
Supplementary Material

1 Derivation of ELBO

We use maximum loglikelihood on sequence variables to derive the evidence lower bound (ELBO),

log p(x1:T |u) = log

∫
p(x1:T , z, s1:T |u)ds1:T dz

= log

∫
p(x1:T , z, s1:T |u)
q(z, st|x1:T ,u)

q(z, st|x1:T ,u)ds1:T dz

≥
∫

log

[
p(x1:T , z, s1:T |u)
q(z, st|x1:T ,u)

]
q(z, st|x1:T ,u)ds1:T dz

≥ Eq(z,st|x1:T ,u) log

[
p(x1:T , z, s1:T |u)
q(z, st|x1:T ,u)

]
(1)

where st = [qt,pt]. The joint distribution is factorised as,

p(x1:T , z, s1:T |u) = p(z)p(x1|q1, z)
T−1∏
t=1

p(xt+1|qt+1, z)p(qt+1,pt+1|qt,pt,u) (2)

Since, we transform the starting latent state s1 = [q1,p1] using a deterministic transformation
f(t,H;ω) = etH (where ω are the parameters of H matrix), we can write our transition distribution
as,

p(st+1|st,u) = p(st|st−1,u)

∣∣∣∣ dfdst
∣∣∣∣ = p(st|st−1,u)e

Tr(H) = p(s1|u)
t∏
eTr(H) (3)

where Tr is the trace operator and p(s1|u) = p(q1|u)p(p1|u). The transition model is reversible;
therefore, without loss of generality, we can replace a starting step 1 with any arbitrary t and unroll
both forward and backwards. We next equate (3) in the generative model defined in (2) that reduces
the factorisation to,

p(x1:T , z, s1:T |u) = p(z)p(x1|q1, z)p(qt|u)p(pt|u)
T−1∏

t′=1,̸=t

p(xt′|qt′)eTr(H) (4)

We factorise the variational distribution q(z, st|x1:T ,u) as,
q(z, st|x1:T ,u) = q(z|x1:T)q(qt|xt,u)q(pt|xt−w:t,u), st = [qt,pt] (5)

We now use the equations (5) and (4) to rewrite the ELBO as,

Eq(z|x1:T),q(qt|xt,u),q(pt|xt−w:t,u) log

[
p(z)p(qt|u)p(pt|u)p(x1|q1, z)

∏T
t′=1,̸=t p(xt′|qt′, z)eTr(H)

q(z|x1:T)q(qt|xt,u)q(pt|xt−w:t,u)

]
(6)

Eq(qt|xt,u) log

[
p(qt|u)

q(qt|xt,u)

]
+ Eq(pt|xt−w:t,u) log

[
p(pt|u)

q(pt|xt−w:t,u)

]
+ Eq(z|x1:T) log

[
p(z)

q(z|x1:T)

]
+ Eq(qt|xt,u)

[∑
t′

log p(xt′|qt′, z)

]
(7)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

The trace of the real-Hamiltonian matrix is zero we can therefore omit the term Tr(H). Since, for
each motion uk we associate a separate Hamiltonian Hk that acts on a subspace Sk, we can view the
full state space S as a partitions of symmetry groups S = S1 ⊕ · · · ⊕ SK where the Hamiltonian H is
in the block diagonal form H = diag(H1, · · ·,HK). We, therefore, express the distributions in terms
of the variables of their respective subspaces to obtain the final ELBO,

−KL[q(qkt |xt,u)||p(qkt)]−KL[q(pkt |xt−w:t,u)||p(pkt)]−KL[q(z|x1:T ,u)||p(z)]

+ Eq(qkt |xt,u)

[∑
t′

log p(xt′ |qt′ , z)

]
(8)

2 Background

In this section, we provide a short overview of the definitions relevant to the context of our work.
The symmetry of an object is a transformation that leaves some of its properties unchanged. E.g.,
translation, rotation, etc. The study of symmetries plays a fundamental role in discovering the
constants of physical systems. For instance, space translation symmetry means the conservation of
linear momentum, and rotation symmetry implies the conservation of angular momentum. Groups
are fundamental tools used for studying symmetry transformations. Formally we say,

Definition 1. A group G is a set with a binary operation ∗ satisfying the following conditions:

• closure under ∗, i.e., x ∗ y ∈ G for all x, y ∈ G

• there is an identity element e ∈ G, satisfying x ∗ e = e ∗ x = e for all x ∈ G

• for each element x ∈ G there exist an inverse x−1 ∈ G such that x ∗ x−1 = x−1 ∗ x = e

• for all x, y, z ∈ G the associative law holds i.e. x ∗ (y ∗ z) = (x ∗ y) ∗ z

The nature of the symmetry present in a system decides whether a group is discrete or continuous. A
group is discrete if it has a finite number of elements. For e.g., a dihedral group D2 generated using
an e identity, r rotation by π, and f reflection along x-axis consists of finite elements {e, r, f, rf}.
The group generators are a set of elements that can generate other group elements using the group
multiplication rule. For D2 the generators are {e, r, f}. A continuous group is characterised by the
notion of infinitesimal transformation and is generally known as the Lie group.

Definition 2. A Lie group G is a group which also forms a smooth manifold structure, where the
group operations under multiplication G×G → G and its inverse G → G are smooth maps.

A group of 2D rotations in a plane is one common example of Lie group given by, SO(2) = {R ∈
R2×2|RTR = I, det(R) = 1}. SO(2) is a single parameter group simply given by a 2D rotation

matrix R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

Definition 3. A Lie algebra g of a Lie group G is the tangent space to a group defined at its identity
element I with an exponential map exp : g → G and a binary operation g× g → g.

The structure of Lie groups is of much interest due to Noether’s theorem, which states that a
conservation law exists for any differentiable symmetry. In physics, such conservation laws are
studied by identifying the Hamiltonian of the physical system (Easton, 1993). In this work, we look at
two choices of Hamiltonians that form a symplectic group Sp(2d) and symplectic orthogonal group
SpO(2d) structure.

Definition 4. A symplectic group Sp(2d) is a Lie group formed by the set of real symplectic matrices

defined as Sp(2d) = {H ∈ R2d×2d| HT JH = J}, where J =

(
0 Id

−Id 0

)
.

Definition 5. The Lie algebra sp of a symplectic group Sp(2d) is a vector space defined by,
sp = {H ∈ R2d×2d| JH = (JH)T }
Definition 6. A symplectic orthogonal group SpO(2d) is defined by restricting the Hamiltonian
matrices to be of orthogonal form.

2

Figure 1: Unconditional Hamiltonian approach. On top, the first row is an original sequence, the
second row is the reconstruction, and the third row is generated by an action of Hamiltonian on the
phase space representation of the first frame in the sequence. On the bottom is an example of a
motion swap, on the left side are two original motions and on the right side are sequences generated
by swapping the motion variables.

Definition 7. A group action is a map ◦ : G × X → X iff (i) e ◦ x = x,∀x ∈ X , where e is the
identity element of G, (ii) (g1 · g2) ◦ x = g1 · (g2 ◦ x), g1, g2 ∈ G,∀x ∈ X where · is a group
operation.

3 Experiment and Results

3.1 Network Architecture

The architecture of the encoder and decoder network is based on (Yingzhen and Mandt, 2018) also
outlined in Table 3 and 4. We use the same network architecture for both sprites and the MUG dataset.
The output of an encoder is fed to the content, position, and momentum network to get the variational
distributions in Z, Q and P space. Table 5 describes the architecture of the network. For the position
and momentum network, the input action k is represented by a one-hot vector u that takes one at
index k and is zero elsewhere.

3.1.1 Training details

For MUG, we choose |Z| = 512, |Q| = K × 12 and |P| = K × 12 and for sprites |Z| = 256,
|Q| = K × 6 and |P| = K × 6, where K is the number of actions. For sprites, K = 3 and for MUG
K = 6. To train all our models, we use an Adam (Kingma and Ba, 2014) optimiser with a learning
rate of 2e−4 and a batch size of 24. We use Pytorch (Paszke et al., 2019) for the implementation. The
code will be made available on publication. We train all our models on Nvidia GeForce RTX 2080
GPUs.

3.2 Results and Discussion

We further provide extended qualitative samples of our model on the MUG and sprites dataset. Figure
(6) shows results of conditional sequence generation, Figure (9) shows results of motion swapping.
Figure (7, 8) further shows examples of image to sequence generation. We generate 16 frames in
future conditioned on an initial starting frame. Next, we adapt our model to scenarios where action
variables are u not available.

Unconditional Dynamics In our formulation introduced in Section ??, we use the action variable u to
map the sequence to its respective phase space that allows the separability of dynamics and controlled
generation of motion sequences. The choice to use action variables do not restrict the Hamiltonian
dynamics; in this section, we adapt our formulation to sequences where action variables are not
available. Specifically, we factorise the phase space into K symmetry groups where the Hamiltonian

3

Figure 2: Unconditional Hamiltonian approach. An example of image-to-sequence generation. The
first column is the starting frame, the first six rows correspond to the sequence generated by the action
of k − th block of H, and the last row is the sequence generated by the full H.

takes the form H = block-diagonal(H1, . . . ,HK). To unroll the trajectory for any arbitrary sequence
x1:T we evolve all the operators simultaneously as,

st = f(skt−1;ωk, t) = block-diagonal(etH1s1t−1, . . . , e
tHK sKt−1) ∀t > 1 (9)

We want to remark that in such a formulation, we don’t have direct control over the action generated
by dynamics. The type of motion generated depends on the initial position and momenta variable.
Furthermore, the operators Hk may not necessarily correspond to specific action but could describe a
more general property that is conserved and shared across motions. For instance, different operators
could capture the varying magnitude of action movements like smiling, surprise, etc. To investigate it
empirically, we map a starting frame to phase space and generate a sequence using individual Hk

as well as H. Figure 2 describes the generated motion sequences. The first six rows are sequences
generated by individual Hk, and the combined H generates the last row. We can observe the operators
capture the varying extent of motion. Figure 1 further shows the performance of a model on sequence
generation and motion transfer.

3.3 Ablation

To investigate the effectiveness of our dynamical model, we perform the following ablation studies,

What is the benefit of Constant Energy? The Hamiltonian formulation maintains the constant
energy over time. Such a choice is beneficial for generating long-term sequences. In this part, we
generate long sequences using our dynamical model and look at the evaluation of energy over time.

The total Hamiltonian energy in the phase space is given by,

E =
1

2
sTMs (10)

where s = (q,p), and M is a symmetric matrix. Let M be a 2× 2 block matrix M =

(
A B
B C

)
. We

can expand the energy term as,

E =
1

2
qTAq+

1

2
pTCp+

1

2
qTAp+

1

2
pTBq (11)

The first term is potential energy (PE), the second is kinetic energy (KE), and the last two combined
are non-separable terms. When B is zero, the energy is entirely separable into KE and PE terms. The
non-separable Hamiltonian is common in many physical problems, for instance, rigid body dynamics

4

and many others appearing in quantum mechanics. For details, we refer to Easton (1993). The choice
of the unconstrained linear form of Hamiltonian was motivated to allow more flexibility to the model
to learn in a data-driven way.

In Figure 3, we report the plot of energy over time for an image under different motion dynamics.
The change in the individual energy shows the dynamics are not constant; this is also evident from
the corresponding image sequences shown in the plot. As dynamics evolve, the total energy is strictly
conserved, demonstrating that the trajectory cannot diverge from the learned symplectic structure.
The results demonstrate the benefit of our model in generating long-term sequences. We want to add
a remark that the energy terms should be interpreted with care. It might not have any equivalence to
the energy of a physical system; what it does is that it provides constraints to use the time translation
symmetry of the dynamics.

Figure 3: We map a starting frame to the phase space and use the operators H to generate the phase
space trajectory, which is then mapped to data space using the decoder network. At the top is the plot
of energy vs time of the operators Hk (E is the total energy,KE is the kinetic energy term, PE is the
potential energy, and NonSep is the non-separable term). Below, each row is the sequence generated
by the action of Hk.

Linear Model A linear dynamical is defined as,

ht = At−1st−1 + Bt−1ht−1 + b (12)

where ht is a hidden state, and {A,B,b} are learnable parameters. To generate the trajectory x1:T ,
we combine the state coordinates h1:T = {h1, . . . ,hT } with the content variable z and pass the
joint representation through the decoder network. We report the performance of a linear model in
conditional as well as unconditional settings.
Positional Encoding We generate a simplistic baseline using a fixed Fourier encoding representation.
Specifically, for a sequence of frames x1:T = {x1, . . . , xT } we map it to a content variable z and
a frame xt to a phase ϕt ∈ [−1, 1]. We then generate T − t linearly separated phase coordinates
{ϕt, . . . , ϕT } ∈ [ϕt, 1 + ϕt] and define the motion space representation as,

st = {sin (ϕt2
k), cos (ϕt2

k)}k=⌊d/2⌋
k=1 (13)

where d is the size of motion space. We impose a Gaussian prior on the phase coordinates p(ϕt) =
N (0, 1).

5

(a) Linear Model

(b) RNN Model

(c) Halo

Figure 4: Results on Image to sequence generation. On the left is the starting frame and on the right
are different motions generated by the dynamical models.

3.4 Discussion

In this section, we compare Halo with other choices of dynamical models. We describe the qualitative
results in Table 1.The Hamiltonian model achieves the best performance across all scores. We observe
all models except the position encoding achieve comparable performance on identity prediction.
We speculate this could be due to the non-changing dynamics, which makes predicting the identity
from a sequence of static images much easier for a classifier. Due to the failure of positional
encoding, we omit it from the rest of the discussion. We restrict the qualitative analysis to conditional
models. Figure 4 describes the results on image-to-sequence generation, further demonstrating that
the Hamiltonian dynamics are consistent in long-term prediction and prevent the flow of constant
information to motion variables. Overall the Hamiltonian formulation outperforms other approaches
and works best across all tasks.

6

Method Accuracy↑ H(y|x)↓ H(y) ↑ IS ↑
HALO 0.929 0.108 1.778 5.312
Linear 0.548 0.722 1.553 2.295
RNN 0.580 0.759 1.743 2.675

HALO (unconditional) 0.750 0.187 1.762 4.830
Linear (unconditional) 0.451 0.962 1.525 1.756
RNN (unconditional) 0.550 1.015 1.658 1.902
Positional Encoding 0.152 0.978 1.150 1.188

(a) Results of a classifier on MUG for different choices of dynamical
models. The high score of accuracy and Inter-Entropy H(y) while
low scores of Intra-Entropy H(y|x) are expected from a better
model.

Identity Accuracy↑
HALO 0.998
Linear 0.996
RNN 1.000

HALO (unconditional) 0.994
Linear (unconditional) 0.974
RNN (unconditional) 0.998
Positional Encoding 0.009

(b) Comparison to other baselines
in terms of accuracy of the iden-
tity of sequences. This shows
our model can preserve content
when the motion representation is
changed.

Table 1: Quantitative evaluation of disentanglement and diversity of generated samples

Model MSE ↓
GPPVAE-dis (Casale et al., 2018) 0.0306

GPPVAE-joint (Casale et al., 2018) 0.0280
ODE2VAE (Yildiz et al., 2019) 0.0204

ODE2VAE-KL (Yildiz et al., 2019) 0.0184
Halo (Ours) 0.0208

Table 2: Mean squared error on test set of rotating MNIST.

3.5 Rotating MNIST

In this section, we investigate the performance of our approach in predicting the rotations of MNIST
digits. We use an unconditional version of our model for this part. Following the procedure of Casale
et al. (2018), we generated sequences of 16 time steps by rotating the images of digit “3". We
followed the same training procedure. In Figure 5, part (a) first row is the input sequence, and
the second row is a reconstruction. In part (b), we show three sequences generated by random
initial phase space coordinates. The network architecture for MNIST experiments is outlined in the
Table (6, 7, 8).
Next, in Table 2, we compare the mean squared error (MSE) of our model with the other related
methods (Yildiz et al., 2019; Casale et al., 2018). Our model achieves comparable performance
to GPPVAE. The ODE2VAE performs best in terms of MSE; this can be attributed to using a
second-order latent ODE model. In contrast, our formulation only uses first-order dynamics, which
provides extra computational efficiency. Furthermore, compared to GPPVAE, we don’t have costly
kernel computations.

We want to remark datasets such as stochastic movingMNIST Denton and Birodkar (2017) used in
a few disentanglement papers is not a good application of our model. This is due to the nature of
dynamics generated by an action of a random transformation. The Hamiltonian model relies on a
dataset of data sequences where dynamics follow a conserved quantity and can be associated with
constant energy. This assumption may or may not hold for SMNIST data due to random movements.

References
Casale, F. P., Dalca, A. V., Saglietti, L., Listgarten, J., and Fusi, N. (2018). Gaussian process prior

variational autoencoders. arXiv preprint arXiv:1810.11738.

Denton, E. and Birodkar, V. (2017). Unsupervised learning of disentangled representations from
video. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 4417–4426.

7

Encoder Architecture of Sprites and MUG

Conv2d kernels: 256, kernelSize: (5, 5), stride: (1, 1), padding: (2, 2)
BatchNorm2d → LeakyReLU(0.2)

Conv2d kernels: 256, kernelSize: (5, 5), stride: (2, 2), padding: (2, 2)
BatchNorm2d → LeakyReLU(0.2)

Conv2d kernels: 256, kernelSize: (5, 5), stride: (2, 2), padding: (2, 2)
BatchNorm2d → LeakyReLU(0.2)

Conv2d kernels: 256, kernelSize: (5, 5), stride: (2, 2), padding: (2, 2)
BatchNorm2d → LeakyReLU(0.2)

Conv2d kernels: 256, kernelSize: (5, 5), stride: (1, 1), padding: (2, 2)
BatchNorm2d → LeakyReLU(0.2) → Rearrange(’b c w h -> b (c w h)’)
Linear in:=(c w h), out: 4096

BatchNorm1d → LeakyReLU(0.2)
Linear in: 4096, out: 2048

BatchNorm1d → LeakyReLU(0.2)
Linear in: 2048, out: h

BatchNorm1d → LeakyReLU(0.2)
Table 3: Encoder network

Decoder Architecture of Sprites and MUG

Linear in: h, out: 4096
BatchNorm1d → LeakyReLU(0.2)

Linear in: 4096, out:(c w h)
BatchNorm1d → LeakyReLU(0.2) → Rearrange(’b (c w h) -> b c w h’)

ConvTranspose2d kernels: 256, kernelSize: (5, 5), stride: (2, 2), padding: (2, 2)
BatchNorm2d → LeakyReLU(0.2)

ConvTranspose2d kernels: 256, kernelSize: (5, 5), stride: (2, 2), padding: (2, 2)
BatchNorm2d → LeakyReLU(0.2)

ConvTranspose2d kernels: 256, kernelSize: (5, 5), stride: (2, 2), padding: (2, 2)
BatchNorm2d → LeakyReLU(0.2)

ConvTranspose2d kernels: 256, kernelSize: (5, 5), stride: (2, 2), padding: (2, 2)
BatchNorm2d → LeakyReLU(0.2)

ConvTranspose2d kernels: 256, kernelSize: (5, 5), stride: (1, 1), padding: (2, 2)
BatchNorm2d → Tanh()

Table 4: Decoder network

Content and Motion Architecture of Sprites and MUG

Content Position Momentum

LSTM in: h, out: z Linear in: h+ k, out: v Linear in: h+ k, out: v
Linearµ in: z, out: z BatchNorm1d → LeakyReLU(0.2) BatchNorm1d → LeakyReLU(0.2)

Linearlog σ in: z, out: z Linear in: v, out: v Linear in: v, out: v
BatchNorm1d → LeakyReLU(0.2) BatchNorm1d → LeakyReLU(0.2)

Linearµ in: v, out: q TCN kernelSize: 3, pad: 2, stride: 1
Linearlog σ in: v, out: q Linearµ in: v, out: p

Linearlog σ in: v, out: p
Table 5: Content and Motion network. TCN stands for temporal convolution network.

8

Encoder Architecture MNIST

Conv2d kernels: 32, kernelSize: (5, 5), stride: (2, 2), padding: (2, 2)
BatchNorm2d → ReLU()

Conv2d kernels: 64, kernelSize: (5, 5), stride: (2, 2), padding: (2, 2)
BatchNorm2d → ReLU()

Conv2d kernels: 128, kernelSize: (5, 5), stride: (2, 2), padding: (2, 2)
BatchNorm2d → ReLU()

Linear in: (c× w × h), out: 4096
BatchNorm1d → ReLU()

Linear in: 4096, out: 256
BatchNorm1d → ReLU()

Table 6: Encoder network MNIST

Decoder Architecture MNIST

Linear in: 20, out: 4096
BatchNorm1d → ReLU()

Linear in: 4096, out: (c× w × h)
BatchNorm1d → ReLU() → Rearrange(’b (c w h) -> b c w h’)

ConvTranspose2d kernels: 128, kernelSize: (3, 3), stride: (1, 1), padding: (0, 0)
BatchNorm2d → ReLU()

ConvTranspose2d kernels: 64, kernelSize: (5, 5), stride: (2, 2), padding: (1, 1)
BatchNorm2d → ReLU()

ConvTranspose2d kernels: 32, kernelSize: (5, 5), stride: (2, 2), padding: (1, 1)
BatchNorm2d → ReLU()

ConvTranspose2d kernels: 1, kernelSize: (5, 5), stride: (1, 1), padding: (2, 2)
BatchNorm2d → Sigmoid()

Table 7: Decoder network MNIST

Motion Network MNIST

Position Momentum

Linear in: 256, out: 320 Linear in: 256, out: 320
BatchNorm1d → LeakyReLU(0.2) BatchNorm1d → LeakyReLU(0.2)

Linear in: 320, out: 20 Linear in: 320, out: 20
BatchNorm1d → LeakyReLU(0.2) BatchNorm1d → LeakyReLU(0.2)

Linearµ in: 20, out: 20 TCN kernelSize: 4, pad: 3, stride: 1
Linearlog σ in: 20, out: 20 Linearµ in: 20, out: 20

Linearlog σ in: 20, out: 20
Table 8: Motion network MNIST. TCN stands for temporal convolution network.

9

Figure 5: Results on Rotating MNIST with a learnable Hamiltonian operator. On the top left, we have
four input sequences, and on the right, their reconstruction; on the bottom, we have four sequences
generated by an action of Hamiltonian on the state space coordinate of the frame in the first column.

Classifier Architecture

Conv2d kernels: 64, kernelSize: (5, 5), stride: (4, 4), padding: (1, 1)
BatchNorm2d → LeakyReLU(0.2)

Conv2d kernels: 128, kernelSize: (5, 5), stride: (4, 4), padding: (1, 1)
BatchNorm2d → LeakyReLU(0.2)

Conv2d kernels: 256, kernelSize: (5, 5), stride: (4, 4), padding: (1, 1)
BatchNorm2d → LeakyReLU(0.2)

Linear in: (c× w × h), out: 1024
BatchNorm1d → LeakyReLU(0.2)

LSTM in: 1024, out: 512
BatchNorm1d → LeakyReLU(0.2)

Linear in: 512, out: 256
BatchNorm1d → LeakyReLU(0.2)

Linear in: 256, out: K
Table 9: Classifier network used for evaluation. For the attribute classification task, K is set to the
number of attributes and for the action classification, it is set to the number of actions.

Easton, R. W. (1993). Introduction to Hamiltonian dynamical systems and the N-body problem (KR
Meyer and GR Hall). SIAM Review, 35(4):659–659.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-
performance deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc.

Yildiz, C., Heinonen, M., and Lähdesmäki, H. (2019). ODE2VAE: Deep generative second order
ODEs with Bayesian neural networks.

Yingzhen, L. and Mandt, S. (2018). Disentangled sequential autoencoder. In International Conference
on Machine Learning, pages 5670–5679. PMLR.

10

(a) Conditional Sequence Generation. The first row is the original sequence, the second row is a reconstructed
sequence, and the third is generated by an action of a dynamical model on the first time frame

Figure 6: Conditional Sequence Generation. The first row is the original sequence, the second row is
a reconstructed sequence, and third is generated by an action of a dynamical model on the first time
frame

11

Figure 7: Image to Sequence generation. We generate dynamics of different actions from a given
image. Each row is a unique action generated by the operator associated with that action.

12

Figure 8: Image to Sequence generation. We generate dynamics of different actions from a given
image. Each row is a unique action generated by the operator associated with that action.

13

Figure 9: Motion Swapping. In each patch, the first two rows are the original sequence and the next
two rows are obtained by swapping motion variables of two sequences.

14

	Derivation of ELBO
	Background
	Experiment and Results
	Network Architecture
	Training details

	Results and Discussion
	Ablation
	Discussion
	Rotating MNIST

