
SNAKE: Shape-aware Neural 3D Keypoint Field:
Appendix

A Network Architecture1

Following [8], our implementation is a compilation of PointNet++ [9], 3D UNet [3], positional2

encoder and implicit surface occupancy decoder. The architecture of the implicit keypoint decoder is3

designed to be the same as the surface occupancy decoder. The dimensions of the feature embedding4

Z and Z ′ are both set to 32, i.e., C1 = C2 = 32. And each point from a query set is also encoded5

into a 32-dimensional feature vector. More details can be found in the code we provide.6

B Implementation Details7

B.1 Training8

SNAKE is implemented in PyTorch [7] using the Adam [4] optimizer with a mini-batch size of b on 49

NVIDIA A100 GPUs for el epochs. We use a learning rate of 10−4 for the first ef epochs, which is10

dropped ten times for the remainder. As discussed in Sec. 3.2 (repeatability loss), we perform random11

rigid transformation T on the input P to generate a second view input TP . Then, we use some data12

augmentation on TP to increase data diversity by downsampling with a random rate between 0 and13

4, and Gaussian noise. Training hyper-parameters on four datasets are provided in Table 1.14

In our formulation, occupied points are those on the input surface, and the others are considered all15

unoccupied, including the points inside the surface. Therefore, we can only use input point clouds16

to learn the surface occupancy model. Specifically, we randomly sample the positives from the17

input point cloud. The negatives are randomly sampled in the unit 3D space. Although some of the18

negatives are indeed on the surface of the object, their number is so limited compared to the whole19

query sets that they do not affect the training.20

Table 1: Training and testing hyper-parameters. Sem.=Semantic consistency evaluation,
Rep.=Repeatability evaluation, Reg.=Registration evaluation, KeypN.=KeypointNet [12], Mod-
elN.=ModelNet40 [10].

Setting Training Set Test Set N H/W/D Hl/Wl/Dl U n b ef/el thro thrs λ J

Sem.
KeypN. KeypN. 2048 64/64/64 8/8/8 8 500 16 40/60 0.5 0.7 10−3 10

SMPL [6] SMPL 2048 64/64/64 8/8/8 8 500 16 20/30 0.5 0.7 10−3 10

Rep.
ModelN. ModelN. 5000 64/64/64 8/8/8 6 500 16 40/60 0.5 0.7 10−3 10

3DMatch [13] Redwood [2] 10000 100/100/100 10/10/10 8 150 6 15/20 0.5 0.7 10−3 10

Reg. KeypN. 3DMatch 2048 64/64/64 6/6/6 12 500 16 40/60 0.5 0.4 10−3 10

B.2 Testing21

For the SMPL dataset, the correspondence between the paired point clouds can be generated by22

SMPL vertex index. Since the keypoint SNAKE generates may not be in the input point cloud (we23

enforce the keypoint scatter on the underlying surface of the input), we take the point closest to the24

generated keypoint in the input as the final keypoint. We use the same strategy on the 3DMatch25

dataset when performing geometric registration because D3feat [1] predicts descriptors for each point26

in the input. The testing hyper-parameters are shown in Table 1.27
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C Results28

C.1 Additional comparison with UKPGAN on keypoint repeatability29

Due to the absence of pretrained model on the ModelNet40 and 3DMatch dataset, we do not report the30

keypoint repeatability of UKPGAN [11] on the main paper. We have tried to train UKPGAN (official31

implementation) on the ModelNet40 and 3DMatch datasets from scratch but observed divergence32

under default hyper-parameters. The training always reports NaN losses in early epochs. This33

instability also implies limitations in implementing the idea of joint reconstruction and keypoint34

detection with GAN-based methods. As such, we provide a new experiment to compare their35

repeatability on the KeypointNet dataset, on which the UKPGAN provided a pre-trained model.36

Tabke 1 and Table 2 in the main paper show that SNAKE achieves significant gains over UKPGAN37

in most cases. Interestingly, when the inputs are disturbed, the performance of UKPGAN increases38

rather than decreases. Via visualizing the results in Fig. 1, we find that when the input point clouds39

are disturbed, the keypoints predicted by UKPGAN are clustered in a small area, which improves the40

repeatability of keypoints but fails to cover the input uniformly. This illustrates that the GAN-based41

method adopted by UKPGAN to control the keypoint sparsity is not robust to input point cloud42

disturbance. The keypoints of ours still remain meaningful under the drastic changes of inputs.43

Ours

UKPGAN

Original 4x Downsample 0.03 std. Noise Original 4x Downsample 0.03 std. Noise

Figure 1: Keypoints of the KeypointNet data under some input disturbances.

C.2 Quantitative Results44

The specific numerical results on semantic consistency and repeatability are summarized in Table 3- 9,45

which correspond to Figure 5 in the main paper. We present the mean and standard deviation of our46

results over 6 models trained under different random seeds.47

C.3 Qualitative Visualization of Saliency Field and Keypoints48

We show more qualitative results on keypoint semantic consistency between intra-class instances49

from rigid objects plane, guitar, motorcycle, and deformable human shapes in Figure 2- 5. Owing to50

entangling shape reconstruction and keypoint detection, SNAKE can extract aligned representation51

for intra-class instances. As shown in Figure 6- 11, we provide more visualizations of keypoints52

under some disturbances on object-level (ModelNet40) and scene-level (Redwood) datasets. It can53

be seen that SNAKE can generate more consistent keypoints than other methods under significant54

variations of inputs. We also show the detected keypoints of the same object/scene from different55

views to demonstrate the repeatability of keypoint in Figure 12- 14.56

C.4 Qualitative Visualization of Surface Occupancy Field and Shape Reconstruction57

As shown in Figure 15, we show visualizations of the occupancy field and shape reconstruction on58

the ModelNet40 dataset. These five samples are taken from the unseen test set. As shown by the59

second row, only points on the input surface have a high occupancy value, and the other points (inside60

or outside of the surface) have a near-zero occupancy value. Under our definition, two surfaces can61

be obtained through the marching cube, and we only show the outer surface.62
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D Computation Cost63

As shown in Table 2, we report the time taken to generate keypoints of hand-crafted detector ISS,64

deep-learning (DL) based methods USIP [5], UKPGAN [11] and ours. ISS [14] is implemented by65

Open3d [15] and deployed on an AMD EPYC 7742 64-Core CPU. DL-based methods are deployed66

on an NVIDIA GeForce RTX 3090 GPU. USIP requires the lowest computational time to generate67

keypoints, while UKPGAN requires the highest cost since it takes much time to compute smoothed68

density values. The inference time of our model is comparable to ISS when we do not refine the69

keypoint by optimization (J=0), and the repeatability is still as high as around 81% when the input70

point number is 4096. The time increases with the increasing number of optimization iterations J .71

As discussed before, when J becomes larger (below 15), the performance of keypoint gets better. It72

suggests that there is a trade-off between keypoint performance and inference speed of our method.73

The GPU memory cost (MB) for USIP, UKPGAN, and SNAKE during a single batch inference74

is 3747, 10727, and 2785, which illustrates that SNAKE requires the lowest GPU memory cost to75

generate keypoints.76

Table 2: Average time (s) taken to compute keypoints from input point clouds on ModelNet40 dataset.
The hyper-parameters of ours can be found in the Table 1. Decimals in parentheses in italics are
relative repeatability (%). Here, the experiment setting is the same as in Sec. 4.2.

Input Point # ISS USIP UKPGAN
Ours

J=0 J=5 J=10

2048 0.07 (0.088) 0.006 (0.748) 14.41 0.08 (0.795) 0.50 (0.835) 0.81 (0.851)
4096 0.11 (0.096) 0.007 (0.799) 36.80 0.09 (0.811) 0.50 (0.850) 0.83 (0.864)

E Illustrations on the Assets We Used and Released77

The license of assets we used is as follows: (a) MIT License for KeypointNet dataset. (b) Software78

Copyright License for non-commercial scientific research purposes on SMPL-Model. (c) GPL-3.079

License for ModelNet40, 3DMatch, Redwood dataset, and USIP. (d) Microsoft research license for80

3DMatch registration benchmark.81

All existing datasets and codes we used in this paper are allowed for research and do not contain82

personally identifiable information or offensive content. Note that SMPL only has human shapes83

without the identity information of the person, such as the face or body texture. Our code is released84

under the MIT license.85

Table 3: mIoU (%) with different geodesic distance thresholds on the KeypointNet dataset. This table
corresponds to Figure 5-(a) in the main paper.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Random 0.005 0.010 0.017 0.020 0.023 0.026 0.028 0.032 0.036 0.042 0.049
ISS 0.008 0.012 0.024 0.040 0.060 0.088 0.121 0.160 0.198 0.242 0.286

SIFT3D 0.005 0.010 0.015 0.022 0.043 0.065 0.089 0.120 0.160 0.189 0.221
Harris3D 0.005 0.010 0.014 0.023 0.040 0.060 0.084 0.110 0.150 0.180 0.216

USIP 0.003 0.006 0.013 0.024 0.045 0.078 0.116 0.160 0.212 0.264 0.314
UKPGAN 0.005 0.009 0.021 0.036 0.059 0.084 0.114 0.147 0.179 0.207 0.238

Ours 0.006±0.000 0.012±0.000 0.025±0.001 0.039±0.001 0.058±0.001 0.091±0.002 0.144±0.005 0.214±0.005 0.291±0.005 0.361±0.002 0.412±0.002

Table 4: mIoU (%) with different Euclidean distance thresholds on SMPL mesh. This table corre-
sponds to Figure 5-(e) in the main paper.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Random 0.008 0.011 0.015 0.021 0.038 0.056 0.075 0.103 0.136 0.161 0.195
ISS 0.078 0.095 0.101 0.113 0.129 0.148 0.174 0.206 0.231 0.258 0.293

SIFT3D 0.009 0.011 0.016 0.026 0.043 0.064 0.084 0.108 0.146 0.183 0.213
Harris3D 0.012 0.013 0.016 0.021 0.032 0.047 0.065 0.097 0.129 0.159 0.187

USIP 0.037 0.043 0.051 0.081 0.129 0.198 0.278 0.338 0.390 0.440 0.492
UKPGAN 0.036 0.041 0.059 0.085 0.126 0.171 0.235 0.302 0.369 0.424 0.476

Ours 0.063±0.018 0.079±0.019 0.094±0.023 0.128±0.028 0.182±0.036 0.255±0.041 0.355±0.041 0.457±0.046 0.557±0.043 0.639±0.037 0.704±0.036
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Table 5: Relative repeatability (%) with different distance thresholds on the ModelNet40 dataset.
This table corresponds to Figure 5-(b) in the main paper.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Random 0.056 0.094 0.14 0.191 0.249 0.308 0.368 0.429
ISS 0.058 0.096 0.14 0.192 0.247 0.306 0.367 0.427

SIFT3D 0.055 0.092 0.138 0.191 0.249 0.308 0.369 0.429
Harris3D 0.056 0.096 0.147 0.21 0.277 0.347 0.415 0.48

USIP 0.771 0.799 0.815 0.827 0.836 0.844 0.851 0.857
Ours 0.763±0.011 0.864±0.009 0.897±0.007 0.910±0.005 0.917±0.005 0.923±0.005 0.927±0.005 0.930±0.005

Table 6: Relative repeatability (%) when the input is randomly downsampled by some rates on the
ModelNet40 dataset. This table corresponds to Figure 5-(c) in the main paper.

1 2 4 8 16

Random 0.094 0.093 0.093 0.091 0.092
ISS 0.096 0.088 0.088 0.083 0.076

SIFT3D 0.092 0.089 0.087 0.082 0.075
Harris3D 0.096 0.093 0.093 0.093 0.092

USIP 0.799 0.748 0.685 0.554 0.321
Ours 0.864±0.009 0.851±0.009 0.820±0.008 0.730±0.009 0.528±0.012

Table 7: Relative repeatability (%) when the input is disturbed by Gaussian noise N(0, σ) on the
ModelNet40 dataset. This table corresponds to Figure 5-(d) in the main paper.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Random 0.094 0.062 0.038 0.027 0.021 0.016 0.014
ISS 0.096 0.061 0.037 0.025 0.02 0.016 0.015

SIFT3D 0.092 0.06 0.036 0.025 0.019 0.016 0.014
Harris3D 0.096 0.063 0.038 0.029 0.02 0.015 0.015

USIP 0.799 0.872 0.844 0.746 0.558 0.341 0.192
Ours 0.864±0.009 0.869±0.008 0.841±0.015 0.766±0.013 0.619±0.041 0.464±0.049 0.354±0.045

Table 8: Relative repeatability (%) with the different distance thresholds (m) on the Redwood dataset.
This table corresponds to Figure 5-(f) in the main paper.

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

Random 0.09 0.126 0.163 0.204 0.246 0.287 0.326 0.362
ISS 0.087 0.119 0.156 0.191 0.228 0.264 0.301 0.336

SIFT3D 0.088 0.123 0.168 0.21 0.254 0.297 0.33 0.367
Harris3D 0.079 0.109 0.14 0.175 0.209 0.243 0.278 0.31

USIP 0.255 0.285 0.314 0.342 0.368 0.392 0.417 0.439
Ours 0.205±0.005 0.246±0.007 0.286±0.008 0.323±0.008 0.359±0.009 0.393±0.010 0.425±0.010 0.454±0.009

Table 9: Relative repeatability (%) when the input is randomly downsampled by some rates on the
Redwood dataset. This table corresponds to Figure 5-(g) in the main paper.

1 2 4 8 16

Random 0.287 0.289 0.291 0.292 0.287
ISS 0.264 0.277 0.158 0.067 0.021

SIFT3D 0.297 0.286 0.28 0.271 0.22
Harris3D 0.243 0.288 0.285 0.292 0.286

USIP 0.392 0.388 0.377 0.351 0.313
Ours 0.393±0.010 0.394±0.008 0.391±0.009 0.381±0.008 0.362±0.007

Table 10: Relative repeatability (%) when the input is disturbed by Gaussian noise N(0, σ) on the
Redwood dataset. This table corresponds to Figure 5-(h) in the main paper.

0.00 0.02 0.04 0.06 0.08 0.10

Random 0.287 0.289 0.275 0.252 0.23 0.21
ISS 0.264 0.26 0.268 0.259 0.25 0.214

SIFT3D 0.297 0.289 0.27 0.261 0.241 0.217
Harris3D 0.243 0.239 0.225 0.206 0.193 0.178

USIP 0.392 0.386 0.375 0.341 0.317 0.295
Ours 0.393±0.010 0.392±0.008 0.381±0.009 0.359±0.009 0.318±0.007 0.256±0.013
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Figure 2: Keypoint semantic consistency comparison on the plane.
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Figure 3: Keypoint semantic consistency comparison on the guitar.
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Figure 4: Keypoint semantic consistency comparison on the motorcycle.
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Figure 5: Keypoint semantic consistency comparison on the human shape.
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Figure 6: Keypoints of the chair under some input disturbances.
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Figure 7: Keypoints of the desk under some input disturbances.
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Figure 8: Keypoints of the flower under some input disturbances.
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Figure 9: Keypoints of the indoor scene (1) under some input disturbances.
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Figure 10: Keypoints of the indoor scene (2) under some input disturbances.

Ours

USIP

Shape
Recon.

ISS

Original 4x Downsample 0.06 std. Noise8x Downsample 0.04 std. Noise

Figure 11: Keypoints of the indoor scene (3) under some input disturbances.
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Figure 12: Keypoints repeatability comparison when the input is not corrupted. Note that in the
Redwood dataset (right panel), two-view point clouds are partially overlapped.
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Figure 13: Keypoints repeatability comparison when the input is 8x down sampled. Note that in the
Redwood dataset (right panel), two-view point clouds are partially overlapped.
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Figure 14: Keypoints repeatability comparison when the input is added Gaussion noises (std=0.06).
Note that in the Redwood dataset (right panel), two-view point clouds are partially overlapped.
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Figure 15: Visualization for surface occupancy field and surface reconstruction of test instances
(unseen) from ModelNet40 dataset. The second row shows the middle slice of the surface occupancy
field of these objects. The third row shows the projected surface occupancy field on the same slice
by taking the maximum value. The fourth row shows the outer surface reconstructed by applying
marching cubes on the surface occupancy field, using a threshold of 0.4.
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