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Abstract

In the Distance Oracle problem, the goal is to preprocess n vectors x1, x2, . . . , xn

in a d-dimensional metric space (Xd, ∥ · ∥l) into a cheap data structure, so that
given a query vector q ∈ Xd and a subset S ⊆ [n] of the input data points, all
distances ∥q − xi∥l for xi ∈ S can be quickly approximated (faster than the trivial
∼ d|S| query time). This primitive is a basic subroutine in machine learning, data
mining and similarity search applications. In the case of ℓp norms, the problem is
well understood, and optimal data structures are known for most values of p.
Our main contribution is a fast (1 ± ε) distance oracle for any symmetric norm
∥ · ∥l. This class includes ℓp norms and Orlicz norms as special cases, as well as
other norms used in practice, e.g. top-k norms, max-mixture and sum-mixture
of ℓp norms, small-support norms and the box-norm. We propose a novel data
structure with Õ(n(d+mmc(l)2)) preprocessing time and space, and tq = Õ(d+
|S| ·mmc(l)2) query time, for computing distances to a subset S of data points,
where mmc(l) is a complexity-measure (concentration modulus) of the symmetric
norm. When l = ℓp , this runtime matches the aforementioned state-of-art oracles.

1 Introduction

Estimating and detecting similarities in datasets is a fundamental problem in computer science,
and a basic subroutine in most industry-scale ML applications, from optimization [CMF+20,
CLP+20, XSS21] and reinforcement learning [SSX21], to discrepancy theory [SXZ22] and co-
variance estimation [Val12, Alm19], Kernel SVMs [CS09, SSSSC11], compression and clustering
[IRW17, MMR22], to mention a few. Such applications often need to quickly compute distances
of online (test) points to a subset of points in the input data set (e.g., the training data) for transfer-
learning and classification. These applications have motivated the notion of distance oracles (DO)
[Pel00, GPPR04, WP11]: In this problem, the goal is to preprocess a dataset of n input points
X = (x1, x2, . . . , xn) in some d-dimensional metric space, into a small-space data structure which,
given a query vector q and a subset S ⊆ [n], can quickly estimate all the distances d(q, xi) of q to S
(note that the problem of estimating a single distance d(q, xi) is not interesting in Rd, as this can be
trivially done in O(d) time, which is necessary to merely read the query q). The most well-studied
case (in both theory and practice) is when the metric space is in fact a normed space, i.e., the data
points {xi}i∈[n] ∈ Rd are endowed with some predefined norm ∥ · ∥, and the goal is to quickly
estimate ∥xi− q∥ simultaneously for all i, i.e., in time≪ nd which is the trivial query time. Distance
oracles can therefore be viewed as generalizing matrix-vector multiplication: for the inner-product
distance function ⟨xi, q⟩, the query asks to approximate X · q in≪ nd time.
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For the most popular distance metrics—the Euclidean distance (ℓ2-norm) and Manhattan dis-
tance (ℓ1-norm)—classic dimension-reduction (sketching) provide very efficient distance oracles
[JL84, AC09, LDFU13]. However, in many real-world problems, these metrics do not adequately
capture similarities between data points, and a long line of work has demonstrated that more com-
plex (possibly learnable) metrics can lead to substantially better prediction and data compression
[DKJ+07]. In particular, many works over the last decade have been dedicated to extending various
optimization problems beyond Euclidean/Manhattan distances, for example in (kernel) linear regres-
sion [SWY+19], approximate nearest neighbor [ANN+17, ANN+18], sampling [LSV18], matrix
column subset selection [SWZ19], and statistical queries [LNRW19].

For ℓp norms, the DO problem is well-understood [BYJKS04], where the standard tool for construct-
ing the data structure is via randomized linear sketching : The basic idea is to reduce the dimension (d)
of the data points by applying some sketching matrix Φ ∈ Rm×d (m≪ d) to each data point xi and
store the sketch Φxi ∈ Rm. For a query point q, linearity then allows to estimate the distance from
Φ(q − xi). The seminal works of [JL84, AMS99, CCF04, TZ12] developed polylogarithmic-size
sketching methods for the ℓ2-norm, which was extended, in a long line of work, to any ℓp norm with
0 < p < 2 [Ind06, KNPW11, CN20]. For p > 2, the sketch-size (d) becomes polynomial, yet still
sublinear in d [SS02, BYJKS04].

In this work, we consider general symmetric norms, which generalize ℓp norms. More formally, a
norm l : Rd → R is symmetric if, for all x ∈ Rd and every d× d permutation matrix P , it satisfies
l(Px) = l(x) and also l(|x|) = l(x), where |x| is the coordinate-wise absolute value of x (for a
broader introduction, see [Bha97] Chapter IV). Important special cases of symmetric norms are ℓp
norms and Orlicz norms [ALS+18], which naturally arise in harmonic analysis and model data with
sub-gaussian properties. Other practical examples of symmetric norms include top-k norms, max-mix
of ℓp norms, sum-mix of ℓp norms, the k-support norm [AFS12] and the box-norm [MPS14].

Several recent works have studied dimension-reduction (sketching) for special cases of symmetric
norms such as the Orlicz norm [BBC+17, SWY+19, ALS+18], for various numerical linear algebra
primitives [SWZ19]. These sketching techniques are quite ad-hoc and are carefully tailored to the
norm in question. It is therefore natural to ask whether symmetry alone is enough to guarantee
dimensionality-reduction for symmetric similarity search, in other words:

Is there an efficient (1 + ϵ)-distance oracle for general symmetric norms?

By “efficient”, we mean small space and preprocessing time (ideally ∼ nd), fast query time (≪ d|S|
for a query (q, S ⊆ [n])) and ideally supporting dynamic updates to xi’s in Õ(d) time. Indeed,
most ML applications involve rapidly-changing dynamic datasets, and it is becoming increasingly
clear that static data structures do not adequately capture the requirements of real-world applications
[JKDG08, CMF+20, CLP+20]. As such, it is desirable to design a dynamic distance oracle which
has both small update time (tu) for adding/removing a point xi ∈ Rd, and small query time (tq) for
distance estimation. We remark that most known DOs are dynamic by nature (as they rely on linear
sketching techniques), but for general metrics (e.g., graph shortest-path or the ℓ∞ norm) this is much
less obvious, and indeed linearity of encoding/decoding will be a key challenge in our data structure
(see next section). The problem is formally defined as follows:

Definition 1.1 (Symmetric-Norm Distance Oracles). Let ∥ · ∥sym be the symmetric norm. The
Symmetric-norm Distance Oracle is a data structure that efficiently supports any sequence of the
following operations:

• INIT({x1, x2, · · · , xn} ⊂ Rd, ϵ ∈ (0, 1), δ ∈ (0, 1)). The data structure takes n data points
{x1, x2, . . . , xn} ⊂ Rd, an accuracy parameter ϵ and a failure probability δ as input.

• UPDATEX(z ∈ Rd, i ∈ [n]). Update the data structure with the i-th new data point z.

• ESTPAIR(i, j ∈ [n]) Outputs a number pair such that (1 − ϵ)∥xi − xj∥sym ≤ pair ≤
(1 + ϵ) · ∥xi − xj∥sym with probability at least 1− δ.

• QUERY(q ∈ Rd). Outputs a vector dst ∈ Rn such that ∀i ∈ [n], (1 − ϵ)∥q − xi∥sym ≤
dsti ≤ (1 + ϵ)∥q − xi∥sym. with probability at least 1− δ.

where ∥x∥sym is the symmetric norm of the vector x.
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This problem can be viewed as an online version of the (approximate) closest-pair problem [Val12],
which asks to find the closest pair of points among an offline batch of data points X = x1, . . . , xn ∈
Rd, or equivalently, the smallest entry of the covariance matrix XX⊤. One major (theoretical)
advantage of the offline case is that it enables the use of fast matrix-multiplication (FMM) to
speed-up the computation of the covariance matrix [Val12, AWY14, AWY18, Alm19] (i.e., sub-
linear amortized per query). By contrast, in the online setting such speedups are conjectured to be
impossible [HKNS15, LW17].

Notations. For any positive integer n, we use [n] to denote {1, 2, . . . , n}. For any function f ,
we use Õ(f) to denote f · poly(log f). We use Pr[·] to denote probability. We use E[·] to denote
expectation. We use both l(·) and ∥ · ∥sym to denote the symmetric norm. We use ∥ · ∥2 to denote the
entry-wise ℓ2 norm. We define a tail notation which is very standard in sparse recover/compressed
sensing literature. For any given vector x ∈ Rd and an integer k, we use x

[k]
or xtail(k) to denote

the vector that without (zeroing out) top-k largest entries (in absolute). For a vector x, we use x⊤ to
denote the transpose of x. For a matrix A, we use A⊤ to denote the transpose of A. We use 1n denote
a length-n vector where every entry 1. We use 0n denote a length-n vector where every entry is 0.

1.1 Our Results

Two important complexity measures of (symmetric) norms, which capture their “intrinsic dimen-
sionality”, are the concentration modulus (mc) and maximum modulus (mmc) parameters. We now
define these quantities along the lines of [BBC+17, SWY+19].

Definition 1.2 (Modulus of concentration (mc)). Let X ∈ Rn be uniformly distributed on Sn−1,
the ℓ2 unit sphere. The median of a symmetric norm l is the (unique) value Ml such that
Pr [l(X) ≥Ml] ≥ 1/2 and Pr [l(X) ≤Ml] ≥ 1/2. Similarly, bl denotes the maximum value
of l(x) over x ∈ Sn−1. We call the ratio

mc(l) := bl/Ml

the modulus of concentration of the norm l.

For every k ∈ [n], the norm l induces a norm l(k) on Rk by setting

l(k)((x1, x2, . . . , xk)) := l((x1, x2, . . . , xk, 0, . . . , 0)),

where (x1, x2, . . . , xk, 0, . . . , 0) ∈ Rn.

Definition 1.3 (Maximum modulus of concentration (mmc)). Define the maximum modulus of
concentration of the norm l as

mmc(l) := max
k∈[n]

mc(l(k)) = max
k∈[n]

bl(k)

Ml(k)

Next, we present a few examples (in Table 1) for different norm l’s mmc(l).

Norm l mmc(l)
ℓp(p ≤ 2) Θ(1)

ℓp(p > 2) Θ(d1/2−1/p)

top-k norms Θ̃(
√

d/k)
k-support norms and the box-norm O(log d)
max-mix and sum-mix of ℓ1 and ℓ2 O(1)
Orlicz norm ∥ · ∥G O(

√
CG log d)

Table 1: Examples of mmc(l), where max-mix of ℓ1 and ℓ2 is defined as max{∥x∥2, c∥x∥1} for a
real number c, sum-mix of ℓ1 and ℓ2 is defined as ∥x∥2 + c∥x∥1 for a real number c, and CG of
Orlicz norm is defined as the number that for all 0 < x < y, G(y)/G(x) ≤ CG(y/x)

2.

We are now ready to state our main result:
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Theorem 1.4 (Main result, informal version of Theorem D.1). Let ∥ · ∥l be any symmetric norm on
Rd. There is a data structure for the online symmetric-norm Distance Oracle problem (Definition
1.1), which uses n(d+mmc(l)2) · poly(1/ϵ, log(nd/δ)) space, supporting the following operations:

• INIT({x1, x2, . . . , xn} ⊂ Rd, ϵ ∈ (0, 1), δ ∈ (0, 1)): Given n data points
{x1, x2, . . . , xn} ⊂ Rd, an accuracy parameter ϵ and a failure probability δ as input,
the data structure preprocesses in time

n(d+mmc(l)2) · poly(1/ϵ, log(nd/δ)).

Note that mmc() is defined as Definition 1.3.

• UPDATEX(z ∈ Rd, i ∈ [n]): Given an update vector z ∈ Rd and index i ∈ [n], the data
structure receives z and i as inputs, and updates the i-th data point xi ← z, in

d · poly(1/ϵ, log(nd/δ))

time.

• QUERY(q ∈ Rd,S ⊆ [n]): Given a query point q ∈ Rd and a subset of the input points
S ⊆ [n], the QUERY operation outputs a (1 + ϵ)- multiplicative approximation to each
distance from q to points in S, in time

(d+ |S| ·mmc(l)2) · poly(1/ϵ, log(nd/δ))

i.e. it provides a set of estimates {dsti}i∈S such that:

∀i ∈ S, (1− ϵ)∥q − xi∥l ≤ dsti ≤ (1 + ϵ)∥q − xi∥l
with probability at least 1− δ.

• ESTPAIR(i, j ∈ [n]) Given indices i, j ∈ [n], the ESTPAIR operation takes i and j as
input and approximately estimates the symmetric norm distances from i-th to the j-th point
xi, xj ∈ Rd in time mmc(l)2 · poly(1/ϵ, log(nd/δ)) i.e., it provides an estimated distance
pair such that:

(1− ϵ)∥xi − xj∥l ≤ pair ≤ (1 + ϵ)∥xi − xj∥l
with probability at least 1− δ.

Roadmap. In Section 2, we give an overview of the techniques that we mainly use in the work. In
Section 3 we give an introduction of the Sparse Recovery Data we use for sketching. In Section 4 we
analyze the running time and space of our data structure with their proofs, respectively. In Section 5
we show the correctness of our data structure and give its proof. Finally in Section 6 we conclude our
work.

2 Technique Overview

Our distance oracle follows the “sketch-and-decode” approach, which was extensively used in many
other sublinear-time compressed sensing and sparse recovery problems [Pri11, HIKP12, LNNT16,
NS19, SSWZ22]. The main idea is to compress the data points into smaller dimension by computing,
for each data point xi ∈ Rd, a (randomized) linear sketch Φ · xi ∈ Rd′

with d′ ≪ d at preprocessing
time, where Φxi is an unbiased estimator of ∥xi∥. At query time, given a query point q ∈ Rd, we
analogously compute its sketch Φq. By linearity of Φ, the distance between q and xi (i.e., ℓ(q − xi))
can be trivially decoded from the sketch difference Φq − Φxi. As we shall see, this simple virtue of
linearity is less obvious to retain when dealing with general symmetric norms.

Layer approximation Our algorithm uses the layer approximation method proposed by Indyk and
Woodruff in [IW05] and generalized to symmetric norms in [BBC+17, SWY+19]. Since symmetric
norms are invariant under reordering of the coordinates, the main idea in [IW05] is to construct a
“layer vector” as follows: for a vector v ∈ Rd, round (the absolute value of) each coordinate to the
nearest power αi for some fixed α ∈ R and i ∈ N, and then sort the coordinates in an increasing order.
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This ensures that the i-th layer contains all the coordinates j ∈ [d] satisfying: αi−1 < |vj | ≤ αi. In
particular, the layer vector of v has the form

L(v) := (α1, . . . , α1︸ ︷︷ ︸
b1 times

, α2, . . . , α2︸ ︷︷ ︸
b2 times

, · · · , αP , . . . , αP︸ ︷︷ ︸
bP times

, 0, . . . , 0) ∈ Rd,

where bi is the number of coordinates in layer-i. More importantly, since the norm is symmetric, the
layer vector L(v) has a succinct representation: (bi)i∈[P ].

Then, it suffices to estimate bi for each i ∈ [P ], where the Indyk-Woodruff sketching technique can
be used to approximate the vector. At the i-th layer, each coordinate of v is sampled with probability
P/bi, and then the algorithm identifies the ℓ2-heavy-hitters of the sampled vector. [BBC+17] gave a
criterion for identifying the important layers, whose heavy-hitter coordinates in the corresponding
sampled vectors, is enough to recover the entire symmetric norm ∥v∥sym.

Unfortunately, this technique for norm estimation does not readily translate to estimating distances
efficiently:

• Too many layers: In previous works, each data point xi is sub-sampled independently in
R layers, i.e, generates R subsets of coordinates S1

i , . . . , S
R
i ⊂ [d]. The sketch of the

query point S(q) then needs to be compared to each S(xi) in every layer. Since there are
R = Ω(n) layers in [BBC+17] of size Ω(d) across all data points, the total time complexity
will be at least Ω(nd), which is the trivial query time.

• Non-linearity: The aforementioned sketching algorithms [BBC+17] involve nonlinear
operations, and thus cannot be directly used for distance estimation.

• Slow decoding: The aforementioned sketches take linear time to decode the distance from
the sketch, which is too slow for our application.

To overcome these challenges, we use the following ideas:

Technique I: shared randomness To reduce the number of layers, we let all the data points use
the same set of layers. That is, in the initialization of our algorithm, we independently sample R
subsets S1, . . . , SR with different probabilities. Then, for each data point xi, we consider (xi)Sj

as the sub-sample for the j-th layer, and perform sketch on it. Hence, the number of different layer
sets is reduced from nt to t, where t is the number of layers for each data point. We share the layers
for all points to remove the n factor. For a query point q, we just need to compute the sketches for
(q)S1 , . . . , (q)SR . And the distance between q and xi can be decoded from {Φ(xi)Sj −Φ(q)Sj}j∈[R].
We also prove that the shared randomness in all data points will not affect the correctness of layer
approximation.

Technique II: linearization We choose a different sketching method called BATCHHEAVYHITTER
(see Theorem D.3 for details) to generate and maintain the linear sketches, which allows us to decode
the distance from sketch difference.

Technical III: locate-and-verify decoding We design a locate-and-verify style decoding method
to recover distance from sketch. In our data structure, we not only store the sketch of each sub-sample
vector, but also the vector itself. Then, in decoding a sketch, we can first apply the efficient sparse-
recovery algorithm to identify the position of heavy-hitters. Next, we directly check the entries at
those positions to verify that they are indeed “heavy” (comparing the values with some threshold),
and drop the non-heavy indices. This verification step is a significant difference from the typical
sparse recovery approaches, which employ complex (and time-consuming) subroutines to reconstruct
the values of the heavy-hitter coordinates. Instead, our simple verification procedure eliminates all
the false-positive heavy-hitters, therefore dramatically reducing the running time of the second step,
which can now be performed directly by reading-off the values from the memory.

With these three techniques, we obtain our sublinear-time distance estimation algorithm. Our data
structure first generate a bunch of randomly selected subsets of coordinates as the layer sets. Then,
for each data point, we run the BATCHHEAVYHITTER procedure to sketch the sub-sample vector in
each layer1. In the query phase, we call the DECODE procedure of BATCHHEAVYHITTER for the

1The total sketch size of each data point is mmc(l)2 · poly log d. In the ℓp-norm case with p > 2,
mmc(l) = d1/2−1/p (see Table 1) and our sketch size is Õ(d1−2/p), matching the lower bound of ℓp-sketching.
When p ∈ (0, 2], mmc(l) = Θ(1) and our sketch size is Õ(1), which is also optimal.
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sketch differences between the query point q and each data point xi, and obtain the heavy hitters of
each layer. We then select some “important layers” and use them to approximately recover the layer
vector L(q − xi), which gives the estimated distance ∥q − xi∥sym.

Finally, we summarize the time and space costs of our data structure. Let ϵ be the precision parameter
and δ be the failure probability parameter. Our data structure achieves Õ(n(d + mmc(l)2))-time
for initialization , Õ(d)-time per data point update, and Õ(d + n ·mmc(l)2))-time per query. As
for space cost, our data structure uses the space of Õ(n(d+mmc(l)2)) in total. Note that mmc is
defined as Defnition 1.3.

3 Sparse Recovery Data Structure

We design a data structure named BATCHHEAVYHITTER to generate sketches and manage them. In
our design, it is a “linear sketch” data structure, and providing the following functions:

• INIT(ϵ ∈ (0, 0.1), n, d). Create a set of Random Hash functions and all the n copies of
sketches share the same hash functions. This step takes Tinit(ϵ, n, d) time.

• ENCODE(i ∈ [n], z ∈ Rd, d). This step takes Tencode(d) encodes z into i-th sketched
location and store a size Sspace linear sketch.

• ENCODESINGLE(i ∈ [n], j ∈ [d], z ∈ R, d). This step takes Tencodesingle(d) updates one
sparse vector ejz ∈ Rd into i-th sketched location.

• SUBTRACT(i, j, l ∈ [n]). Update the sketch at i-th location by j-th sketch minus l-th sketch.
• DECODE(i ∈ [n], ϵ ∈ (0, 0.1), d). This step takes Tdecode(ϵ, d) such that it returns a set
L ⊆ [d] of size |L| = O(ϵ−2) containing all ϵ-heavy hitters i ∈ [n] under ℓp. Here we say i
is an ϵ-heavy hitter under ℓ2 if |xi| ≥ ϵ · ∥x

[ϵ−2]
∥2 where x

[k]
denotes the vector x with the

largest k entries (in absolute value) set to zero. Note that the number of heavy hitters never
exceeds 2/ϵ2.

With this data structure, we are able to generate the sketches for each point, and subtract each other
with its function. And one can get the output of heavy hitters of each sketch stored in it with DECODE
function. More details are deferred to Section D.2.

4 Running Time and Space of Our Algorithm

We first analyze the running time of different procedures of our data structure DISTANCEON-
SYMMETRICNORM. See Algorithm 5, with the linear sketch technique, we spend the time of
Õ(n(d+mmc(l)2)) for preprocessing and generate the sketches stored in the data structure. When
updating the data with Algorithm 6, we spend Õ(d) to update the sketch. And when a query comes
(Algorithm 7), we spend Õ(d+ n ·mmc(l)2)) to get the output distance estimation. The lemmas of
running time and their proof are shown below in this section.
Lemma 4.1 (INIT time, informal). Given data points {x1, x2, . . . , xn} ⊂ Rd, an accuracy parameter
ϵ ∈ (0, 1), and a failure probability δ ∈ (0, 1) as input, the procedure INIT (Algorithm 5) runs in time

O(n(d+mmc(l)2) · poly(1/ϵ, log(nd/δ))).

Proof. The INIT time includes these parts:

• Line 12 takes O(RLU · Tinit(
√
β, n, d)) to initialize sketches

• Line 17 to Line 19 take O(RUdL) to generate the bmap;

• Line 24 takes O(ndRUL · Tencodesingle(d)) to generate sketches

By Theorems D.3, we have

• Tinit(
√
β, n, d)) = n ·O(β−1 log2 d) = O(n ·mmc(l)2 log7(d)ϵ−5),
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Algorithm 1 Data structure for symmetric norm estimation: members, init, informal version of
Algorithm 4 and Algorithm 5

1: data structure DISTANCEONSYMMETRICNORM ▷ Theorem D.1
2: members
3: {xi}ni=1 ∈ Rd

4: {Sr,l,u}r∈[R],l∈[L],u∈[U ] ▷ A list of the BATCHHEAVYHITTER

5: {Hr,l,u}r∈[R],l∈[L],u∈[U ] ⊂ [d]× R
6: end members
7:
8: public:
9: procedure INIT({x1, · · · , xn} ⊂ Rd, δ, ϵ) ▷ Lemma 4.1

10: Initialize the sparse-recovery data structure {Sr,l,u}
11: Create {bmapr,l,u} shared by all i ∈ [n] ▷ {bmapr,l,u} is list of a layer set map
12: for i ∈ [n], j ∈ [d] do
13: if bmapr,u,l[j] = 1 then
14: Sample xi,j into each subvector xr,u,l,i

15: end if
16: end for
17: Encode {xr,u,l,i}i∈[n] into {Sr,l,u}
18: end procedure
19: end data structure

Algorithm 2 Data structure for symmetric norm estimation: query, informal version of Algorithm 7

1: data structure DISTANCEONSYMMETRICNORM
2: public:
3: procedure QUERY(q ∈ Rd) ▷ Lemma 4.3, 5.1
4: Encode q into {Sr,l,u}
5: for i ∈ [n] do
6: Subtract the sketch of xi and q, get the estimated heavy-hitters of q − xi

7: Decode the sketch and store returned estimation of heavy-hitters into Hr,l,u

8: for u ∈ [U ] do
9: if Hr,l,u provide correct indices of heavy hitters then

10: Select it as good set and store it in Hr,l

11: end if
12: end for
13: Generate estimated layer sizes {cik}k∈[P ]

14: dsti ← LAYERVETCORAPPROX(α, ci1, c
i
2, . . . , c

i
P , d)

15: Reset {Hr,l,u} for next distance
16: end for
17: return {dsti}i∈[n]

18: end procedure
19: end data structure

• Tencodesingle(d) = O(log2(d)).

Adding them together we got the time of

O(RLUTinit(
√

β, n, d)) +O(RUdL) +O(ndRUL · Tencodesingle(d))

= O(RLU(Tinit(
√

β, n, d) + nd · Tencodesingle(d)))
= O(ϵ−4 log(1/δ) log4(d) · log(d) · log(d2/δ · log(nd))(n ·mmc(l)2 log7(d)ϵ−5 + nd log2(d)))

= O(n(d+mmc(l)2) · poly(1/ϵ, log(nd/δ))),

where the first step follows from merging the terms, the second step follows from the definition of
R,L,U, Tencodesingle(d), Tinit, the third step follows from merging the terms.

Thus, we complete the proof.
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Lemma 4.2 (UPDATE time, informal). Given a new data point z ∈ Rd, and an index i where it
should replace the original data point xi ∈ Rd. The procedure UPDATE (Algorithm 6) runs in time

O(d · poly(1/ϵ, log(nd/δ))

Proof. The UPDATE operation calls BATCHHEAVYHITTER.ENCODE for RLU times, so it has the
time of

O(RLU · Tencode(d)) = O(ϵ−4 log(1/δ) log4(d) · log(d) · log(d2/δ) · d log2(d) · log(nd))
= O(ϵ−4d log9(nd/δ))

where the first step follows from the definition of R,L,U, Tencode(d), the second step follows from

log(1/δ) log4(d) log(d) log(d2/δ) log2(d) log(nd)

= (log(1/δ))(log7 d)(2 log d+ log(1/δ)) log(nd)

= O(log9(nd/δ)).

Thus, we complete the proof.

Here, we present a QUERY for outputting all the n distances. In Section E, we provide a more general
version, which can take any input set S ⊆ [n], and output distance for only them in a shorter time that
proportional to |S|.
Lemma 4.3 (QUERY time, informal). Given a query point q ∈ Rd, the procedure QUERY (Algo-
rithm 7) runs in time

O((d+ n ·mmc(l)2) · poly(1/ϵ, log(nd/δ))).

Proof. The QUERY operation has the following two parts:

• Part 1: Line 5 takes O(RLU · Tencode) time to call ENCODE to generate sketches for q.

• Part 2: For every i ∈ [n]:

– Line 13 takes O(RLU · Tsubtract) time to compute sketch of the difference between q
and xi, and store the sketch at index of n+ 1.

– Line 14 takes O(RLU · Tdecode) time to decode the BATCHHEAVYHITTER and get
estimated heavy hitters of q − xi.

– Line 16 to Line 24 takes O(RLU · 2/β) time to analyze the BATCHHEAVYHITTER
and get the set of indices, where 2/β is the size of the set.

– Line 30 takes O(LP · 2/β) time to compute size of the layer sets cut by α.
– Line 32 to Line 36 takes O(PL) time to compute the estimation of each layer.

The total running time of this part is:
n · (O(RLU · Tsubtract) +O(RLU · Tdecode) +O(RLU · 2/β) +O(LP · 2/β) +O(LP ))

= O(nL(RU(Tsubtract + Tdecode + β−1) + Pβ−1))

time in total.

Taking these two parts together we have the total running time of the QUERY procedure:
O(RLU · Tencode) +O(nL(RU(Tsubtract + Tdecode + β−1) + Pβ−1))

= O(RLU(Tencode + n · Tsubtract + n · Tdecode + nβ−1) + nLPβ−1)

= O(ϵ−4 log6(d/δ) log(nd)(d log2(d) + nβ−1 log2(d)) + nϵ−1 log2(d)β−1)

= O((d+ n ·mmc(l)2) · poly(1/ϵ, log(nd/δ)))
where the first step follows from the property of big O notation, the second step follows from the
definition of R,L,U, Tencode, Tencode, Tsubtract, Tdecode (Theorem D.3) , P , the third step follows
from merging the terms.

Thus, we complete the proof.
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Next, we analyze the space usage in our algorithm. We sketch the proof in below and delay the full
proof into Section G.
Lemma 4.4 (Space complexity of our data structure, informal version of Lemma G.1). Our data
structure (Algorithm 1 and 2) uses space

O(n(d+mmc(l)2) · poly(1/ϵ, log(d/δ))).

Proof Sketch. First, we store the original data with space for x = O(nd).

Second, we store the sub stream/sample of original data with

space for x = Õ(ϵ−4nd).

Third, our data structure holds a set {Sr,l,u}r∈[R],l∈[L],u∈[U ], each Sr,l,u of size of Õ(n · β−1). We
show that total space needed is

space for S = Õ(ϵ−9n ·mmc(l)2).

Forth, we hold a bit-map bmap of size O(RLUd), which uses the space of

space for bmap = Õ(ϵ−4d).

Fifth, in QUERY procedure, we generate a set of sets {Hr,l,u}r∈[R],l∈[L],u∈[U ], each of the sets has
size of O(β−1), so the whole set uses space of

space for H = Õ(ϵ−9 ·mmc(l)2).

By putting them together, the total space complexity is

space for x+ space for x+ space for S + space for bmap + space for H

= O(nd) + Õ(ϵ−4nd) + Õ(ϵ−9n ·mmc(l)2) + Õ(ϵ−4d) + Õ(ϵ−9 ·mmc(l)2)

= Õ(ϵ−9n(d+mmc(l)2)).

5 Correctness of Our Algorithm

The correctness of our distance oracle is proved in the following lemma:
Lemma 5.1 (QUERY correctness). Given a query point q ∈ Rd, the procedure QUERY (Algorithm 7)
takes q as input and approximately estimates {dsti}i∈[n] the distance between q and every xi with
the norm l, such that for every dsti, with probability at least 1− δ, we have

(1− ϵ) · ∥q − xi∥sym ≤ dsti ≤ (1 + ϵ) · ∥q − xi∥sym

Proof. Without loss of generality, we can consider a fixed i ∈ [n]. For simplicity, we denote xi by x.

Let v := q − x. By Lemma C.3, it is approximated by its layer vector L(v), namely,

∥v∥sym ≤ ∥L(v)∥sym ≤ (1 +O(ϵ))∥v∥sym, (1)

where ∥ · ∥sym is a symmetric norm, denoted also by l(·).
We assume without loss of generality that ϵ ≥ 1/ poly(d). Our algorithm maintains a data structure
that eventually produces a vector J (v), which is created with the layer sizes c1, c2, . . . , cP , where c’s
denotes the estimated layer sizes output by out data structure, and the b’s are the ground truth layer
sizes. We will show that with high probability, ∥J (v)∥sym approximates ∥L(v)∥sym. Specifically,
to achieve (1 ± ϵ)-approximation to ∥v∥sym, we set the approximation guarantee of the layer sets
(Definition C.1) to be ϵ1 := O( ϵ2

log(d) ) and the importance guarantee to be β0 := O( ϵ5

mmc(l)2 log5(d)
),

where mmc(l) is defined as Definition 1.3.
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Observe that the number of non-empty layer sets P = O(logα(d)) = O(log(d)/ϵ). Let Esucceed

denote the event (1 − ϵ1)bk ≤ ck ≤ bk. By Lemma F.1, it happens with high probability 1 − δ.
Conditioned on this event.

Denote by J (v) the vector generated with the layer sizes given by Line 35, and by L∗(v) the vector
L(v) after removing all buckets (Definition C.2) that are not β-contributing (Definition C.5), and
define J ∗(v) similar to L∗(v), where we set β := ϵ/P = O(ϵ2/ log(d)). Every β-contributing layer
is necessarily β0-important (Definition C.1) by Lemma C.7 and Lemma C.8 and therefore satisfies
ck ≥ (1− ϵ1)bk (Lemma F.1). We bound the error of ∥L∗(v)∥sym by Lemma C.6, namely,

(1−O(ϵ))∥L(v)∥sym ≤ (1−O(logα d) · β)∥L(v)∥sym ≤ ∥L∗(v)∥sym ≤ ∥L(v)∥sym.

where the first step follows from the definition of β, the second step and the third step follow from
Lemma C.6.

Then, we have

∥J (v)∥sym ≥ ∥J ∗(v)∥sym
= ∥L∗(v)\Lk1

(v) ∪ Jk1
(v) . . . \Lkκ

(v) ∪ Jkκ
(v)∥sym

≥ (1− ϵ1)
P ∥L∗(v)∥sym

≥ (1−O(ϵ))∥L∗(v)∥sym. (2)

where the first step follows from monotonicity (Lemma B.1), the second step follows from the
definition of J ∗(v), the third step follows from Lemma C.4, and the fourth step follows from the
definition of ϵ1 and P .

Combining Eq. (1) and (2), we have

(1−O(ϵ)) · ∥v∥sym ≤ ∥J ∗(v)∥sym ≤ ∥v∥sym, (3)

which bounds the error of ∥J ∗(v)∥sym as required. Note that, with Lemma C.6 we have

(1−O(ϵ)) · ∥J (v)∥sym ≤ ∥J ∗(v)∥sym ≤ ∥J (v)∥sym (4)

Combining the Eq.(3) and (4) we have

(1−O(ϵ)) · ∥v∥sym ≤ ∥J (v)∥sym ≤ (1 +O(ϵ)) · ∥v∥sym
Note that Esucceed has a failure probability of δ. Thus, we complete the proof.

6 Conclusion

Similarity search is the backbone of many large-scale applications in machine-learning, optimization,
databases and computational geometry. Our work strengthens and unifies a long line of work on
metric embeddings and sketching, by presenting the first Distance Oracle for any symmetric norm,
with nearly-optimal query and update times. The generality of our data structure allows to apply it as a
black-box for data-driven learned symmetric distance metrics [DKJ+07] and in various optimization
problems involving symmetric distances.

Our work raises several open questions for future study:

• The efficiency of our data structure depends on mmc(l), the concentration property of the
symmetric norm. Is this dependence necessary?

• Can we generalize our data structure to certain asymmetric norms ?
• Can we extend our symmetric-norm distance oracle to any (non-linear) metric space (i.e.,

graphs)?

We believe our work is also likely to influence other fundamental problems in high-dimensional
optimization and search, e.g, kernel linear regression, geometric sampling and near-neighbor search.
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graphs. Journal of Algorithms, 53(1):85–112, 2004.

[HIKP12] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse
fourier transform. In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing (STOC), pages 563–578, 2012.

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online
matrix-vector multiplication conjecture. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 21–30, 2015.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. Journal of the ACM (JACM), 53(3):307–323, 2006.

[IRW17] Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Practical data-dependent metric com-
pression with provable guarantees. Advances in Neural Information Processing Systems,
30, 2017.

[IW05] Piotr Indyk and David Woodruff. Optimal approximations of the frequency moments of
data streams. In Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, pages 202–208, 2005.

[JKDG08] Prateek Jain, Brian Kulis, Inderjit S Dhillon, and Kristen Grauman. Online metric
learning and fast similarity search. In NIPS, volume 8, pages 761–768. Citeseer, 2008.

[JL84] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

[KNPW11] Daniel M Kane, Jelani Nelson, Ely Porat, and David P Woodruff. Fast moment estima-
tion in data streams in optimal space. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 745–754, 2011.

[KNW10] Daniel M Kane, Jelani Nelson, and David P Woodruff. On the exact space complexity
of sketching and streaming small norms. In Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete Algorithms, pages 1161–1178. SIAM, 2010.

[LDFU13] Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster ridge regression
via the subsampled randomized hadamard transform. In Advances in neural information
processing systems (NIPS), pages 369–377, 2013.

[LNNT16] Kasper Green Larsen, Jelani Nelson, Huy L Nguyên, and Mikkel Thorup. Heavy hitters
via cluster-preserving clustering. In 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), pages 61–70. IEEE, 2016.

[LNRW19] Jerry Li, Aleksandar Nikolov, Ilya Razenshteyn, and Erik Waingarten. On mean
estimation for general norms with statistical queries. In Conference on Learning Theory
(COLT), pages 2158–2172. PMLR, 2019.

[LSV18] Yin Tat Lee, Zhao Song, and Santosh S Vempala. Algorithmic theory of odes and
sampling from well-conditioned logconcave densities. arXiv preprint arXiv:1812.06243,
2018.

12



[LW17] Kasper Green Larsen and Ryan Williams. Faster online matrix-vector multiplication.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 2182–2189. SIAM, 2017.

[MMR22] Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of
johnson–lindenstrauss transform for k-means and k-medians clustering. SIAM Journal
on Computing, (0):STOC19–269, 2022.

[MPS14] Andrew M McDonald, Massimiliano Pontil, and Dimitris Stamos. Spectral k-support
norm regularization. Advances in neural information processing systems, 27, 2014.

[NS19] Vasileios Nakos and Zhao Song. Stronger l2/l2 compressed sensing; without iterating.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 289–297, 2019.

[Pag13] Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computation
Theory (TOCT), 5(3):1–17, 2013.

[Pel00] David Peleg. Proximity-preserving labeling schemes. Journal of Graph Theory,
33(3):167–176, 2000.

[Pri11] Eric Price. Efficient sketches for the set query problem. In Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23-25, 2011, pages 41–56, 2011.

[SS02] Michael Saks and Xiaodong Sun. Space lower bounds for distance approximation in
the data stream model. In Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pages 360–369, 2002.

[SSSSC11] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos:
Primal estimated sub-gradient solver for svm. Mathematical programming, 127(1):3–30,
2011.

[SSWZ22] Zhao Song, Baocheng Sun, Omri Weinstein, and Ruizhe Zhang. Sparse
fourier transform over lattices: A unified approach to signal reconstruction.
http://arxiv.org/abs/2205.00658, 2022.

[SSX21] Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. Sublinear least-squares value
iteration via locality sensitive hashing. arXiv preprint arXiv:2105.08285, 2021.

[SWY+19] Zhao Song, Ruosong Wang, Lin Yang, Hongyang Zhang, and Peilin Zhong. Efficient
symmetric norm regression via linear sketching. Advances in Neural Information
Processing Systems, 32, 2019.

[SWZ19] Zhao Song, David Woodruff, and Peilin Zhong. Towards a zero-one law for column
subset selection. Advances in Neural Information Processing Systems, 32, 2019.

[SXZ22] Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification with inner
product search data structures. arXiv preprint arXiv:2204.03209, 2022.

[TZ12] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applica-
tions to linear probing and second moment estimation. SIAM J. Comput., 41(2):293–331,
2012.

[Val12] Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and juntas. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 11–20. IEEE, 2012.

[WP11] Oren Weimann and David Peleg. A note on exact distance labeling. Information
processing letters, 111(14):671–673, 2011.

[XSS21] Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear iteration cost
barrier for some well-known conditional gradient methods using maxip data-structures.
Advances in Neural Information Processing Systems (NeurIPS), 34, 2021.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] , we discuss the theoretical guar-

antee of the accuracy-efficiency tradeoff of our algorithm in Section 4 and Section E.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] . Our

theoretical work does not have explicitly negative societal impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] , we explicitly
stated the assumptions.

(b) Did you include complete proofs of all theoretical results? [Yes] , please refer to
Section 4, Section 5 and supplementary materials.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


