require the network to compute and
its Jacobian on all inputs that our bit precision allows (see Appendix B.2 for the exact function).
Given the function and its Jacobian on a finite set, we prove a general representational theorem (see
Appendix B.4.1) that constructs a 5-layer NN with weights from a fixed set that can be constructed
with knowledge of only s. We refer the reader to Appendix B for the complete proof.

5 Discussion

In this section, we discuss potential practical implications of Turing-optimality, and broadly discuss
corroborations and tensions with empirical trends.

Discovering reusable algorithms. Our analysis is wasteful in that, if one has multiple learning
problems, e.g., multiple parity problems, one has to relearn the learning algorithm for each one. In
fact, arguably the NN may not have learned an algorithm for parity problems in general, but rather
a specialized algorithm that works on just one. To find a reusable algorithm, one needs multiple prob-
lems, say drawn from a meta-distribution µ over learning problems. The idea is simple: viewing the
constant number of weights of the RCNN filter as hyperparameters, one tries multiple such hyperpa-
rameters on log 1/� learning problems, and finally selecting the hyperparameters that perform best on
average. With a constant-sized random sample of hyperparameters, with high probability, one of them
will perform nearly as well as the best constant-sized TM not only on these few training problems, but
also on future problems drawn from µ. This is the setting considered by the literature on meta-learning
(Hospedales et al., 2021) and data-driven algorithm design (Balcan, 2020). Recently, Garg et al.
(2022) show empirically that Transformer architectures can meta-learn and execute simple learning
algorithms in-context. We leave this and numerous other interesting directions for future work.

Concise architectures. Many Turing-complete architectures have been proposed and used in
practice. The lens of Turing-optimality may help us understand what architectures are minimally
adequate from a theoretical perspective. In particular, it has been popular to report ever-growing
parameter counts for state-of-the-art models in domains such as natural language processing (Brown
et al., 2020; Fedus et al., 2021; Lin et al., 2021). Although the other benefits of over-parameterization
are at play, this work suggests that very parameter-efficient architectures are sufficient to simulate
any computationally efficient learning algorithm. In light of the above, one concrete direction for
further investigation is to develop practical variants of our RCNN construction, in domains dominated
by other architectures. Although our analysis is too pessimistic to be of immediate practical use, it
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highlights the computational power of an architecture that has occasionally appeared in applications-
focused research (Pinheiro and Collobert, 2014; Liang and Hu, 2015; Spoerer et al., 2017; Alom
et al., 2021). Significantly closer to our work, Schwarzschild et al. (2021) conduct an empirical study
on the ability of RCNNs to extrapolate from easier to harder tasks (thus “learn an algorithm”); our
work shows that it is possible for these architectures to learn any computationally efficient algorithm.
Similarly, RCNNs have been investigated for planning in RL (Tamar et al., 2016); other empirical
works which take a “computation time” view of depth include (Graves et al., 2014; Banino et al.,
2021; Kaiser and Sutskever, 2015). RCNNs have not seen widespread adoption in state-of-the-art
deep learning compared to their non-recurrent and/or non-convolutional counterparts.7

Beyond local search for recurrent models. The proliferation of non-recurrent attention-based
models in domains previously dominated by recurrent networks, along with the under-representation
of RCNNs, is perhaps due to instabilities in training recurrent networks with SGD (Pascanu et al.,
2013). Indeed, Kasai et al. (2021) demonstrate that a carefully designed training procedure can
convert a trained Transformer into a more parameter-efficient RNN. There may be undiscovered
practical training algorithms which can bridge the gap in favor of recurrent models. Although our
Turing-complete algorithm uses SGD, it uses the gradients in a way that is far from making local
greedy progress on an objective; the as-efficient-as-possible search for the correct TM is implemented
by random initialization.

Exhaustive search. Our Turing-optimal training pipeline relies upon exhaustively comparing
classifiers trained from different random initializations to choose the best classifier within the class of
concise Turing machines. This runs counter to the classical viewpoint from continuous optimization,
where gradient descent is seen as a local search method. In problem settings of a combinatorial
or algorithmic nature, we posit that exhaustive search may be unavoidable; indeed, state-of-the-art
pipelines already include forms of exhaustive search such as beam search and its variants (Reddy
et al., 1977; Leblond et al., 2021), as well as chain-of-thought generation (Wang et al., 2022).

Memory modules. There have been many attempts to build practical memory modules into neural
networks (Graves et al., 2014; Sukhbaatar et al., 2015; Grave et al., 2016; Dai et al., 2019). Our
construction proposes an integrated memory mechanism: use SGD to store samples in the first layer’s
trainable parameters, ahead of the deep (RCNN) computation layers, by carefully ensuring that the
gradient signal back-propagates through the RCNN layers correctly.

6 Conclusion

In this paper, we present a simple NN architecture, combining recurrent and convolutional weight
sharing, that achieves Turing-optimality. Among other things, it learns the well-studied class of parity
functions in polynomial time, whereas prior NN analyses of parity require time exponential in the
size of the parity function (or require a parity learning algorithm to be initialized into the networks
weights). Our proposed architecture has connections to the deep learning literature and observed
empirical trends, discussed in Section 5. Immediate improvements to make the architecture more
concise and natural include: (1) reducing the size of the dense parameters to depend on the algorithm’s
memory usage instead of the training sample size, and (2) using SGD beyond memorization. In future
work, it would be interesting to understand which other architectures are Turing-optimal, answering
questions such as: are 2D convolutions necessary, and are there natural Transformer-based training
pipelines which are Turing-optimal?

Limitations and broader impact. The primary limitation of this work is that the constant factors
in our analysis are much too large to be meaningful in practice. Nonetheless, we hope that idea of
combining recurrent and convolutional weight sharing will have impact. Also, the algorithms found
using enumerative program search would be, by default, difficult to interpret. Using such algorithms
carries risks, especially if the algorithm is not doing what one expects it to do.

Acknowledgments. We thank Santosh Vempala for useful discussions. Sham Kakade acknowl-
edges funding from the Office of Naval Research under award N00014-22-1-2377 and the National
Science Foundation Grant under award #CCF-1703574.

7Note that the popular R-CNN of (Girshick et al., 2014) is not recurrent; the “R” stands for region.
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