
Roadmap. We divide the appendix into the following sections. Section A gives the preliminaries
for our work. Section B introduces some useful properties of symmetric norms. Section C gives
the proofs for the layer approximation technique. Section D states the formal version of our main
theorem and algorithms. Section E gives more details about the time complexity proofs. Section F
gives some details about the correctness proofs. Section G shows the space complexity of our
algorithm. Section H states a streaming lower bound for the norm estimation problem and shows that
our result is tight in this case. Section I gives an instantiation of the sparse recovery data structure
(BATCHHEAVYHITTER) that simplifies the analysis in prior work.

A Preliminaries

In Section A.1, we define the notations we use in this paper. In Section A.2, we introduce some
probability tools. In Section A.3, we define p-stable distributions.

A.1 Notations

For any positive integer n, we use [n] to denote a set {1, 2, · · · , n}. We use E[] to denote the
expectation. We use Pr[] to denote the probability. We use Var[] to denote the variance. We define
the unit vector ξ(d1) := 1√

d1
(1, 1, 1, , . . . , 1, 0, . . . , 0) ∈ Rd, for any d1 ∈ [d], which has d1 nonzero

coordinates. We abuse the notation to write ξ(d1) ∈ Rd1 by removing zero coordinates, and vice-versa
by appending zeros. We use ∥x∥2 to denote entry-wise ℓ2 norm of a vector. We use ∥x∥sym to denote
the symmetric norm of a vector x.

We define tail as follows

Definition A.1 (Tail of a vector). For a given x ∈ Rd and an integer k, we use x
[k]

or xtail(k) to
denote the vector that without largest top-k values (in absolute).

A.2 Probability Tools

We state some useful inequalities in probability theory in below.

Lemma A.2 (Chernoff bound [Che52]). Let X =
∑n

i=1 Xi, where Xi = 1 with probability pi and
Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E[X] =

∑n
i=1 pi. Then

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0;

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ < 1.

Lemma A.3 (Chebyshev’s inequality). Let X be a random variable with finite expected value µ and
finite non-zero variance σ2. Then for any real number k > 0,

Pr[|X − µ| ≥ kσ] ≤ 1

k2
.

Theorem A.4 (Levy’s isoperimetric inequality, [GMS86]). For a continuous function f : Sd−1 → R,
Let Mf be the median of f , i.e., µ({x : f(x) ≤ Mf}) ≥ 1/2 and µ({x : f(x) ≥ Mf}) ≥ 1/2,
where µ(·) is the Haar probability measure on the unit sphere Sd−1. Then

µ({x : f(x) = Mf}ϵ) ≥ 1−
√

π/2e−ϵ2d/2,

where for a set A ⊂ Sd−1 we denote Aϵ := {x : l2(x,A) ≤ ϵ} and l2(x,A) := infy∈A ∥x− y∥2.

A.3 Stable Distributions

We define p-stable distributions.

Definition A.5 ([Ind06]). A distribution Dp is called p-stable, if there exists p ≥ 0 such that for any
d real numbers a1, a2, . . . , ad and i.i.d. variables x1, x2, . . . , xd from distribution Dp. the random
variable

∑d
i=1 aixi has the same distribution as the variable ∥a∥py, where y is a random variable

from distribution Dp.

15

B Symmetric Norms

In this section, we give several technical tools for the symmetric norms. In Section B.1, we show
the monotonicity of symmetric norms. In Section B.2, we show the concentration properties of
symmetric norms. In Section B.3, we show some properties of the median of symmetric norm.

B.1 Monotonicity Property of Symmetric Norm

Lemma B.1 (Monotonicity of Symmetric Norms, see e.g. Proposition IV.1.1 in [Bha97]). If ∥ · ∥sym
is a symmetric norm and x, y ∈ Rd satisfy that for all i ∈ [d] , |xi| ≤ |yi|, then ∥x∥sym ≤ ∥y∥sym.

B.2 Concentration Property of Symmetric Norms

Let us give the results of concentration of measure as followed. The following tools and proofs can
be found in [BBC+17]. However, for the completeness, we state them in below.
Lemma B.2 (Concentration of Ml). For every norm l on Rd, if x ∈ Sd−1 is drawn uniformly at
random according to Haar measure on the sphere, then

Pr[∥x∥l −Ml| >
2bl√
d
] <

1

3

Proof. With Theorem A.4, we know that, for a random x distributed according to the Haar measure
on the l2-sphere, with probability at least 1−

√
π/2e−2 > 2

3 , we can always find some y ∈ Sd−1,
such that

∥x− y∥2 ≤
2√
d
, and

∥y∥l = Ml.

If we view the norm l as a function, then it is obvious that it is bl-Lipschitz with respect to ∥ · ∥2, so
that we have

|∥x∥l −Ml| = |∥x∥l − ∥y∥l|
≤ ∥x− y∥l
≤ bl∥x− y∥

≤ 2bl√
d

where the first step follows from the definition of y, the second step follows from triangle inequality,
the third step follows from that norm l is bl-Lipschitz with respect to ∥ · ∥2, and the last step follows
from the definition of y.

Thus, we complete the proof.

Lemma B.3 (Concentration inequalities for norms). For every d > 0, and norm l on Rn, there is a
vector x ∈ Sd−1 satisfying

• |∥x∥∞ −M
l
(d)
∞
| ≤ 2/

√
d

• |∥x∥l −Ml(d) | ≤ 2bl(d)/
√
d, and

• |{i : |xi| > 1
K

√
d
}| > d

2 for some universal constant K.

Proof. Let x be drawn uniformly randomly from a unit sphere. From Lemma B.2, we have

Pr[|∥x∥l −M
l
(d)
∞
| > 2√

d
] <

1

3

and Pr[|∥x∥l −Ml(d) | >
2bl√
d
] <

1

3
.

16

Define τ(x, t) := |{i ∈ [d] : |xi| < t}|. Now we are giving the proof to show that, for a constant K,
over a choice of x, we have τ(x, 1

K
√
d
) < d

2 with probability lager than 2/3 .

Let’s consider an random vector z ∈ Rd, such that each entry zi is independent standard normal
random variable. It is well known that z

∥z∥2
is distributed uniformly over a sphere, so it has the same

distribution as x. There is a universal constant K1 such that

Pr[∥z∥2 > K1

√
d] <

1

6
,

and similarly, there is a constant K2, such that

Pr[|zi| <
1

K2
] <

1

12
.

Therefore, by Markov bound we have

Pr[τ(z,
1

K2
) >

d

2
] <

1

6
.

By union bound, with probability larger than 2/3, it holds simultaneously that

∥z∥2 ≤ K1

√
d and τ(z,

1

K2
) <

d

2
,

which imply:

τ(
z

∥z∥2
,

1

K1K2

√
d
) <

d

2
.

Now, by union bound, a random vector x satisfies all of the conditions in the statement of the lemma
with positive probability.

Thus, we complete the proof.

B.3 Median of Symmetric Norm

We state a well-known fact before introducing Lemma B.5.

Fact B.4 (Concentration for median on infinity norm, [GMS86]). There are absolute constants
0 < γ1 < γ2 such that for every integer d ≥ 1,

γ1
√

log(d)/d ≤M
l
(d)
∞
≤ γ2

√
log(d)/d

We now give the following Lemma, which says that the l-norm of the (normalized) unit vector ξ(d) is
closely related to the median of the norm. We are considering this vector because that it is related to
a single layer of L.

Lemma B.5 (Flat Median Lemma). Let l : Rd → R be a symmetric norm. Then

λ1Ml/
√

log(d) ≤ l(ξ(d)) ≤ λ2Ml

where λ1, λ2 > 0 are absolute constants.

We notice that the first inequality is tight for l∞.

Proof. Using Lemma B.3, we can find a vector x ∈ Sd−1 and a constant λ > 0 satisfying

• |∥x∥∞ −Ml∞ | ≤ λ
√

1/d

• |∥x∥l −Ml| ≤ λbl/
√
d, and

• |{i : |xi| > 1
K

√
d
}| > d

2 for some universal constant K.

17

With Fact B.4, Ml∞ = Θ(
√
log(d)/d). On the other hand, let mmc(l) be defined as Definition 1.3,

we have

mmc(l) ≤ γ
√
d

for sufficiently small γ, thus

λbl√
d
< Ml.

So with constants γ1, γ2 > 0, we have

γ1Ml ≤ ∥x∥l ≤ γ2Ml

and γ1
√
log(d)/d ≤ ∥x∥∞ ≤ γ2

√
log(d)/d.

So that we have

|x| ≤ γ2
√

log(d) · ξ(d),

where the inequality is entry-wise, and with monotonicity of symmetric norms (Lemma B.1), we have

γ1 ≤ ∥x∥l ≤ γ2
√

log(d) · ∥ξ(d)∥l.

Now we move to the second condition of the lemma, we first let M = {i : |xi| > 1
K

√
d
}. As

|M | > d
2 , we can find a permutation π satisfying

[d]−M ∈ π(M).

We define a vector π(x) to be the vector by applying the permutation π to each entry of x. Denote by
|x| the vector of taking absolute value of x entry-wise. Notice |x|+ π(|x|) > ξ(d)

K entry-wise, so that
we have

1

K
· ∥ξ(d)∥l ≤ ∥|x|+ π(|x|)∥l

≤ ∥|x|∥l + ∥π(|x|)∥l
= 2∥x∥l
≤ 2γ2Ml,

where the first step follows from the monotonicity of symmetric norm (Lemma B.1), the second step
follows from the triangle inequality, the third step follows from the definition of π, and the last step
follows from the definition of γ2.

Thus, we complete the proof.

The following lemma shows the monotonicity of the median (in d), a very useful property in the norm
approximation.

Lemma B.6 (Monotonicity of Median). Let l : Rd → R be a symmetric norm. For all d1 ≤ d2,
where d1, d2 ∈ [n], let mmc(l) be defined as Definition 1.3, we have

Ml(d1) ≤ λ ·mmc(l) ·
√
log(d1)Ml(d2) ,

where λ > 0 is an absolute constant.

Proof. By Lemma B.5 and the fact that ξ(d1) is also a vector in Sd2−1,

λMl(d1)/
√
log(d1) ≤ ∥ξ(d1)∥l ≤ bl(d2) ≤ mmc(l)Ml(d2) .

Thus, we complete the proof.

18

C Analysis of Layer Approximation

In this section, we show how to estimate the symmetric norm l(·) of a vector using the layer vectors.
Section C.1 gives the definitions of layer vectors and important layers. Section C.2 shows that we can
approximate the exact value of the norm and the layer vector. Section C.3 defines the contributing
layer and shows its concentration property. Section C.4 proves that contributing layers are also
important.

Throughout this section, let ϵ ∈ (0, 1) be the precision, α > 0 and β ∈ (0, 1] be some parameters
depending on d, ϵ and mmc(l), where mmc(l) is defined as Definition 1.3. Furthermore, we assume
mmc(l) ≤ γ

√
d, for constant parameter 0 ≤ γ ≪ 1/2 small enough.2

C.1 Layer Vectors and Important Layers

Definition C.1 (Important Layers). For v ∈ Rd, define layer i ∈ N+ as

Bi := {j ∈ [d] : αi−1 < |vj | ≤ αi},

and denote its size by bi := |Bi|. We denote the number of non-zero bi’s by t, the number of non-empty
layers. And we say that layer-i is β-important if

• bi > β ·
∑t

j=i+1 bj

• biα
2i ≥ β ·

∑
j∈[i] bjα

2j

With out loss of generality, We restrict the entries of the vector v to be in [−m,m], and that
m = poly(d). Then we know that the number of non-zero bi’s is at most P = O(logα(d)). In the
view of ℓ2-norm, for an arbitrary vector v ∈ Rd, if we normalize it to a unit vector, then the absolute
value of each non-zero entry is at least 1/poly(d). In order to simplify our analysis and algorithm
for approximating ∥v∥sym, we introduce the notations we use as follows.

Definition C.2 (Layer Vectors and Buckets). For each i ∈ [P], let αi ·1bi ∈ Rbi denote a vector that
has length bi and every entry is αi. Define the layer vector for v ∈ Rd with integer coordinates to be

L(v) := (α1 · 1b1 , α
2 · 1b2 , · · · , αP · 1bP , 0 · 1d−

∑
j∈[P] bj

) ∈ Rd;

and define the i-th bucket of L(v) to be

Li(v) := (0 · 1b1+b2+···+bi−1
, αi · 1bi , 0 · 1d−

∑
j∈[i] bj

) ∈ Rd;

We also define J (v) and Ji(v) as above by replacing {bi} with the approximated values {ci}.
Denote L(v)\Li(v) as the vector with the i-th bucket of L(v) replaced by 0. We also denote
(L(v)\Li(v)) ∪ Ji(v) as the vector by replacing the i-th bucket of L(v) with Ji(v), i.e.,

(L(v)\Li(v)) ∪ Ji(v) := (α1 · 1b1 , α
2 · 1b2 , · · · , αi · 1ci , · · · , αP · 1bP , 0 · 1d−

∑
j∈[P] bj+bi−ci) ∈ Rd;

C.2 Approximated Layers Provides a Good Norm Approximation

We now proof that, ∥v∥sym can be approximated by using layer vector V . We first choose a base to
be α := 1 +O(ϵ).

Lemma C.3 (Approximattion with Layer Vector). For all v ∈ Rd, we have

∥L(v)∥sym/α ≤ ∥v∥sym ≤ ∥L(v)∥sym.

Proof. The lemma follows from the monotonicity of symmetric norms(Lemma B.1) directly.

The next key lemma shows that ∥J (v)∥sym is a good approximation to ∥L(v)∥sym.
Lemma C.4 (Bucket Approximation). For every layer i ∈ [P],

2We note that beyond this regime, the streaming lower bound in Theorem H.2 implies that a linear-sized
memory (time) is required to approximate the norm.

19

• if ci ≤ bi, then ∥(L(v)\Li(v)) ∪ Ji(v)∥sym ≤ ∥L(v)∥sym;

• if ci ≥ (1− ϵ)bi, then ∥(L(v)\Li(v)) ∪ Ji(v)∥sym ≥ (1− ϵ)∥L(v)∥sym.

Proof. With the monotonicity of norm (Lemma B.1), the upper bound is quite obvious. So we just
focus on the lower bound. Let us take the vector

Ji(v) := (0 · 1c1+c2+···+ci−1 , α
i · 1ci , 0, · · · , 0) ∈ Rd;

Here we define K(v) := L(v)−Li(v). Then notice that K(v) +Ji(v) is a permutation of the vector
(L(v)\Li(v)) ∪ Ji(v). We will then show that, under assumptions of the lemma, we have

∥K(v) + Ji(v)∥sym ≥ (ci/bi)∥L(v)∥sym.

Assume a vector v ∈ Rd and a permutation π ∈ Σd, we define a vector π(x) to be the vector by
applying the permutation π to each entry of x. Using the property of the symmetric norm, we have
that ∥v∥sym = ∥π(v)∥sym. Consider a set of permutations that are cyclic shifts over the non-zero
coordinates of Li, and do not move any other coordinates. That is, there is exactly bi permutations in
S, and for every π ∈ S, we have π(K(v)) = K(v). By the construction of S, we have,∑

π∈S

π(Ji(v)) = ciLi(v)

and therefore
∑

π∈S π(K(v) + Ji(v)) = ciLi(v) + biK(v). As the vectors Li(v) and K(v) have
disjoint support, by monotonicity of symmetric norm (Lemma B.1) with respect to each coordinates
we can deduce ∥ciLi(v) + biK(v)∥sym ≥ ∥ci(Li(v) +K(v))∥sym. By plugging those together,

ci∥Li(v) +K(v)∥sym ≤ ∥ciLi(v) + biK(v)∥sym
= ∥

∑
π∈S

π(Ji(v) +K(v))∥sym

≤
∑
π∈S

∥π(Ji(v) +K(v))∥sym

= bi∥π(Ji(v) +K(v))∥sym
where the first step follows from ci∥Li(v) + K(v)∥sym = ∥ci(Li(v) + K(v))∥sym and the mono-
tonicity of the norm l, the second step follows from

∑
π∈S π(Ji(v)+K(v)) = ciLi(v)+biK(v), the

third step follows from triangle inequality, and the last step follows from the property of symmetric
norm and |S| = bi.

Hence,

∥Ji(v) +K(v)∥sym ≥
ci
bi
∥L(v)∥sym ≥ (1− ϵ)∥L(v)∥sym,

Thus, we complete the proof.

C.3 Contributing Layers

Definition C.5 (Contributing Layers). For i ∈ [P], layer i is called β-contributing if

∥Li(v)∥sym ≥ β∥L(v)∥sym.

Lemma C.6 (Concentration with contributing layers). Let L∗(v) be the vector obtained from V by
removing all layers that are not β-contributing. Then

(1−O(logα(d)) · β) · ∥L(v)∥sym ≤ ∥L∗(v)∥sym ≤ ∥L(v)∥sym.

Proof. Let i1, . . . , ik ∈ [P] be the layers that are not β- contributing.

Then we apply the triangle inequality and have,

∥L(v)∥sym ≥ ∥L(v)∥sym − ∥Li1(v)∥sym − · · · − ∥Lik(v)∥sym
≥ (1− kβ)∥L(v)∥sym

The proof follows by bounding k by P = O(logα(n)), which is the total number of non-zero bi’s.

20

C.4 Contributing Layers Are Important

In this section, we give two lemmas to show that every β-contributing layer (Definition C.5) is
β′-important (Definition C.1), where β′ is depending on mmc(l) (Definition 1.3). The first property
of the important layer is proved in Lemma C.7, and the second property is proved in Lemma C.8.
Lemma C.7 (Importance of contributing layers (Part 1)). For i ∈ [P], if layer i is β-contributing,
then for some absolute constant λ > 0, we have

bi ≥
λβ2

mmc(l)2 log2(d)
·

P∑
j=i+1

bj ,

where mmc(l) is defined as Definition 1.3.

Proof. We first fix a layer i which is β-contributing. Let U(v) be the vector L(v) after removing
buckets j = 0, . . . , i. By Lemma B.5, there is an absolute constant λ1 > 0 such that

∥Li(v)∥sym = αi ·
√
bi · l(ξ(bi))

≤ λ1 · αi ·
√

bi ·Ml(bi) ,

and similarly

∥U(v)∥sym ≥
λ2α

i√
log(d)

· (
P∑

j=i+1

bj)
1/2M

l
(
∑P

j=i+1
bj)

.

With these two inequalities, we can have the following deduction.

First, we have

∥Li(v)∥sym ≥ β · ∥L(v)∥sym ≥ β · ∥U(v)∥sym.

Second, we assume that bi <
∑P

j=i+1 bj , as otherwise we are done:

bi ≥
P∑

j=i+1

bj ≥
λβ2

mmc(l)2 log2(d)
·

P∑
j=i+1

bj .

Then, by the monotonicity of the median (Lemma B.6), we have

Ml(bi) ≤ λ3 ·mmc(l) ·
√

log(d) ·M
l
(
∑P

j=i+1
bj)

for some absolute constant λ3 > 0.

Putting it all together, we get

β · λ2α
i√

log(d)
· (

P∑
j=i+1

bj)
1/2 ≤ λ1 · αi

√
bi · λ3 ·mmc(l) ·

√
log(d).

Therefore, we finish the proof.

Lemma C.8 (Importance of contributing layers (Part 2)). For a symmetric l, let mmc(l) be defined
as Definition 1.3. If layer i ∈ [P] is β-contributing, then there is an absolute constant λ > 0 such
that

biα
2i ≥ λβ2

mmc(l)2 · logα(n) · log
2(n)

·
∑
j∈[i]

bjα
2j .

Proof. We first fix a layer i which is β-contributing, and let h := argmaxj≤i

√
bjα

j . We consider
the two different cases as follows.

First, if bi ≥ bh then the lemma follows obviously by

21

∑
j∈[i]

bjα
2j

≤ t · bh · α2h

≤ O(logα(d)) · bi · α2i.

The second case is when bi < bh. With Definition C.5 and Lemma B.5, we have

λ1 · αi ·
√
bi ·Ml(bi)

≥ ∥Li∥sym
≥ β · ∥L∥sym

≥ λ2 · β · αh ·

√
bh

log(d)
·Ml(bh) ,

for some absolute constants λ1, λ2 > 0, where the first step follows from Lemma B.5, the second
step follows from Definition C.5, and the last step follows from Lemma B.5.

following from monotonicity of the median (Lemma B.6), we can plugging in Ml(bi) ≤ λ3 ·mmc(l) ·√
log(d) ·Ml(bh) , for some absolute constant λ3 > 0, so that we have

λ1 · αi ·
√
bi ·Ml(bi) ≥

λ2 · β ·
√
bh · αh√

log(d)
· Ml(bi)

λ3 ·mmc(l) ·
√
log(d)

,

√
bi · αi ≥ λ2 · β ·

√
bh · αh

λ1λ3 ·mmc(l) · log(d)
.

Square the above inequality and we can see that bh · α2h ≥ 1
O(logα(d)) ·

∑
j∈[i] bjα

2j .

Thus we complete the proof.

D Formal Main Result and Algorithms

In this section, we state the formal version of our main theorem and algorithms. Section D.1 presents
our main result: a data structure for distance estimation with symmetric norm. Section D.2 introduces
the sparse recovery tools for sketching.

D.1 Formal Version of Our Main Result

Algorithm 3 Data structure for symmetric norm estimation

1: data structure DISTANCEONSYMMETRICNORM ▷ Theorem D.1
2:
3: private:
4: procedure LAYERVECTORAPPROX(α, b1, b2, . . . , bP , d) ▷ Lemma C.3
5: For each i ∈ [P], let αi · 1bi ∈ Rbi denote a vector that has length bi and every entry is αi

6: L ← (α1 · 1b1 , · · · , αP · 1bP , 0, . . . , 0) ∈ Rd ▷ Generate the layer vector
7: return ∥L∥sym ▷ Return the norm of the estimated layer vector
8: end procedure
9: end data structure

Here we divide function QUERY presented in Theorem 1.4 into two versions. One takes only the
query point q ∈ Rd as input to ask all the distances. Another takes a query point q ∈ Rd and a
set S ⊂ [n] to ask for the distance with the specific set of points. The latter can be viewed as a
more general version of the former. In the former parts, we have proved the correctness of the query
(Lemma 5.1), and the running time of version for all points (Lemma 4.3). Now we state the both in
the following theorem, and the running time analysis for the latter will be stated in Section E.

22

Algorithm 4 Data structure for symmetric norm estimation: members, formal version of Algorithm 1

1: data structure DISTANCEONSYMMETRICNORM ▷ Theorem D.1
2: members
3: d, n ∈ N+ ▷ n is the number of points, d is dimension
4: X = {xi ∈ Rd}ni=1 ▷ Set of points being queried
5: L ∈ N+ ▷ number of layers we subsample
6: R ∈ N+ ▷ number of substreams in one layer
7: ϵ, δ
8: β ▷ used to cut important layer
9: U ∈ N+ ▷ number of parallel processing

10: BATCHHEAVYHITTER {Sr,l,u}r∈[R],l∈[L],u∈[U]

11: {Hr,l,u ⊂ [d]× R}r∈[R],l∈[L],u∈[U] ▷ each set H has a size of 2/β, and is used to store the
output of BATCHHEAVYHITTER

12: γ ▷ parameter used when cutting layer vector
13: bmap ∈ {0, 1}R×L×U×d

14: xr,l,u ∈ Rn×d, for each r ∈ [R], l ∈ [L], u ∈ [U] ▷ Substreams
15: end members
16: end data structure

Algorithm 5 Data structure for symmetric norm estimation: init, formal version of Algorithm 1

1: data structure DISTANCEONSYMMETRICNORM ▷ Theorem D.1
2: public:
3: procedure INIT({x1, · · · , xi} ⊂ Rd, n ∈ N+, d ∈ N+, δ ∈ (0, 0.1), ϵ ∈ (0, 0.1)) ▷ Lemma 4.1
4: n← n, d← d, δ ← δ, ϵ← ϵ
5: for i = 1→ n do
6: xi ← xi

7: end for
8: ϵ1 ← O(ϵ2

log d) ▷ We define this notation for purpose of analysis
9: L← log(d), R← Θ(ϵ−2

1 log(n/δ) log2 d), U ← ⌈log(nd2/δ)⌉
10: β ← O(ϵ5

mmc(l)2 log5 d
)

11: for r ∈ [R], l ∈ [L], u ∈ [U] do
12: Sr,l,u.INIT(

√
β, n+ 2, d) ▷ Theorem D.3

13: end for
14: for r ∈ [R], u ∈ [U], j ∈ [d], l ∈ [L] do
15: Draw ξ ∈ [0, 1]
16: if ξ ∈ [0, 2−l] then
17: bmap[r, l, u, j]← 1
18: else
19: bmap[r, l, u, j]← 0
20: end if
21: end for
22: for r ∈ [R], u ∈ [U], i ∈ [n], j ∈ [d], l ∈ [L] do
23: if bmap[r, l, u, j] = 1 then
24: Sr,l,u.ENCODESINGLE(i, j, xi,j , d) ▷ Theorem D.3
25: [xr,l,u]i,j ← xi,j ▷ Create a copy of subvectors
26: else
27: [xr,l,u]i,j ← 0
28: end if
29: end for
30: end procedure
31: end data structure

Theorem D.1 (Main result, formal version of Theorem 1.4). There is a data structure (Algorithm 4,
5, 7, 6) uses O(ϵ−9n(d + mmc(l)2) log14(nd/δ)) spaces for the Online Approximate Adaptive
Symmetric Norm Distance Estimation Problem (Definition 1.1) with the following procedures:

23

Algorithm 6 Data structure for symmetric norm estimation: update

1: data structure DISTANCEONSYMMETRICNORM ▷ Theorem D.1
2: public:
3: procedure UPDATE(i ∈ [n], z ∈ Rd) ▷ Lemma 4.2
4: ▷ You want to replace xi by z
5: for r ∈ [R], u ∈ [U], j ∈ [d], l ∈ [L] do
6: if bmap[r, l, u] = 1 then
7: Sr,l,u.ENCODESINGLE(i, j, zj , d) ▷ Theorem D.3
8: [xr,l,u]i,j ← zj ▷ Create a copy of subvectors
9: else

10: [xr,l,u]i,j ← 0
11: end if
12: end for
13: end procedure
14: end data structure

• INIT({x1, x2, . . . , xn} ⊂ Rd, ϵ ∈ (0, 1), δ ∈ (0, 1)): Given n data points
{x1, x2, . . . , xn} ⊂ Rd, an accuracy parameter ϵ and a failure probability δ as input,
the data structure preprocesses in time O(ϵ−9n(d+mmc(l)2) log14(nd/δ)).

• UPDATEX(z ∈ Rd, i ∈ [n]): Given an update vector z ∈ Rd and index i ∈ [n], the
UPDATEX takes z and i as input and updates the data structure with the new i-th data point
in O(ϵ−4d log9(nd/δ)) time.

• QUERY(q ∈ Rd) (Querying all points): Given a query point q ∈ Rd, the QUERY operation
takes q as input and approximately estimates the symmetric norm distances from q to all the
data points {x1, x2, . . . , xn} ⊂ Rd in time

O(ϵ−9(d+ n ·mmc(l)2) log14(nd/δ))

i.e. it provides a set of estimates {dsti}ni=1 such that:

∀i ∈ [n], (1− ϵ)∥q − xi∥sym ≤ dsti ≤ (1 + ϵ)∥q − xi∥sym
with probability at least 1− δ.

• QUERY(q ∈ Rd,S ⊆ [n]) (Querying a specific set S of points). Given a query point q ∈ Rd

and an index i ∈ [n], the QUERYONE operation takes q and i as input and approximately
estimates the symmetric norm distances from q to the i-th point xi ∈ Rd in time

O(ϵ−9(d+ |S| ·mmc(l)2) log14(nd/δ))

i.e. it provides a estimated distance dst ∈ RS such that:

(1− ϵ)∥q − xi∥sym ≤ dsti ≤ (1 + ϵ)∥q − xi∥sym,∀i ∈ S

with probability at least 1− δ.

• ESTPAIR(i, j ∈ [n]) Given indices i, j ∈ [n], the ESTPAIR operation takes i and j as
input and approximately estimates the symmetric norm distances from i-th to the j-th point
xi, xj ∈ Rd in time

O(ϵ−9 ·mmc(l)2 log14(nd/δ))

i.e. it provides a estimated distance pair such that:

(1− ϵ)∥xi − xj∥sym ≤ pair ≤ (1 + ϵ)∥xi − xj∥sym
with probability at least 1− δ.

Proof. In Lemma E.3, Lemma E.4, Lemma E.1 and Lemma E.2 we analyze the running time for
INIT, UPDATE and QUERY and ESTPAIR respectively.

24

Algorithm 7 Data structure for symmetric norm estimation: query, formal version of Algorithm 2
1: data structure DISTANCEONSYMMETRICNORM ▷ Theorem D.1
2: procedure QUERY(q ∈ Rd) ▷ Lemma 4.3, 5.1
3: P ← O(logα(d)) ▷ P denotes the number of non-empty layer sets
4: for r ∈ [R], l ∈ [L], u ∈ [U] do
5: Sr,l,u.ENCODE(n+ 1, q, d) ▷ Generate Sketch for q
6: end for
7: ξ ← chosen uniformly at random from [1/2, 1]
8: γ ← Θ(ϵ)
9: α← 1 + γ · ξ

10: P ← O(logα(d)) = O(log(d)/ϵ) ▷ P denotes the number of non-empty layer sets
11: for i ∈ [n] do
12: for r ∈ [R], l ∈ [L], u ∈ [U] do
13: Sr,l,u.SUBTRACT(n+ 2, n+ 1, i)
14: Hr,l,u ← Sr,l,u.DECODE(n+ 2,

√
β, d) ▷ This can be done in 2

β
poly(log d)

15: ▷ At this point Hr,l,u is a list of index, the value of each index is reset to 0
16: for k ∈ Hr,l,u do
17: value← [xr,l,u]i,k
18: Hr,l,u[k]← value
19: w ← ⌈log(value)/ log(α)⌉
20: if αw−1 ≥ value/(1 + ϵ) then
21: Hr,l,u ← null
22: break
23: end if
24: end for
25: if Hr,l,u ̸= null then
26: Hr,l ← Hr,l,u

27: end if
28: end for
29: for l ∈ [L], k ∈ [P] do
30: Ai

l,k ← |{k | ∃k ∈ Hr,l, α
k−1 < |Hr,l[k]| ≤ αk}|

31: end for
32: for k ∈ [P] do
33: qik ← maxl∈[L] {l | Ai

l,k ≥
R log(1/δ)
100 log(d)

} ▷ Definition F.7

34: If qik does not exist, then η̂i
k ← 0; Else η̂i

k ←
A

qi
k
,k

R(1+ϵ1)

35: If η̂i
k = 0 then cik ← 0; Else cik ←

log(1−η̂i
k)

1−w−qk

36: end for
37: dsti ← LAYERVETCORAPPROX(α, ci1, c

i
2, . . . , c

i
P , d)

38: for r ∈ [R], l ∈ [L], u ∈ [U] do
39: {Hr,l,u} ← {0} ▷ Reset the sets to use for next point
40: end for
41: end for
42: return {dsti}i∈[n]

43: end procedure
44: end data structure

Lemma G.1 shows the space complexity.

In Lemma 5.1 we give the correctness of QUERY, and correctness for ESTPAIR follows directly.

Thus, putting them all together, we prove the Theorem.

D.2 Sparse Recovery tools

We start with describing a data structure problem

Definition D.2 (Batch Heavy Hitter). Given an n× d matrix, the goal is to design a data structure
that supports the following operations:

25

• INIT(ϵ ∈ (0, 0.1), n, d). Create a set of Random Hash functions and all the n copies of
sketches share the same hash functions.

• ENCODE(i ∈ [n], z ∈ Rd, d). This step encodes z into i-th sketched location and store a
size Sspace linear sketch.

• ENCODESINGLE(i ∈ [n], j ∈ [d], z ∈ R, d). This step updates one sparse vector ejz ∈ Rd

into i-th sketched location.

• SUBTRACT(i, j, l ∈ [n]). This function updates the sketch at i-th location by j-th sketch
minus l-th sketch.

• DECODE(i ∈ [n], ϵ ∈ (0, 0.1), d). This function returns a set L ⊆ [d] of size |L| = O(ϵ−2)
containing all ϵ-heavy hitters i ∈ [n] under ℓp. Here we say i is an ϵ-heavy hitter under ℓ2 if
|xi| ≥ ϵ · ∥x

[ϵ−2]
∥2 where x

[k]
denotes the vector x with the largest k entries (in absolute

value) set to zero. Note that the number of heavy hitters never exceeds 2/ϵ2.

The existing work [KNPW11, Pag13] implies the following result. However their proofs are very
decent and complicated. We provide another data structure in Section I that significantly simplifies
the analysis (by only paying some extra log factors). We believe it is of independent interest.
Theorem D.3. There is (linear sketch) data structure BATCHHEAVYHITTER(ϵ, n, d) that uses Sspace
space that support the following operations:

• INIT(ϵ ∈ (0, 0.1), n, d). This step takes Tinit(ϵ, n, d) time.

• ENCODE(i ∈ [n], z ∈ Rd, d). This step takes Tencode(d) time.

• ENCODESINGLE(i ∈ [n], j ∈ [d], z ∈ R, d). This step takes Tencodesingle(d) time.

• SUBTRACT(i, j, l ∈ [n]). This step takes Tencodesingle(d) time.

• DECODE(i ∈ [n], ϵ ∈ (0, 0.1), d). This step takes Tdecode(ϵ, d) time.

The running time of function can be summarize as

• Sspace(ϵ, d) = n ·O(ϵ−2 log2 d)

• Tinit(ϵ, n, d) = n ·O(ϵ−2 log2 d)

• Tencode(d) = O(d log2(d))

• Tencodesingle(d) = O(log2(d))

• Tsubtract(ϵ, d) = O(ϵ−2 log2 d)

• Tdecode(ϵ, d) = O(ϵ−2 log2 d)

Note that the succeed probability is at least 0.99.

We remark that, to boost the probability from constant to 1 − 1/ poly(nd) we just need to pay an
extra log(nd) factor.

E More Details of the Time Complexity

In this section, we analyze the running time of the general version of QUERY. Lemma 4.3 is a special
case of the following Lemma when S = [n].

Lemma E.1 (QUERY time for general version). Given a query point q ∈ Rd and a set S ⊆ [n], the
procedure QUERY (Algorithm 8) runs in time

O(ϵ−9(d+ |S| ·mmc(l)2) log14(nd/δ)).

Proof. The QUERY operation for a stored vector (Algorithm 8) has the following two parts:

26

Algorithm 8 Data structure for symmetric norm estimation: query set
1: data structure DISTANCEONSYMMETRICNORM ▷ Theorem D.1
2: procedure QUERY(q ∈ Rd, S ⊆ [n]) ▷ Lemma 4.3, 5.1
3: P ← O(logα(d)) ▷ P denotes the number of non-empty layer sets
4: for r ∈ [R], l ∈ [L], u ∈ [U] do
5: Sr,l,u.ENCODE(n+ 1, q, d) ▷ Generate Sketch for q
6: end for
7: ξ ← chosen uniformly at random from [1/2, 1]
8: γ ← Θ(ϵ)
9: α← 1 + γ · ξ

10: P ← O(logα(d)) = O(log(d)/ϵ) ▷ P denotes the number of non-empty layer sets
11: for i ∈ S do
12: for r ∈ [R], l ∈ [L], u ∈ [U] do
13: Sr,l,u.SUBTRACT(n+ 2, n+ 1, i)
14: Hr,l,u ← Sr,l,u.DECODE(n+ 2,

√
β, d) ▷ This can be done in 2

β
poly(log d)

15: ▷ At this point Hr,l,u is a list of index, the value of each index is reset to 0
16: for k ∈ Hr,l,u do
17: value← [xr,l,u]i,k
18: Hr,l,u[k]← value
19: w ← ⌈log(value)/ log(α)⌉
20: if αw−1 ≥ value/(1 + ϵ) then
21: Hr,l,u ← null
22: break
23: end if
24: end for
25: if Hr,l,u ̸= null then
26: Hr,l ← Hr,l,u

27: end if
28: end for
29: for l ∈ [L], k ∈ [P] do
30: Ai

l,k ← |{k | ∃k ∈ Hr,l, α
k−1 < |Hr,l[k]| ≤ αk}|

31: end for
32: for k ∈ [P] do
33: qik ← maxl∈[L] {l | Ai

l,k ≥
R log(1/δ)
100 log(d)

}

34: If qik does not exist, then η̂i
k ← 0; Else η̂i

k ←
A

qi
k
,k

R(1+ϵ2)

35: If η̂i
k = 0 then cik ← 0; Else cik ←

log(1−η̂i
k)

1−w−qk

36: end for
37: dsti ← LAYERVETCORAPPROX(α, ci1, c

i
2, . . . , c

i
P , d)

38: for r ∈ [R], l ∈ [L], u ∈ [U] do
39: {Hr,l,u} ← {0} ▷ Reset the sets to use for next point
40: end for
41: end for
42: return {dsti}i∈S

43: end procedure
44: end data structure

• Part 1: Line 5 takes O(RLU · Tencode) time to call ENCODE to generate sketches for q.

• Part 2: For each i ∈ S

– Line 13 takes O(RLU · Tsubtract) time to compute sketch of the difference between q
and xi, and store the sketch at index of n+ 2.

– Line 14 takes O(RLU · Tdecode) time to decode the BATCHHEAVYHITTER and get
estimated heavy hitters of q − xi.

– Line 16 to Line 24 takes O(RLU · 2/β) time to analyze the BATCHHEAVYHITTER
and get the set of indices, where 2/β is the size of the set.

– Line 30 takes O(LP · 2/β) time to compute size of the layer sets cut by α.

– Line 32 to Line 36 takes O(PL) time to compute the estimation of each layer.

27

Algorithm 9 Data structure for symmetric norm estimation: query pair

1: data structure DISTANCEONSYMMETRICNORM ▷ Theorem D.1
2: procedure ESTPAIR(i ∈ [n], j ∈ [n]) ▷ Lemma 4.3, 5.1
3: P ← O(logα(d)) ▷ P denotes the number of non-empty layer sets
4: ξ ← chosen uniformly at random from [1/2, 1]
5: γ ← Θ(ϵ)
6: α← 1 + γ · ξ
7: P ← O(logα(d)) = O(log(d)/ϵ) ▷ P denotes the number of non-empty layer sets
8: for r ∈ [R], l ∈ [L], u ∈ [U] do
9: Sr,l,u.SUBTRACT(n+ 2, j, i)

10: Hr,l,u ← Sr,l,u.DECODE(n+ 2,
√
β, d) ▷ This can be done in 2

β poly(log d)

11: ▷ At this point Hr,l,u is a list of index, the value of each index is reset to 0
12: for k ∈ Hr,l,u do
13: value← [xr,l,u]i,k
14: Hr,l,u[k]← value
15: w ← ⌈log(value)/ log(α)⌉
16: if αw−1 ≥ value/(1 + ϵ) then
17: Hr,l,u ← null
18: break
19: end if
20: end for
21: if Hr,l,u ̸= null then
22: Hr,l ← Hr,l,u

23: end if
24: end for
25: for l ∈ [L], k ∈ [P] do
26: Al,k ← |{k | ∃k ∈ Hr,l, α

k−1 < |Hr,l[k]| ≤ αk}|
27: end for
28: for k ∈ [P] do
29: qk ← maxl∈[L] {l | Al,k ≥ R log(1/δ)

100 log(d) }
30: If qk does not exist, then η̂k ← 0; Else η̂k ←

Aqk,k

R(1+ϵ2)

31: If η̂k = 0 then ck ← 0; Else ck ← log(1−η̂k)

1−w−qk

32: end for
33: dst← LAYERVETCORAPPROX(α, c1, c2, . . . , cP , d)
34: return dst
35: end procedure
36: end data structure

The total running time of this part is:

|S| · (O(RLU · Tsubtract) +O(RLU · Tdecode) +O(RLU · 2/β) +O(LP · 2/β) +O(LP)))

= O(|S| · L(RU(Tsubtract + Tdecode + β−1) + Pβ−1))

time in total.

Taking these two parts together we have the total running time of the QUERY procedure:

O(RLU · Tencode) +O(|S| · L(RU(Tsubtract + Tdecode + β−1) + Pβ−1))

= O(RLU(Tencode + |S| · (Tsubtract + Tdecode + β−1)) + |S| · LPβ−1)

= O(ϵ−4 log6(nd/δ)(d log2(d) log(nd) + |S| · β−1 log2(d) log(nd)) + |S| · ϵ−1 log2(d)β−1)

= O(ϵ−9(d+ |S| ·mmc(l)2) log14(nd/δ))

where the first step follows from the property of big O notation, the second step follows from the
definition of R,L,U, Tencode, Tencode, Tsubtract, Tdecode (Theorem D.3) , P , the third step follows
from merging the terms.

Thus, we complete the proof.

28

Lemma E.2 (ESTPAIR time). Given a query point q ∈ Rd, the procedure ESTPAIR (Algorithm 9)
runs in time

O(ϵ−9 ·mmc(l)2 log14(nd/δ)).

Proof. The ESTPAIR operation (Algorithm 9) has the following two parts:

• Line 9 takes O(RLU · Tsubtract) time to compute sketch of the difference between xi and
xj , and store the sketch at index of n+ 2.

• Line 10 takes O(RLU ·Tdecode) time to decode the BATCHHEAVYHITTER and get estimated
heavy hitters of xi − xj .

• Line 12 to Line 20 takes O(RLU · 2/β) time to analyze the BATCHHEAVYHITTER and get
the set of indices, where 2/β is the size of the set.

• Line 26 takes O(LP · 2/β) time to compute size of the layer sets cut by α.

• Line 28 to Line 32 takes O(PL) time to compute the estimation of each layer.

The total running time is:

O(RLU · Tsubtract) +O(RLU · Tdecode) +O(RLU · 2/β) +O(LP · 2/β) +O(LP)

= O(RLU(Tsubtract + Tdecode + β−1) + LPβ−1)

= O(ϵ−4 log6(nd/δ)(β−1 log2(d) log(nd) + ϵ−1 log2(d)β−1 log(nd))

= O(ϵ−9 ·mmc(l)2 log14(nd/δ))

time in total, where the first step follows from the property of big O notation, the second step follows
from the definition of R,L,U, Tencode, Tencode, Tsubtract, Tdecode (Theorem D.3) , P , the third step
follows from merging the terms.

Thus, we complete the proof.

Lemma E.3 (INIT time, formal version of Lemma 4.1). Given data points {x1, x2, . . . , xn} ⊂ Rd, an
accuracy parameter ϵ > 0, and a failure probability δ > 0 as input, the procedure INIT (Algorithm 5)
runs in time

O(ϵ−9n(d+mmc(l)2) log14(nd/δ)).

Proof. The INIT time includes these parts:

• Line 12 takes O(RLU · Tinit(
√
β, n, d)) to initialize sketches

• Line 17 to Line 19 takes O(RUdL) to generate the bmap;

• Line 24 takes O(ndRUL · Tencodesingle(d)) to generate sketches

By Theorems D.3, we have

• Tinit(
√
β, n, d)) = n ·O(β−1 log2(d) log(nd)) = O(n ·mmc(l)2 log7(d) log(nd)ϵ−5),

• Tencodesingle(d) = O(log2(d) log(nd)).

Adding them together we got the time of

O(RLUTinit(
√
β, n, d)) +O(RUdL) +O(ndRUL · Tencodesingle(d))

= O(RLU(Tinit(
√
β, n, d) + nd · Tencodesingle(d)))

= O(ϵ−4 log(d/δ) log4(d) · log(d) · log(nd2/δ) log(nd)(n ·mmc(l)2 log7(d)ϵ−5 + nd log2(d)))

29

= O(ϵ−9n(d+mmc(l)2) log14(nd/δ)),

where the first step follows from merging the terms, the second step follows from the definition of
R,L,U, Tencodesingle(d), Tinit, the third step follows from merging the terms.

Thus, we complete the proof.

Lemma E.4 (UPDATE time, formal version of Lemma 4.2). Given a new data point z ∈ Rd, and an
index i where it should replace the original data point xi ∈ Rd. The procedure UPDATE (Algorithm 6)
runs in time

O(ϵ−4d log9(nd/δ)).

Proof. The UPDATE operation calls BATCHHEAVYHITTER.ENCODE for RLU times, so it has the
time of

O(RLU · Tencode(d)) = O(ϵ−4 log(n/δ) log4(d) · log(d) · log(nd2/δ) · d log2(d) log(nd))
= O(ϵ−4d log9(nd/δ))

where the first step follows from the definition of R,L,U, Tencode(d), the second step follows from

log(n/δ) log4(d) log(d) log(nd2/δ) log2(d) log(nd)

= (log(n/δ))(log7 d)(2 log d+ log(n/δ)) log(nd)

= O(log9(nd/δ))

Thus, we complete the proof.

F More Details of the Correctness Proofs

In this section, we give the complete proofs of the correctness of our algorithms. In Section F.1
we state and prove the main result of this section, using the technical lemmas in the following
subsections. In Section F.2, we define the trackable layers and show the connection with important
layers (Definition C.1). In Section F.3, we analyze the sample probability and track probability
of a layer. In Section F.4, we show that a good estimation of track probability implies a good
approximation of the layer size, which completes the proof of the correctness.

F.1 Correctness of Layer Size Estimation

We first show that, the estimation of layer sizes output by our data structure are good to approximate
the exact values.
Lemma F.1 (Correctness of layer size approximation). We first show that, the layer sizes
ci1, c

i
2, . . . , c

i
P our data structure return satisfy

• for all k ∈ P , cik ≤ bik;

• if k is a β-important layer (Definition C.1) of q − xi, then cik ≥ (1− ϵ1)b
i
k,

with probability at least 1− δ, where the bik is the ground truth k-th layer size of q − xi.

Proof. We first define two events as

• E1: for all important layers k ∈ [P], qk is well defined;

• E2: for all k ∈ [P], if η̂k > 0 then (1−O(ϵ))η′k,qk ≤ η̂k ≤ η′k,qk .

With Lemma F.6 and Lemma F.8, we have that

Pr[E1 ∩ E2] ≥ 1− δO(log(d)).

When the output of every BATCHHEAVYHITTER is correct, if follows from Lemma F.5, Lemma F.6
and Lemma F.9 the algorithm outputs an approximation to the layer vector meeting the two criteria.

30

The BATCHHEAVYHITTER is used a total of LR times, each with error probability at most δ/d. By a
union bound over the layers, the failure probability is at most (poly(log d)) · δ/d = o(δ). Therefore,
the total failure probability of the algorithm is at most 1− o(δ).

Thus, we complete the proof.

F.2 Trackability of Layers

Definition F.2 (Trackability of layers). A layer k ∈ [P] of a vector x is β-trackable, if

α2k ≥ β · ∥x
[β−1]
∥22

where x
[κ]

is defined as Definition A.1.

Lemma F.3 (Importance and Trackability). Let α be some parameter such that α ∈ [0, 2]. Suppose
subvector x̃ is obtained by subsampling the original vector with probability p.

If k ∈ [P] is a β-important layer, then for any λ > P , with probability at least 1− P exp(−λpbk
Pβ),

layer k is β
λpbk

-trackable.

In particular, if pbk = O(1), then with probability at least 1 − P exp(−Ω(λ
Pβ)), layer k is β

λ -
trackable.

Proof. Let (ζ0, ζ1, . . .) be the new level sizes of the subvector x̃ we sampled. Thus, for k ∈ [P], we
have

E[ζk] = p · bk.
By the definition of important layer (Definition C.1) we have

E[ζk] ≥ β · E
[P∑
j=k+1

ζj

]
and

E[ζk · α2k] ≥ β · E
[∑
j∈[k]

ζj · α2j
]
.

To have layer k trackable, it has to be in the top λpbk/β elements, so that we have
∑P

j=k+1 ζj ≤
λpbk/β. By Chernoff bound (Lemma A.2), we can know the probability that this event does not
happen is

Pr
[P∑
j=k+1

bj >
λpbk
β

]
≤ exp(−Ω(λpbk/β)).

On the other hand, for level k to be trackable α2k ≥ β
λpbk

∑
j∈[k] ζjα

2j .

Thus, the complement occurs with probability

Pr
[β

λpbk

∑
j∈[k]

ζjα
2j > α2k

]
≤ Pr

[
∃j, ζjα2j ≥ λpbkα

2k

Pβ

]
≤

∑
j∈[P]

Pr
[
ζjα

2j ≥ λpbkα
2k

Pβ

]
.

By Chernoff bound (Lemma A.2) and the fact that E[ζjα2j] ≤ pbkα
2k, we have

Pr
[β

λpbk

∑
j∈[k]

ζjα
2j > α2k

]
≤ P · exp

(
− Ω(

λpbkα
2k

α2jPβ
)
)

≤ P · exp
(
− Ω(

λpbk
β

)
)
.

Thus we complete the proof.

31

F.3 Probability Analysis

We first define
Definition F.4. For each k ∈ [p], l ∈ R+, we define ηk,l := 1− (1− pl)

bk to be the probability that
at least one element from Bk is sampled with the sampling probability of pl = 2−l.

Set λ = Θ(P log(1/δ)). Let η∗k,l be the probability that an element from Bk is contained in H1,l,
such that, for Hr,l with any other r, the probability is the same as η∗k,l.

Lemma F.5 (Sample Probability and Track Probability). For any layer k ∈ [P] we have η∗k,l < ηk,l.
Let δ and ϵ denote the two parameters such that 0 < δ < ϵ < 1. If layer k is a β-important layer and
plbk = O(1), then

η∗k,l ≥ (1−Θ(ϵ)) · ηk,l.

Proof. If one is in Hr,l, it has to be sampled, so we have η∗k,l ≤ ηk,l. On the other hand, using
Lemma F.3, with probability at least 1− t exp(−Ω(λpbktβ)), layer k is β

λpbk
-trackable.

We have
β

λpbk
= Θ(

β

P log(1/δ)
)

where the last step follows from definition of λ.

Thus with probability at least

ηk,l(1−Θ(δ)) ≥ ηk,l(1−O(ϵ))

an element from Bk is sampled and the element is reported by BATCHHEAVYHITTER.

Thus we complete the proof.

Lemma F.6 (Probability Approximation). For k ∈ [P], let η̂k be defined as in Line 34 in Algorithm 7.
With probability at least 1− δΩ(log d), for all k ∈ [P], if η̂k ̸= 0 then

(1−O(ϵ1))η
∗
k,qk
≤ η̂k ≤ η∗k,qk .

Proof. We define

γ :=
R log(1/δ)

100 log d
.

Recall the condition of Line 34, if η̂k ̸= 0, then we have

Aqk,k ≥ γ.

For a fixed k ∈ [P], since the sampling process is independent for each r ∈ [R], we can assume that

E[Aqk,k] = Rηk,qk ≥ γ.

Otherwise, by Chernoff bound (Lemma A.2), we get that

Pr[Aqk,k ≥ γ] = o(δΩ(log d)),

which implies that with probability at least 1− δΩ(log d), η̂k = 0 for all k ∈ [P], and we are done.

Thus, under this assumption, by Chernoff bound (Lemma A.2), we have

Pr[|Aqk,k −R · η∗k,qk | ≥ ϵRηk,qk] ≤ exp(−Ω(ϵ2γ)) = δΩ(log d).

Since P = poly log(d), by union bound over the Bk , the event

(1− ϵ1)ηk,qk ≤
Aqk,k

Rk
≤ (1 + ϵ1)ηk,qk

holds for all k ∈ [P] with probability at least 1− δΩ(log(d)). Since η̂k =
Ak,qk

R(1+ϵ1)
by definition, we

get the desired bounds.

Thus we complete the proof.

32

Definition F.7. We define qk as

qk := max
l∈[L]

{
l|Al,k ≥

R log(1/δ)

100 log(d)

}
.

We say that qk is well-defined if the set in the RHS of the above definition is non-empty.

At Line 33 in Algorithm 7, we define the qik for i-th vector as the definition above.

Lemma F.8 (Maximizer Probability). If layer k ∈ [P] is important (Line 33 in Algorithm 7), then
with probability at least 1− δΩ(log d), the maximizer qk is well defined.

Proof. Lemma F.5 tells us that, when pkbk = O(1), layer k is at least Ω(β
P log(1/δ))-trackable. On

the other hand, if Pk = 2−l0 = 1/bk, we have ηk,l0 = 1− (1− pk)
bk ≥ 1/e. Thus we have

E[Al0,k] ≥ R/e,

so by Chernoff bound (Lemma A.2),

Pr[Al0,k ≤
R log(1/δ)

log d
] ≤ exp(−Ω(R log(1/δ)

log d
))

≤ δΩ(log d).

Thus we show that, there exists one qk ≥ l0 with probability at least 1− δΩ(logn).

Since there are at most P = poly log(d) important layers, with probability at least 1− δΩ(logn), the
corresponding value of qk is well defined for all important layers.

Thus we complete the proof.

F.4 From Probability Estimation to Layer Size Approximation

The following lemma shows that, if we have a sharp estimate for the track probability of a layer, then
we can obtain a good approximation for its size.

Lemma F.9 (Track probability implies layer size approximation). Suppose qk ≥ 1, ϵ ∈ (0, 1/2), and
d is sufficiently large. Define ϵ1 := O(ϵ2/ log(d)). We have for k ∈ [P],

• Part 1. If η̂k ≤ ηk,qk then ck ≤ bk.

• Part 2. If η̂i ≥ (1− ϵ1)ηk,qk then ck ≥ (1−O(ϵ1))bk.

Proof. We know that

bk =
log(1− ηk,qk)

log(1− 2−qk)
,

which is a increasing function of ηk,qk .

Part 1. If η̂k ≤ ηk,qk , then ck ≤ bk.

Part 2. If η̂k ≥ (1−O(ϵ))ηk,qk we have

ck ≥ bk +
ϵ1ηk,qk

(1− ηk,qk) log(1− 2−qk)
≥ bk −O(ϵ)bk.

Thus we complete the proof.

G Space Complexity

In this section, we prove the space complexity of our data structure.

Lemma G.1 (Space complexity of our data structure, formal version of Lemma 4.4). Our data
structure (Algorithm 4 and 5) uses O(ϵ−9n(d+mmc(l)2) log14(nd/δ)) space.

33

Proof. First, we store the original data,

space for x = O(nd).

Second, we store the sub stream/sample of original data

space for x = O(RLUnd)

= O(ϵ−4 log(n/δ) log4(d) · log(d) · log(nd2/δ) · nd)
= O(ϵ−4nd log6(nd/δ)).

Our data structure holds a set {Sr,l,u}r∈[R],l∈[L],u∈[U] (Line 10). Each Sr,l,u has a size of
Sspace(

√
β, d) = O(n · β−1 log2(d) log(nd)), which uses the space of

space for S = O(RLUn · β−1 log2(d) log(nd))

= O(ϵ−4 log(n/δ) log4(d) · log(d) · log(nd) · log(nd2/δ) · n · (ϵ−5 ·mmc(l)2 log5(d)) log2(d))

= O(ϵ−9n ·mmc(l)2 log14(nd/δ))

where the first step follows from the definition of R,L,U , and the second step follows just simplifying
the last step.

We hold a bmap (Line 17 and Line 19) of size O(RLUd), which uses the space of

space for bmap = O(RLUd)

= O(ϵ−4 log(n/δ) log4(d) · log(d) · log(nd2/δ) · d)
= O(ϵ−4d log6(nd/δ)).

In QUERY, we generate a set of sets {Hr,l,u}r∈[R],l∈[L],u∈[U], each of the sets has size of O(β−1),
so the whole set uses space of

space for H = O(RLU · β−1)

= O(ϵ−4 log(n/δ) log4(d) · log(d) · log(nd2/δ) · ϵ−5 ·mmc(l)2 log5(d))

= O(ϵ−9 ·mmc(l)2 log11(nd/δ)).

By putting them together, we have the total space is

total space

= space for x+ space for x+ space for S + space for bmap + space for H

= O(nd) +O(ϵ−4nd log6(nd/δ)) +O(ϵ−9n ·mmc(l)2 log13(nd/δ))

+O(ϵ−4d log6(nd/δ)) +O(ϵ−9 ·mmc(l)2 log11(nd/δ))

= O(ϵ−9n(d+mmc(l)2) log14(nd/δ)).

Thus, we complete the proof.

H Lower Bound From Previous Work

We first define turnstile streaming model (see page 2 of [LNNT16] as an example) as follows
Definition H.1 (Turnstile streaming model). We define two different turnstile streaming models here:

• Strict turnstile: Each update ∆ may be an arbitrary positive or negative number, but we are
promised that xi ≥ 0 for all i ∈ [n] at all points in the stream.

• General turnstile: Each update ∆ may be an arbitrary positive or negative number, and
there is no promise that xi ≥ 0 always. Entries in x may be negative.

Under the turnstile model, the norm estimation problem has the following streaming lower bound:

34

Theorem H.2 (Theorem 1.2 in [BBC+17]). Let l be a symmetric norm on Rn. Any turnstile streaming
algorithm (Definition H.1) that outputs, with probability at least 0.99, a (1± 1/6)-approximation for
l(·) must use Ω(mmc(l)2) bits of space in the worst case.

We note that this problem is a special case of our symmetry norm distance oracle problem (i.e.,
with n = 1 and query vector q = 0d where 0d is a all zeros length-d vector). And in this case, the
query time of our data structure becomes Õ(mmc(l)2) for a constant-approximation, matching the
streaming lower bound in Theorem H.2.

I Details About Sparse Recovery Tools

In this section we give an instantiation of the sparse recovery tool we use (Definition D.2) in
Algorithms 10 - 12. Although the running times of our data structure are slightly worse (by some
log factors) than the result of [KNPW11], it’s enough for our symmetric norm estimation task. In
terms of space requirement, the classical sparse recovery/compressed sensing only sublinear space is
allowed. In our application, we’re allowed to use linear space (e.g. d per point, nd in total). And
more importantly, our instantiation has much simpler algorithm and analysis than the prior result.

Algorithm 10 Our CountSketch for Batch heavy hitter

1: data structure BASICBATCHHEAVYHITTER ▷ Definition D.2
2: members
3: d, n ∈ N+ ▷ n is the number of vectors, d is the dimension.
4: ϵ ▷ We are asking for ϵ-heavy hitters
5: δ ▷ δ is the failure probability
6: B ▷ B is the multiple number of each counter to take mean
7: L ▷ L is the number of number of the level of the binary tree.
8: η ▷ η is the precision for l2 norm estimation.
9: K ▷ K is the number of hash functions.

10: {hl,k}l∈{0,...,L},k∈[K] ⊆ [2l]× [B] ▷ hash functions.
11: {Ci

l,b}i∈[n],l∈{0,...,L},b∈[B] ▷ The counters we maintain in CountSketch.
12: {σl,k}l∈{0,...,L},k∈[K] ⊆ [d]× {+1,−1} ▷ The hash function we use for norm estimation
13: Q ▷ A instantiation of LPLPTAILESTIMATION (Algorithm 13)
14: {Dl}l∈[L] ▷ Instantiations of FPEST (Algorithm 14)
15: end members
16:
17: public:
18: procedure INIT(ϵ, n ∈ N+, d ∈ N+, δ)
19: L← log2 d
20: δ′ ← ϵδ/(12(log d) + 1)
21: for l ∈ {0, . . . , L} do
22: Dl.INIT(n, d, l, 1/7, ϵ, δ′)
23: end for
24: C0 ← greater than 1000
25: Q.INIT(n, ϵ−2, 2, C0, δ)
26: end procedure

The following lemma shows that the sparse recovery data structure satisfies our requirements in
Theorem D.3.

I.1 Our Sparse Recovery Tool

We first state the correctness, the proof follows from framework of [KNPW11].
Lemma I.1. The function DECODE(i, ϵ, d, δ) (Algorithm 12) returns a set S ⊆ d of size |S| = O(ϵ−2)
containing all ϵ-heavy hitters of the i-column of the matrix under l2 with probability of 1− δ. Here
we say j is an ϵ-heavy hitter under l2 if |xj | ≥ ϵ · ∥x

[ϵ−2]
∥2 where x

[k]
denotes the vector x with the

largest k entries (in absolute value) set to zero. Note that the number of heavy hitters never exceeds
2/ϵ2.

35

Algorithm 11 Our CountSketch for Batch heavy hitter

1: data structure BASICBATCHHEAVYHITTER ▷ Definition D.2
2: procedure ENCODESINGLE(i ∈ [n], j ∈ [d], z ∈ R, d)
3: for l ∈ {0, . . . , L} do
4: Dl.UPDATE(i, j, z)
5: end for
6: Q.UPDATE(i, j, z)
7: end procedure
8:
9: procedure ENCODE(i ∈ [n], z ∈ Rd, d)

10: for j ∈ [d] do
11: ENCODESINGLE(i, j, zj , d)
12: end for
13: end procedure
14:
15: end data structure

Algorithm 12 Our CountSketch for Batch heavy hitter

1: data structure BASICBATCHHEAVYHITTER ▷ Definition D.2
2: procedure SUBTRACT(i, j, k ∈ [n])
3: for l ∈ {0, . . . , L} do
4: Dl.SUBTRACT(i, j, k)
5: end for
6: Q.SUBTRACT(i, j, k)
7: end procedure
8:
9: procedure DECODE(i ∈ [n], ϵ, d)

10: EstNorm← Q.QUERY(i) ▷ Here the EstNorm is the estimated tail l2-norm of i-vector.
11: S ← {0}, S′ ← ∅
12: for l ∈ {0, . . . , L} do ▷ The dyadic trick.
13: for ξ ∈ S do
14: Est← D.QUERY(i, ξ)
15: if Est ≥ (3/4)ϵ2 · EstNorm then
16: S′ ← S′ ∪ {2ξ, 2ξ + 1}
17: end if
18: end for
19: S ← S′, S′ ← ∅
20: end for
21: return S
22: end procedure
23: end data structure

Proof. The correctness follows from the framework of [KNPW11], and combining tail estimation
(Lemma I.4) and norm estimation.

We next analyze the running time of our data structure in the following lemma:
Lemma I.2. The time complexity of our data structure (Algorithm 10, Algorithm 11 and Algorithm 12)
is as follows:

• INIT takes time of O(ϵ−1(n+ d) log2(nd/δ)).

• ENCODESINGLE takes time of O(log2(nd/δ)).

• ENCODE takes time of O(d log2(nd/δ)).

• SUBTRACT takes time of O(ϵ−1 log2(nd/δ)).

36

Algorithm 13 Batched ℓp tail estimation algorithm, based on [NS19]

1: data structure LPLPTAILESTIMATION
2: members
3: m ▷ m is the sketch size
4: {gj,t}j∈[d],t∈[m] ▷ random variable that sampled i.i.d. from distribution Dp

5: {δj,t}j∈[d],t∈[m] ▷ Bernoulli random variable with E[δj,t] = 1/(100k)
6: {yi,t}i∈[n],t∈[m] ▷ Counters
7: end members
8: public:
9: procedure INIT(n, k, p, C0, δ)

10: m← O(log(n/δ))
11: Choose {gj,t}j∈[d],t∈[m] to be random variable that sampled i.i.d. from distribution Dp

12: Choose {δj,t}j∈[d],t∈[m] to be Bernoulli random variable with E[δj,t] = 1/(100k) ▷ Matrix
A in Lemma I.4 is implicitly constructed based on gj,t and δj,t

13: initialize {yi,t}i∈[n],t∈[m] = {0}
14: end procedure
15:
16: procedure UPDATE(i ∈ [n], j ∈ [d], z ∈ R)
17: for t ∈ [m] do
18: yi,t ← yi,t + δj,t · gjt · z
19: end for
20: end procedure
21:
22: procedure SUBTRACT(i, j, k ∈ [n])
23: for t ∈ [m] do
24: yi,t ← yj,t − yk,t
25: end for
26: end procedure
27:
28: procedure QUERY(i ∈ [n])
29: V ← mediant∈[m] |yi,t|2
30: return V
31: end procedure

• DECODE takes time of O(ϵ−2 log2(nd/δ)).

Proof. We first notice that L = log2 d and δ′ = ϵδ/(12(log(d) + 1)).

For the procedure INIT (Algorithm 10), Line 22 takes time

O(Lϵ−1n log(n/δ′)) = O(ϵ−1n log2(δ−1ϵ−1nd log(d)).

Line 25 takes time O((n+ d) log(n/δ)). Taking together, we have the total running time of INIT is
O(ϵ−1(n+ d) log2(δ−1ϵ−1nd log(d))

For the procedure ENCODESINGLE (Algorithm 11), Line 4 takes time of

O(L log(n/δ′)) = O(log2(ϵ−1δ−1nd log(d))).

Line 6 takes time of O(log(n/δ)). Taking together we have the total running time of ENCODESINGLE

to be O(log2(ϵ−1δ−1nd log(d))).

For the procedure ENCODE (Algorithm 11), it runs ENCODESINGLE for d times, so its running time
is O(d log2(ϵ−1δ−1nd log(d))).

For the procedure SUBTRACT (Algorithm 12), Line 4 runs in time

O(Lϵ−1 log(n/δ′)) = O(ϵ−1 log2(ϵ−1δ−1nd log(d))).

Line 6 runs in time O(log(n/δ)). So the total running time is O(ϵ−1 log2(ϵ−1δ−1nd log(d))).

37

For the procedure DECODE (Algorithm 12), Line 10 runs in time O(log(n/δ)). Line 14 runs in time

O(Lϵ−2 log(n/δ′)) = O(ϵ−2 log2(ϵ−1δ−1nd log(d))).

So the total running time is O(ϵ−2 log2(ϵ−1δ−1nd log(d)))

Thus we complete the proof.

The space complexity of our data structure is stated in below.
Lemma I.3. Our batch heavy hitter data structure (Algorithm 10, Algorithm 11 and Algorithm 12)
takes the space of

O(ϵ−1(n+ d) log2(ϵ−1δ−1nd log(d))).

Proof. Our data structure has these two parts to be considered:

• The instantiations of FPEST we maintain.

• The instantiation of LPLPTAILESTIMATION we maintain .

The first part takes the space of

O(Lϵ−1n log(n/δ′)) = O(ϵ−1n log2(ϵ−1δ−1nd log(d))).

And the second part takes the space of O(d log(n/δ)). Adding them together we complete the
proof.

I.2 Lp Tail Estimation

[NS19] provide a linear data structure LPLPTAILESTIMATION(x, k, p, C0, δ) that can output the
estimation of the contribution of non-heavy-hitter entries. We restate their Lemma as followed.
Lemma I.4 (Lemma C.4 of [NS19]). Let C0 ≥ 1000 denote some fixed constant. There is an
oblivious construction of matrix A ∈ Rm×n with m = O(log(1/δ)) along with a decoding procedure
LPLPTAILESTIMATION(x, k, p, C0, δ) such that, given Ax, it is possible to output a value V in time
O(m) such that

1

10k
∥xC0k

∥pp ≤ V ≤ 1

k
∥xk∥

p
p,

holds with probability 1− δ.
Lemma I.5. The running time of the above data structure is

• INIT runs in time of O((n+ d) log(n/δ))

• UPDATE runs in time of O(log(n/δ))

• SUBTRACT runs in time of O(log(n/δ))

• QUERY runs in time of O(log(n/δ))

And its space is O(d log(n/δ)).

I.3 Lp Norm Estimation

Following the work of [KNW10], we provide a linear sketch satisfying the following requirements.
Lemma I.6 ([KNW10]). There is an linear sketch data structure FPEST using space of

O(ϵ−1ϕ−2n log(n/δ))

and it provide these functions:

• INIT(n ∈ Z+, d ∈ Z+, l ∈ Z+, ϕ, ϵ, δ): Initialize the sketches, running in time
O(ϵ−1n log(n/δ))

38

Algorithm 14 Batched ℓp norm estimation algorithm, based on [KNW10]

1: data structure LPNORMEST
2: members
3: R, T ▷ parallel parameters
4: m ▷ Sketch size
5: {yir,t}i∈[n],r∈[R],t∈[T] ⊂ Rm ▷ Sketch vectors
6: {A}r,t ⊂ Rm×2l ▷ Sketch matrices
7: {ht}t∈[T] : {0, . . . , 2l} → [R] ▷ hash functions
8: end members
9:

10: public:
11: procedure INIT(n, d, l, ϕ, ϵ)
12: R← ⌈1/ϵ⌉
13: T ← Θ(log(n/δ))
14: m← O(1/ϕ2)
15: for i ∈ [n], r ∈ [R], t ∈ [T] do
16: yir,t ← 0 ▷ Sketch vectors
17: end for
18: for i ∈ [n], r ∈ [R], t ∈ [T] do
19: generate Ar,t ∈ Rm×2l ▷ See [KNW10] for details
20: end for
21: initialize h
22: end procedure
23:
24: procedure UPDATE(i ∈ [n], j ∈ [d], z ∈ R)
25: ξ ← j · 2l/d
26: for t ∈ [T] do
27: yiht(ξ),t

← yiht(ξ),t
+Aht(ξ),ti

l
j,z ▷ ilj,z is define to be the 2l-dimensional vector with

j-th entry of z and others to be 0
28: end for
29: end procedure
30:
31: procedure SUBTRACT(i, j, k ∈ [n])
32: for r ∈ [R], t ∈ [T] do
33: yir,t ← yjr,t − ykr,t
34: end for
35: end procedure
36:
37: procedure QUERY(i ∈ [n], ξ ∈ [2l])
38: for t ∈ [T] do
39: Vht(ξ),t ← medianζ∈[m] y

i
r,t,ζ/median(|Dp|) ▷ Definition A.5

40: end for
41: V ← mediant∈[T] Vht(ξ),t

42: return V
43: end procedure

• UPDATE(i ∈ [n], j ∈ [d], z ∈ R): Update the sketches, running in time O(log(n/δ))

• SUBTRACT(i, j, k ∈ [n]): Subtract the sketches, running in time O(ϵ−1ϕ−2 log(n/δ))

• QUERY(i ∈ [n], ξ ∈ [2l]): This function will output a V satisfying

(1− ϕ) · Fi(l, ξ) ≤ V ≤ (1 + ϕ) · (Fi(l, ξ) + 5ϵ∥xi∥22),

39

where F (l, ξ) is defined as

Fi(l, ξ) :=

ξ+1

2l
d−1∑

j= ξ

2l
d

|xi,j |2,

running in time O(ϕ−2 log(n/δ))

We choose ϕ to be constant when we use the above Lemma.

40

