
A Comparison on Fine-tuning with a Dense Model

Our 8B MoE model achieves stronger pre-training perplexity than its dense counterpart. However,
a better perplexity does not always directly translate to downstream performance as demonstrated
in Section 4.4. To this end, we compare fine-tuning performance of the 8B dense model and MoE
model in Table 1. As shown in the table, our MoE model using expert choice routing consistently
outperforms the dense model across the 11 tasks in GLUE and SuperGLUE.

Model BoolQ CB CoLA MNLI MRPC QNLI QQP RTE SST2 WiC WNLI Avg

Dense 8B 88.2 100 86.4 91.3 86.7 94.7 91.2 92.2 97.2 75.6 78.1 89.2
EC-CF2 8B/64E 89.2 100 89.1 91.1 90.6 95.0 93.8 95.2 97.7 83.8 92.8 92.6

Table 1: Comparison between Dense 8B and Expert Choice (EC-CF2) 8B/64E models: Our method
significantly outperforms the dense model in downstream tasks.

B Capacity Factor

We evaluate the downstream task fine-tuning performance by varying the capacity factors. Note that
a capacity factor of n indicates on average how many experts each token can be received. EC-CF2 is
our baseline expert choice, which matches GShard top-2 gating computational footprint. EC-CF1,
however, matches Switch Transformer top-1 gating computational footprint. EC-CF0.5 further
verifies that an aggressively lowered capacity factor can provide strong enough performance, that
almost matches the top-2 gating baseline.

Model BoolQ CB CoLA MNLI MRPC QNLI QQP RTE SST2 WiC WNLI Avg

Top-2 78.1 87.0 88.3 85.0 82.6 90.1 90.7 81.6 94.7 68.2 67.2 83.0±0.3

EC-CAP2 78.2 88.0 88.5 85.7 83.0 90.8 91.1 80.0 95.4 70.4 64.1 83.2±0.4
EC-CAP3 78.5 91.7 89.3 86.3 83.5 90.9 91.1 81.8 94.9 70.0 65.6 84.0±0.4
EC-CF2 79.1 89.6 89.3 86.8 84.3 91.3 91.2 81.1 95.2 68.1 68.0 84.0±0.2
EC-CF1 77.4 90.6 88.0 85.5 83.6 90.3 91.2 79.8 95.3 66.5 64.9 83.0±0.2
EC-CF0.5 77.4 89.6 86.3 85.2 82.7 91.7 91.0 79.6 94.9 67.3 63.5 83.0 ±0.05

Hash Layers 76.1 85.2 86.7 83.4 82.5 90.0 90.3 75.7 94.0 67.4 63.3 81.3±1.0

Table 2: Comparison between different routing methods in fine-tuning of 100M/64E models. We
perform 3 independent fine-tuning runs for each method and report the average results. This gives
more accurate difference between the variants of expert choice method, since they achieve close
fine-tuning results. We do not report averaged results in other experiments.

C Capped Expert Choice

As described in Section 4.5, the maximum number of experts each token is assigned can be capped
by an entropy-regularized linear programming. Figure 1 compares the validation perplexity when
training the 100M/64E models using the base expert choice method (EC-BASE), expert choice capped
by two experts per token (EC-CAP2), expert choice capped by three experts per token (EC-CAP3),
and GShard top-2 gating.

As shown in the figure, restricting the number of experts to 2 degrades the perplexity compared to
the base expert choice method. This suggests that a more flexible allocation of experts (e.g. more
than 2 experts for a token) can enhance model expressiveness. On the other hand, our EC-CAP2
and EC-CAP3 methods still outperform the top-2 gating method by a clear margin. We believe this
confirms the effectiveness of a load balanced training, provided by our method. Finally, EC-CAP3
obtains comparable perplexity to EC-BASE. As indicated by Figure 3, only a little fraction of tokens
use more than 3 experts therefore we see little or no difference between EC-BASE and EC-CAP3
variants. We present the fine-tuning results of these methods in Table 2.
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Figure 1: Validation perplexity during pre-training using various expert choice methods and top-2
gating.

D Comparison with Hash Layer

In this section, we compare our method with Hash Layers [1]. We use mod x to map a token
ID to an expert ID. This in some way ensures load balance and generates specialized experts. The
fine-tuning results are presented in the last row in Table 2. Hashing based routing performs much
worse than expert choice in terms of average scores and variance.

E Fine-tuning Details

We did a hyperparameter search for both baseline models and expert choice method. For fine-tuning
of the 8B dense model, we use a constant learning rate of 0.0001 and a dropout rate of 0.1. We freeze
the attention layer and feed-forward layer while leaving the embedding and layer normalization
trainable. This setting has been found optimal for the 8B dense model. For MoE 8B/64E models
including GShard top-2 gating and expert choice, we found continuing the learning rate from the
pre-trained model while using a square root learning rate decay works better. In addition, we do not
apply parameter freezing for fine-tuning MoE models. For models with 100M expert size, we use a
constant learning rate of 0.0001 and no dropout is used.
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