
Guaranteed Conservation of Momentum

for Learning Particle-based Fluid Dynamics

Lukas Prantl

Technical University of Munich
lukas.prantl@tum.de

Benjamin Ummenhofer

Intel Labs

Vladlen Koltun

Apple
Nils Thuerey

Technical University of Munich

Abstract

We present a novel method for guaranteeing linear momentum in learned physics
simulations. Unlike existing methods, we enforce conservation of momentum with
a hard constraint, which we realize via antisymmetrical continuous convolutional
layers. We combine these strict constraints with a hierarchical network architecture,
a carefully constructed resampling scheme, and a training approach for temporal
coherence. In combination, the proposed method allows us to increase the physical
accuracy of the learned simulator substantially. In addition, the induced physical
bias leads to significantly better generalization performance and makes our method
more reliable in unseen test cases. We evaluate our method on a range of different,
challenging fluid scenarios. Among others, we demonstrate that our approach
generalizes to new scenarios with up to one million particles. Our results show that
the proposed algorithm can learn complex dynamics while outperforming existing
approaches in generalization and training performance. An implementation of our
approach is available at https://github.com/tum-pbs/DMCF.

1 Introduction

Learning physics simulations with machine learning techniques opens up a wide range of intriguing
paths to predict the dynamics of complex physical phenomena such as fluids [28, 23, 48, 37]. As
traditional simulators for fluids employ handcrafted simplifications [31] and require vast amounts of
computational resources [44], recent learning-based methods have shown highly promising results.
In face of the impressive performance and accuracy of these techniques, it is surprising to see that
they still neglect some of the most basic physical principles, like the symmetries that arise from
Newton’s third law of motion and the conservation of momentum. This makes learned simulators less
predictable and can lead to severe implications when basing decisions on the simulation outcomes.

Predicting physical properties with neural networks is commonly treated as a regression problem
[27, 51, 54], where the training signal is defined as a soft constraint. This simple and desirable
formulation allows to effectively learn and approximate physical processes but also gives way to
unwanted shortcuts that deviate from the basic laws of physics. At the same time network architectures
are usually designed with generalizability in mind, e.g., with applications ranging from geometry
processing [34] to physical simulations [2]. In contrast, we propose a lean and efficient architecture
that provides a stable and large receptive field, while adhering to the desired physical constraints. At
training time, we dynamically take the unrolled evolution of the physical state into account to ensure
stability when training with longer sequences.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/tum-pbs/DMCF


For the implementation of the inductive bias, our approach is inspired by Smoothed Particle Hy-
drodynamics (SPH) methods [13, 20], where physical properties are preserved by the appropriate
design of the smoothing kernels [5]. Our method uses learned convolution kernels that have inherent
benefits over general graph structures in the context of physics simulations, as they can easily process
positional information. Instead of using a soft constraint, e.g., by integration into the loss function,
our method enforces physical properties by using inductive biases while keeping the simple training
signal of a regression problem. To this end, we integrate symmetries, which are an integral part of
the underlying physical models, into our neural network. This results in guaranteed conservation of
momentum for our method.

1.1 Related Work

Numerical computation of fluid-based dynamics is a long and extensively treated topic in research
[15, 55]. We discuss the most relevant work here, and refer to surveys [21] for a full review. Our
approach uses a Lagrangian viewpoint, where fluids are represented as smoothed particles. This
viewpoint by design conserves the mass of the fluid, as the number of particles does not change, and
limits valuable computation time to where the fluid is. This idea stems from astrophysics [13] and is
known as Smoothed Particle Hydrodynamics (SPH). It was followed by a large number of papers that
improved the SPH method in terms of accuracy and performance [3, 40, 26, 4, 17, 1].

In contrast to many classic simulators that use sophisticated and handcrafted model equations to
describe the motion of fluids, our method belongs to the class of data-driven solvers, which entirely
learns their dynamics from observations. A seminal example of learning fluid simulation from
data is Ladicky et al. [22], which uses carefully designed density features with random forests to
regress fluid motions. However, the method does not guarantee momentum conservation. In recent
work, algorithms have been proposed to use physical priors based on Lagrangians [35, 25, 9] or
Hamiltonians [36] to improve the physical accuracy of learning ODEs and PDEs, and compliance
with conservation laws. Nevertheless, the methods are limited to low-dimensional problems and do
not address complex PDEs such as those required for fluids. Other works have used convolutional
neural networks, or ConvNets, to achieve acceleration for grid-based fluid simulations [46, 47, 19].
The former proposes ConvNets to accelerate the expensive pressure correction step [46], while the
other two propose ConvNets learning corrections to reduce the grid size and, consequently, the
runtime of simulations. Although these methods show large speed-ups, they inherently cannot be
applied to particle-based simulations.

For processing point clouds, the community has followed multiple strategies to address the challenges
with this representation. A key challenge is the permutation invariance of particles. An approach to
address this uses a combination of point-wise MLPs, order-independent set functions, and farthest
point sampling to create a point cloud hierarchy [34]. Another line of work processes point clouds
with graph neural networks. These methods represent fluid particles with graph nodes and define
edges between them [2, 23, 37]. Here, interaction networks with relation-centric and object-centric
functions were developed to predict future object states [2]. Since the framework aims to be general
and employs unconstrained MLPs, it cannot be guaranteed that interactions are symmetric. The same
holds for Li et al. [23], which uses the same framework and builds a dynamic graph connecting
nearby particles to model fluids. SPH simulations can also be treated as message-passing on graphs
[37, 30, 7]. These approaches typically decompose a simulator into multiple MLPs, which act as
encoder, processor, and decoder. The processor performs multiple rounds of general message-passing,
updates node and edge features, and does not enforce physical properties like momentum conservation.
Further, graph-based methods are strongly tied to the chosen particle discretization, and changes to it,
like the sampling density, may require non-trivial changes to the models.

As an alternative to explicit graph representations, convolutional architectures represent an interesting
option for particle-based simulation. Schenck et al. [39] implement special layers for particle-particle
interactions and particle-boundary interactions. The work does not aim to learn a general fluid
simulator but implements a differentiable position-based fluids (PBF) [26] solver, which is used to
estimate liquid parameters or train networks to solve control problems by backpropagation through
the solver. Moreover, Fourier neural operators [24] or their adaptive variants [14] have been proposed
to solve PDEs. Most related to our approach is Ummenhofer et al. [48], which implements a trainable
continuous convolution operator resulting in compact networks. The learned kernels describe general
continuous functions with a smooth radial falloff but do not account for symmetric interactions of

2



particles. We extend the continuous convolutions to enable simulations that guarantee momentum
conservation and introduce a particle hierarchy for better accuracy and robustness.

Symmetries play an essential role in physics, as isolated systems are invariant to certain transforma-
tions, i.e., the behavior of a physical system does not depend on its orientation. For example, Lie
point symmetries were used to optimize data augmentation and thus improve the sample efficiency
for learning PDEs [6]. Similar observations apply for the structural analysis of molecules [11] and
vision applications [10, 41]. The chemical properties of proteins do not change under rotation, nor
should class labels of objects in images. Rotationally equivariant architectures have been proposed
to leverage this concept for improved generalization and sample efficiency, e.g., constraining the
convolution kernels for the E(2) group to achieve equivariance [53]. A similar approach by Wang
et al. [52] was applied to physics-based problems. Kernel constraints can also be transferred to
continuous convolutions on 2D point clouds for improved sample efficiency of traffic trajectory
predictions [50]. For 3D problems, spherical harmonics can be used to define rotationally equivariant
filters [45], which shows their application to shape classification, molecule generation, and simple
problems in classical mechanics. The method guarantees rotational equivariance, but filter evaluations
can become expensive for higher degrees. In addition, architectures for symmetries in arbitrary
dimensions were proposed [49, 38], which however require graph-based representations.

2 Method

(xt, vt) (x� t+�t, v� t+�t)

Fext

∫�t

xt+�t

�xt+�t
+

G�

Figure 1: Each time step of our method performs a
predictive time integration step (blue) for position
xt and velocity vt of a set of particles at time t. A
neural network G (red) provides a position update
to obtain xt+�t.

Given a physical quantity Pt ✓ Rd at a time
t in the form of particles, let xt 2 Pt denote
the position, vt 2 Rd the corresponding veloc-
ity and d the spatial dimension. The central
learning objective is to approximate the under-
lying physical dynamics to predict the state of
Pt+�t after a period of time �t. We integrate
the velocities vt and positions xt of the phys-
ical system in time while taking into account
external forces Fext, e.g., gravity, as illustrated
in Fig. 1. For an initial prediction, an explicit
Euler step of the form v0

t+�t
= vt+�tFext

m
and

x0
t+�t

= xt +�t v0
t+�t

, is used, where m represents the mass of the particles. The resulting physics
state is passed to a neural network G with trainable parameters ⇥, which infers the residual of the
position �xt+�t such that particles match a set of desired ground-truth positions yt+�t. Velocities
are obtained with a position-based update. This yields:

xt+�t = x0
t+�t

+�xt+�t ; vt+�t =
xt+�t � xt

�t
. (1)

Where the minimization target of the neural network G is as follows:
min
⇥

L(x0
t+�t

+G(x0
t+�t

, v0
t+�t

,⇥), yt+�t), (2)

with L denoting a distance-based loss function, and yt+�t the ground-truth positions. By separating
the external forces and the update inferred by the neural network, the conservation of momentum
only depends on the latter. In the next section, we derive which properties the network must fulfill to
achieve this.

2.1 Conservation of Momentum

The linear momentum of a physical system is given by M =
R
x2P

mxvx,, where P represents an
arbitrary control volume in the system, mx the mass, and vx the velocity of particle x. It follows that
the rate of change of the momentum in the absence of external forces Fext, according to Newton’s
second law mxax = Fext � Fx, is given by:

M 0 =

Z

x2P

mxax = �

Z

x2P

Fx, (3)

where Fx represents the internal forces of the physical system, and ax denotes acceleration. Hence
the central condition for preserving linear momentum isZ

x2P

Fx = 0. (4)

3



It is theoretically possible to include this conservation law as a minimization goal. However, this
would merely impose a soft constraint that needs to be weighed against the other terms of the learning
objective. We instead propose to use the conservation of momentum as an inductive bias at training
time in the form of a hard constraint.

In order to guarantee that momentum is conserved, we work with convolutional layers with specially
designed kernels. We define the convolution in the continuous domain as

(f ⇤ g)(x) =

Z

y2PQ

f(y)g(y � x), x 2 PD, (5)

where g represents a learnable kernel function and f is the feature vector of a quantity that should be
processed in the convolution operation. Here PD denotes a set of data points, while PQ denotes a
set of query points on which the convolution is performed. The use of convolutional layers already
guarantees permutation invariance and translation equivariance.

However, instead of just relying on this learned kernel function, we additionally modify the convo-
lution to further assist in ensuring conservation of momentum. For the deduction, we reformulate
the residual position �xt+�t that the network generates for a given position xt as the result of an
internal force Fx:

Fx = m
�xt+�t

�t2
. (6)

In general, the internal force at the position x can be expressed as the integral of all pair-wise
interaction forces exerted on x, i.e. Fx =

R
y2P

Fxy. Following Eq. 4, to enforce conservation of
momentum we have to ensure Z

x2P

Z

y2P

Fxy = 0. (7)

If it is guaranteed that for every internal force Fxy a corresponding opposing force exists, i.e.

Fxy = �Fyx, 8x, y 2 P, (8)

then the integral of Eq. 7 evaluates to zero, and the condition for the conservation of momentum is
fulfilled. This corresponds to an antisymmetry of the internal forces in the fluid.

Applied to convolutional layers, we achieve this property by adjusting the convolution Eq. 5 as
follows:

(f ⇤ gs)(x) =

Z

y2PQ

(f(x) + f(y))gs(y � x), x 2 PD, (9)

where gs is an antisymmetric kernel with the restriction that

PD = PQ, (10)

and f(x) is the feature vector at the position x, where the convolution is evaluated. The condition 10
is necessary to guarantee that there is a bidirectional connection between two points from the two
sets. This is only possible if both points exist in both sets. As before, let us consider the relative
features fxy = (f(x) + f(y))gs(y � x), isolated for two points in space x, y 2 P . The kernel gs is
antisymmetric, i.e. gs(x) = �gs(�x). From this follows:

fxy = (fx + fy)(�gs(x� y)) = �fyx. (11)

Due to the restriction from Eq. 10 fyx exists for every fxy and hence Eq. 8 is satisfied.

2.2 Antisymmetric Continuous Convolution

To implement the convolutional layer fulfilling the constraints above, we make use of continuous
convolutions (CConv) [48]. While the constraints could likewise be realized with other forms
of convolutional layers, CConvs are adapted for efficiently processing unstructured data, such as
particle-based data from fluids, and hence provide a suitable basis to demonstrate the impact of the
antisymmetric constraints. CConv layers determine the nearest neighbors from a given set of data
points PD for a given set of query points PQ and aggregate their features f . Thereby, the features of
the neighbors are weighted with a kernel function depending on their relative position. The kernel
functions themselves are discretized via a regular grid with a spherical mapping and contain the
learnable parameters.

4



+

+

+

+

+

+

+

Obstacle

Fluid

Branch 1

Main Branch

Branch 2

�x

Type-aware  
Preprocessing

ASCC

Multi-scale Feature Aggregation

1 2 3 4

f00 f10 f20 f30

f12 f22

f31

f32CConv

Layer +

Concat

Add

Figure 3: Neural network architecture: The colored squares symbolize the different CConv blocks,
whereas the rotated square in red represents the antisymmetric layer. The color shows the used query
point set. Orange corresponds to the original point set, with each set below halving the resolution.
Search radii are enlarged accordingly.

The original CConvs are defined as: CConvg(f, PD, PQ) = (f ⇤ g)(x) =
P

k
fkg(xk � x) for

k 2 Nr(PD, x) and x 2 PQ. This corresponds to a discretized version of Eq. 5, where Nr represents
the nearest neighbor search for a fixed radius r. To conserve momentum, we adapt the equation
according to Eq. 9 as follows:

ASCCgs(f, PD, PQ) = (f ⇤ gs)(x) =
X

k2Nr(PD,x)

(f + fk)gs(xk � x), x 2 PQ, (12)

1 2 -8 -7
3 4 -6 -5
5 6 -4 -3
7 8 -2 -1

1 2
3 4
5 6
7 8

Trainable Reflected

Figure 2: The trainable variables are
negated and mirrored by the center point.
This results in an antisymmetric kernel.

with the restriction that PD = PQ. Here the discrete,
antisymmetric kernel gs consists of a grid with a user-
defined size. To obtain the antisymmetric property we
halve the learnable kernel parameters along a chosen axis
and determine the second half by reflection through the
center of the kernel. Additionally, the mirrored values are
negated, as shown in Fig. 2. Mathematically, the mirroring
fulfills Eq. 9, and hence the axis of reflection for the kernel
weights can be chosen freely. The convolution is evaluated
with the reflexive term f + fk from Eq. 9 to preserve the
antisymmetry. In the following, we refer to the proposed
antisymmetric CConv layer as ASCC.

2.3 Neural Network Formulation

To construct a full neural network model that preserves momentum, we build on a CConv architecture,
replacing the output layer with an ASCC layer, as shown in Fig. 3. We deliberately replace only the
last layer, as this maximizes the flexibility of the previous layers and still guarantees momentum
preservation. While antisymmetric kernels have highly attractive physical properties, they intention-
ally restrict the scope of actions of a neural network. The resulting networks generalize much better,
but the initial learning objective is more complex than for unconstrained networks. Regular networks
can take unphysical shortcuts by overfitting to problem-specific values. A corresponding evaluation
of the generalization capabilities of ASCCs is provided in Sec. 3.

Figure 4: Farthest point sampling (left)
vs. voxel sampling (right). Data points
in black, sampling points in red. The
red circles indicate sampling region’s for
feature aggregation.

Layer Hierarchy To support learning generalizable
physical dynamics, we employ a hierarchical network
structure that allows for a large receptive field. Specif-
ically, we use an architecture inspired by the parallel pro-
cessing of the multi-scale feature aggregator of HRNet
[43]. It processes sets of extracted features at different
spatial scales with separate branches of the network. Akin
to pooling layers, the density of the sampling points is
reduced successively in each branch. The structure of the
network and its branches are shown in Fig. 3.

The main branch of the network works on the full set of sample points PQ0 which is in this case
equal to the data points PD. For the secondary branches, a new set of sampling points PQi is

5



generated from the input points PD with a scaling factor si for the corresponding branch i such that
si ⇡ ⇢(PQi)/⇢(PQ0), with ⇢ denoting the density function of the given point set. Additionally, points
in each set should be spatially distributed as evenly as possible so that the scaling factor remains
similar across all partial volumes. To satisfy condition 10, the point features are resampled back to
original sample points PQ0 before processing them in the ASCC layer.

Generating the sampling points PQi of a layer is a non-trivial task, for which previous work typically
employs farthest-point sampling (FPS) [34]. While FPS extracts a uniformly distributed subset from
a point cloud, its time complexity of O(NlogN) is not favorable. We have found that a voxelization
approach is preferable, which in a similar form is already used in established computer vision methods
[56, 42]. We choose the centers of the cells of a regular grid, i.e. voxels, as sampling points, as
illustrated in Fig. 4. The spacing of the grid is determined from the initial particle sampling modified
by the scaling factor si. The voxelization can be performed in O(N), and results in an evenly
distributed set of sampling points.

Feature Propagation To compute the features fij for level i and branch j, we use a set of CConvs
that process the features of all branches from the previous pass for each branch. This results in a
multi-level feature aggregation across all branches. For merging the features, the different features
are accumulated via summation:

fij =
X

k

CConv(f(i�1),k, PQk, PQj), (13)

where k denotes all branch indices of the previous layer, as also illustrated in Fig. 3. Here, it
is important to choose the sampling radius of the convolution operator based on the scale of the
corresponding input branch sk. This ensures that the convolutions on average always process a
neighborhood of similar size. I.e., for a small input resolution a larger radius is used, and vice versa.
Finally, the accumulated features of the main branch are processed by an ASCC layer.

2.4 Training and Long-term Stability

Following previous work [23, 48, 37], we use a mean absolute error of the position values between
prediction and ground truth weighted by the neighbor count as our loss function:

L(t) =
1

|P |

X

i

e
� ci

cavg |xt,i � yt,i| (14)

Here, ci denotes the number of neighbors for particle i, and cavg the average neighbor count. We
purposefully formulate the loss to work without additional loss terms, such as physical soft constraints,
and instead rely on the conservation of momentum from the ASCC.

For temporal stability, we use a rollout of T frames at training time. That is, for each training iteration,
we run the network for T time steps, where the input for the next step is based on the result from the
previous prediction. The loss is evaluated and averaged across all T frames with Lr = 1

T

P
T

t=0 L(t).
This integrates the temporal behavior in the training and stabilizes it for a medium time range.

While larger T are preferable for improving long-term predictions, they lead to significantly increased
memory requirements for backpropagation. To counteract this effect, we prepend the rollout by a
sequence of W simulated preprocessing steps using the current training state. Altogether N = W+T
frames are generated, but irrespective of the number of preprocessing steps, the loss and hence
gradient, is only computed for T steps after preprocessing. This lets the network learn to correct
its own errors that occur over longer time spans and improves long-term stability even in complex
scenarios without increasing the memory. During training, we adapt W based on the training progress
and the example difficulty. We provide the details of the implementation in App. A.2.

3 Results

We perform a series of tests to show the physical accuracy, robustness, and generalizability of
our method compared to other baseline methods. We primarily use data from a high-fidelity SPH
solver with adaptive time stepping [1]. The resulting, two-dimensional dataset "WBC-SPH" consists
of randomly generated obstacle geometries and fluid regions. Gravity direction and strength are
additionally varied across simulations. In addition to this primary dataset, we also use the MPM-
based fluid dataset "WaterRamps" from Sanchez-Gonzalez et al. [37], and the three-dimensional

6



0.00

0.25

0.50

0.75

1.00

1.25

RMSE (per step) Vel. Dist. Momentum Max. Dens. EMD Average

Base

ASCC

Multi Scale

Voxelize

Preprocess

Ours

Figure 6: Quantitative evaluation for the ablation study: We consider a relative accuracy to the final
method (Ours as 1.0) with higher values meaning better performance. The metrics are computed as
described in Sec. 3, with Vel. Dist. denoting the JSD of the velocity distributions. While RMSE (per
step) shows the RMSE after one time step, all other metrics are evaluated over a whole sequence.
Average corresponds to the mean of all previous metrics.

liquid dataset "Liquid3d" from Ummenhofer et al. [48] for additional evaluations. Both consist
of randomized fluid regions with constant gravity. A more detailed description of the datasets is
provided in App. A.3.

To quantify the accuracy of the methods, we use several different metrics with respect to the
ground truth data from the corresponding dataset. We use the root-mean-squared error (RMSE)
for single simulation steps to evaluate short-term accuracy. However, over long sequences, it is
common for fluid particles to mix chaotically regardless of whether the general fluid behavior
resembles the reference, leading to artificial per-particle errors. Therefore, the earth mover’s distance
(EMD) is used as an assessment of the long-time accuracy over the fluid volume as a whole [12]:
min�:x!y

P
x
k�(x)�yk22, where x and y are positions from two point sets and � denotes a bijective

mapping of minimal distances. EMD matches the particles as probability distributions, such that the
global distance error is minimized. The deterministic assignment of the particles makes EMD agnostic
to the ordering of particles, which counteracts the assessment errors caused by mixing. Intuitively,
EMD evaluates the similarity of density-weighted volumes instead of the individual particles. Thus,
it quantifies the error of the simulated configuration relative to the reference, neglecting small-scale
changes in particle order. In addition, we evaluate the difference between the velocity distributions
to evaluate the accuracy of the velocity content of a simulation. We compute a histogram of the
magnitude of the velocities and compute its Jensen-Shannon divergence to the histogram from
ground truth data: JSD(VxkVy) =

1
2 (DKL(VxkV ) +DKL(VykV )), where V = 1

2 (Vx + Vy) and
DKL is the Kullback-Leibler divergence. We also evaluate deviations in terms of maximum density,
|1� (maxi ⇢(xi)/maxi ⇢(yi))|, with ⇢ being a function to compute the density of particle i. This
evaluation correlates with the compressibility of the fluid and gives an indication of the stability of a
method. Lastly, we also compute the linear momentum change as

P
miai � Fext, where ai is the

acceleration and mi the mass of a particle, and Fext denotes external forces.

The source code of our approach, together with the associated evaluation tools and links to datasets,
is available at https://github.com/tum-pbs/DMCF.

0

2

4

6

8

10

Column

SPH No Sym
ASCC

Column

0

10

20

30

40

50

Free Fall

SPH No Sym
ASCC

Free Fall

Figure 5: RMSE (⇥10�3) evaluation over 100
steps for a set of Column scenes and Free Fall
scenes. A schematic is shown on the left side of the
graphs: fluid particles (blue) are affected by grav-
ity; solid boundary particles are shown in black.
The ASCC network shows the best performance in
terms of generalizing to the free fall cases.

Standing Liquid We first consider one-
dimensional simulations of a hydrostatic col-
umn of liquid. The training data consists of a
different number of fluid particles which, under
the effect of gravity, rest on a fixed boundary at
the bottom. The reference stems from a solver
with implicit time stepping [16] that can handle
global effects instantaneously. To test the gener-
alization, we also evaluate the methods for a free
fall scene. Here we generate a certain number
of fluid particles in free fall, which substantially
deviates from the behavior of the training data.
We trained two networks with the architecture
from Sec. 2.3, once with the proposed ASCC
layer (ASCC) and once with a regular CConv
layer instead (No Sym). Despite the seeming
simplicity of the test case, even small inaccu-
racies can lead to unstable behavior over time.

7

https://github.com/tum-pbs/DMCF


GT a b c d

0.0

0.1

0.2

0.3

0.4

EMD

PointNet CConv GNS Ours

0.00

0.05

0.10

0.15

0.20

RMSE (×1e-3)

PointNet CConv
GNS Ours

0.0

0.1

0.2

0.3

0.4

EMD

PointNet CConv
GNS Ours

^ 120.646.45 ^

Figure 7: Excerpts from a test sequence with the high-fidelity WBC-SPH dataset and a quantitative
evaluation on the right. The frames on the left represent, f.l.t.r., (GT ) the ground-truth, (a) PointNet,
(b) CConv, (c) GNS, and (d) Ours.

Without the antisymmetric constraint, a network can simply overfit to the gravity and negate it. This
reduces the problem to a local per particle problem. With ASCC, on the other hand, the network
relies on particle interactions to solve the problem. This makes it necessary to determine a global
context, and infer a pressure-like counter force to stabilize the fluid. We compare the performance
of both learned versions with the solution obtained by an explicit SPH solver with a small time
step [32]. For new column heights, Fig. 5 shows that both learned versions quickly compensate for
compression effects in the liquid and yield very small errors, while the SPH solution oscillates in
place. Whereas SPH handles the free fall case on the right reasonably well with an error of 19.68,
the network without antisymmetry largely fails and produces erroneous motions with an error of
46.36. The antisymmetric version, having learned a physically consistent response, yields an error
that improves over SPH by a factor of 3.3.

Ablation Study We evaluate the relevance of individual features introduced for our method with
the ablation study using the WBC-SPH dataset. We start with a base model (Base) without an ASCC
layer and gradually add relevant features. While this model fares very well for single steps, as
shown in Fig. 6 it performs poorly with respect to all other evaluations. Here, the graphs show the
performance relative to the full method, i.e., LOurs/L, with L denoting the loss of a variant under
consideration. For the second version, we add the antisymmetrical layer (ASCC), which ensures the
conservation of momentum and significantly improves the motion in terms of velocity distribution.
Here the momentum score of 0.0 for Base corresponds to a effective error of 0.095, all following
variants having a score of 1.0 with zero error. Next, we evaluate the relevance of the multi-scale
processing. We tested two different variants, one with FPS (Multi Scale) and one with the voxelization
(Voxelize). The performance is very similar for both, with the latter variant having clear advantages in
terms of resource usage. While improvements following the multi-scale handling are not obvious
first it starts to more clearly pay off when combined with preprocessing for temporal coherence
training in (Preprocess). The improved long-term stability and accuracy are clearly visible in the
maximum density and EMD metrics. Lastly, our full method (Ours) includes additional input rotation
normalization and a more advanced boundary processing step, as explained in more detail in App.
A.1. This leads to further slight improvements and yields the final algorithm, which we will compare
to previous work in the following sections.

Comparisons with Previous Work In the following, we compare our method with several estab-
lished methods as baselines: an adapted variant of PointNet [33], the CConv network [48] and GNS
[37]. More information about the employed networks and the training procedures are given in App.
A.2. We train and evaluate networks with our WBC-SPH dataset. For fairness, we additionally evaluate
the different approaches with their respective data sets, i.e., with the WaterRamps dataset of GNS
and with the Liquid3d dataset of CConv.

When trained on the WBC-SPH dataset, which consists of sequences with 3200 time steps, neither
CConv nor PointNet are able to generate stable results. While the short-term RMSE accuracy is
good, both networks fail to stabilize the challenging dynamics of our test sequences. Examples are
shown in Fig. 7. The outputs from GNS are stable, but the network seems to maintain stability by
smoothing and damping the dynamics. Also, despite receiving multiple frames over time, the GNS
model has difficulty predicting the dynamics of changing gravity directions. For this scenario, the
antisymmetric ASCC network clearly outperforms GNS and the other variants in quantitative as well
as qualitative terms. In particular, its EMD error is 7.22 times smaller than the closest competitor.

8



GT:

0 160 320

CConv:

0 160 320

GNS:

0 160 320

Ours:

0 160 320

Figure 8: Snapshots over time from models for the WaterRamps dataset.

0.00

0.05

0.10

0.15

0.20

0.25

Gravity

GNS Ours

0.00

0.05

0.10

0.15

0.20

0.25

No Gravity

GNS Ours

Figure 10: Assessment of generalization with droplet collisions: left with, right without gravity.
Each side shows an EMD evaluation and three centers of mass trajectories with overlaid snapshots
over time. The reference trajectories are shown in green. While our approach closely matches these
trajectories, hiding them behind the blue lines, GNS noticeably deviates, yielding larger errors in
terms of EMD.

0.00

0.10

0.20

0.30

EMD

CConv GNS Ours

0.00

0.03

0.05

0.08

0.10

0.13

RMSE (×1e-3)

CConv GNS
Ours

0.0

0.1

0.2

0.3

EMD

CConv GNS
Ours

0.0

0.5

1.0

1.5

2.0

Param. [×1e6]

CConv GNS
Ours

0

10

20

30

Inf. Time [ms]

CConv GNS
Ours

Figure 9: Quantitative evaluations with the
WaterRamps dataset. We show the accuracy
of the models along with their size and compu-
tational performance.

For fairness of the comparison, we also retrain our
model and the CConv model with the WaterRamps
dataset. While the accuracy of GNS with this data
is very high, our method nonetheless outperforms
GNS with a decrease of 24% in terms of EMD. In
comparison, CConv results in a 3.61 times larger
EMD. Over short periods the dynamics of GNS be-
have similarly to ours. For longer periods of more
than 30 frames, the results diverge, as shown in
Fig. 8. Most importantly, our network yields a high
accuracy while requiring only a fraction of the com-
putational resources that GNS requires (Fig. 9): the
ASCC network has 29% of the weights of GNS,
and inference is 2.79 times faster, while yielding the
aforementioned improvements in terms of accuracy.
In addition to the conservation of momentum, this
advantage can be explained by the inductive biases of our convolutional architecture: our networks
can efficiently process positional information, which is difficult for generic graph networks. We
discuss the inherent advantages of the convolution architectures over graph networks in more detail
in appendix A.2.2. While CConv performs best in terms of resources, it does so at the expense of
inference accuracy: its EMD is three times larger than the one obtained with our method.

Generalization To assess the generalizing capabilities of our network and GNS trained with the
WaterRamps data, we perform tests with droplets colliding under the influence of varying gravity.
This case allows for an accurate evaluation in terms of the center of mass trajectory of the liquid
volume. Considering a case with default gravity, the ASCC network already yields an EMD error
reduced by 57%. When reducing the gravity to zero, the GNS trajectory noticeably deviates from the
ground truth trajectory and yields a 195% larger error than our method. The GNS has encoded the
influence of gravity in its learned representation and hence has difficulties transferring the dynamics
to the changed physics environment.

3D Simulations Finally, we test our network with 3D data using the Liquid3d dataset. Unlike
the other datasets, its simulations use a significantly larger time step (8 times larger than WBC-SPH).
Combined with the higher dimensionality, it is substantially more difficult to obtain stable solutions.
Again, our method achieves comparable accuracy with much better generalization. Similar to the
previous examples, it becomes apparent that CConv tends to overly dampen the acceleration of gravity,
which, unlike our method, leads to discrepancies in terms of the motion compared to the ground
truth, as shown in Fig. 11. To show the scalability and generalizability of our method, we apply it to
multiple large-scale scenes with up to 165⇥ more particles than in the training set. Qualitative results

9



GT CConv Ours

0.00

0.50

1.00

1.50

2.00

2.50

RMSE (×1e-3)

CConv Ours

0.00

0.10

0.20

0.30

EMD

CConv Ours

Figure 11: Example of a 3D sequence based on the Liquid3d dataset. CConv visibly dampens the
acceleration by gravity while our method closely matches the dynamics of the ground truth.

Figure 12: Test scene with over one million particles after 800 time steps generated with our method.

can be found in Fig. 12 and App. A.4 (Fig. 24). Our model robustly predicts the dynamics of these
scenes using the same time step as for the smaller scenes.

Performance We have also evaluated the computational performance of our method, with detailed
measurements given in App. A.4. E.g., for the 2D data WBC-SPH our method requires 67.25ms per
frame on average. For comparison, the corresponding reference solver requires 10925ms per frame.
Thus, our network achieves a speed-up of 162 over the reference solver.

4 Conclusion

We have presented a method to guarantee the conservation of momentum in neural networks and
demonstrated the importance of this concept for learning the complex dynamics of liquids. In
particular, our approach outperforms state-of-the-art methods in terms of accuracy and generalization.
Nonetheless, the limits of symmetric constraints are far from exhausted. E.g., while our network is
antisymmetric, permutation invariant, and translation invariant, an interesting avenue for future work
will be to investigate more generic forms of E(n) equivariance [8, 50, 38].

10



References

[1] S. Adami, X. Y. Hu, and N. A. Adams. A generalized wall boundary condition for smoothed
particle hydrodynamics. J. Comput. Phys., 231(21), August 2012.

[2] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction
networks for learning about objects, relations and physics. In Advances in Neural Information
Processing Systems, pages 4502–4510, 2016.

[3] Markus Becker and Matthias Teschner. Weakly compressible sph for free surface flows. In Proc.
of symposium on Computer animation, SCA ’07, pages 209–217. Eurographics Association,
2007.

[4] Jan Bender and Dan Koschier. Divergence-free sph for incompressible and viscous fluids. IEEE
Transactions on Visualization and Computer Graphics, 23(3):1193–1206, 2016.

[5] J. Bonet and T.-S.L. Lok. Variational and momentum preservation aspects of smooth particle
hydrodynamic formulations. Computer Methods in Applied Mechanics and Engineering,
180(1):97–115, 1999.

[6] Johannes Brandstetter, Max Welling, and Daniel E. Worrall. Lie point symmetry data augmen-
tation for neural pde solvers, 2022.

[7] Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE
solvers. In International Conference on Learning Representations, 2022.

[8] Taco Cohen and Max Welling. Group equivariant convolutional networks. In Maria Florina
Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on
Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 2990–2999,
New York, New York, USA, 20–22 Jun 2016. PMLR.

[9] Miles D. Cranmer, Sam Greydanus, Stephan Hoyer, Peter W. Battaglia, David N. Spergel, and
Shirley Ho. Lagrangian neural networks. CoRR, abs/2003.04630, 2020.

[10] Gregory Dzhezyan and Hubert Cecotti. Symnet: Symmetrical filters in convolutional neural
networks. CoRR, abs/1906.04252, 2019.

[11] Stephan Eismann, Raphael JL Townshend, Nathaniel Thomas, Milind Jagota, Bowen Jing, and
Ron O Dror. Hierarchical, rotation-equivariant neural networks to select structural models of
protein complexes. Proteins: Structure, Function, and Bioinformatics, 89(5):493–501, 2021.

[12] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for 3d object
reconstruction from a single image. CoRR, abs/1612.00603, 2016.

[13] Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrodynamics: Theory and
application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3),
1977.

[14] John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan
Catanzaro. Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR,
abs/2111.13587, 2021.

[15] F.H. Harlow, M. Evans, and R.D. Richtmyer. A Machine Calculation Method for Hydrodynamic
Problems. LAMS (Los Alamos Scientific Laboratory). Los Alamos Scientific Laboratory of the
University of California, 1955.

[16] Xiaowei He, Ning Liu, Sheng Li, Hongan Wang, and Guoping Wang. Local poisson sph for
viscous incompressible fluids. Computer Graphics Forum, 31(6):1948–1958, 2012.

[17] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and
Frédo Durand. Difftaichi: Differentiable programming for physical simulation. arXiv preprint
arXiv:1910.00935, 2019.

[18] Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang.
A moving least squares material point method with displacement discontinuity and two-way
rigid body coupling. ACM Transactions on Graphics (TOG), 37(4):150, 2018.

[19] Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the
National Academy of Sciences, 118(21), 2021.

11



[20] Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. Smoothed particle
hydrodynamics techniques for the physics based simulation of fluids and solids. In EURO-
GRAPHICS 2019 Tutorials. Eurographics Association, 2019.

[21] Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. A Survey on SPH
Methods in Computer Graphics. Computer Graphics Forum, 41(2), 2022.

[22] Lubor Ladicky, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross.
Data-driven fluid simulations using regression forests. ACM Trans. Graph., 34(6):199, 2015.

[23] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids. In International
Conference on Learning Representations, 2019.

[24] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations. arXiv preprint arXiv:2010.08895, 2020.

[25] Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as
model prior for deep learning. CoRR, abs/1907.04490, 2019.

[26] Miles Macklin and Matthias Müller. Position based fluids. ACM Trans. Graph., 32(4):104,
2013.

[27] Arvind Mohan, Don Daniel, Michael Chertkov, and Daniel Livescu. Compressed convo-
lutional lstm: An efficient deep learning framework to model high fidelity 3d turbulence.
arXiv:1903.00033, 2019.

[28] Jeremy Morton, Antony Jameson, Mykel J Kochenderfer, and Freddie Witherden. Deep
dynamical modeling and control of unsteady fluid flows. In Advances in Neural Information
Processing Systems, 2018.

[29] M. Müller, D. Charypar, and M. Gross. Particle-based Fluid Simulation for Interactive Applica-
tions. In Symposium on Computer Animation, pages 154–159, 2003.

[30] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning
mesh-based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

[31] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.
[32] Simon Premžoe, Tolga Tasdizen, James Bigler, Aaron Lefohn, and Ross T Whitaker. Particle-

based simulation of fluids. Computer Graphics Forum, 22(3):401–410, 2003.
[33] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning

on point sets for 3d classification and segmentation. CoRR, abs/1612.00593, 2016.
[34] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical

feature learning on point sets in a metric space. Advances in neural information processing
systems, 30, 2017.

[35] Steindor Saemundsson, Alexander Terenin, Katja Hofmann, and Marc Deisenroth. Variational
integrator networks for physically structured embeddings. In Silvia Chiappa and Roberto
Calandra, editors, Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pages
3078–3087. PMLR, 26–28 Aug 2020.

[36] Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter W. Battaglia. Hamiltonian
graph networks with ODE integrators. CoRR, abs/1909.12790, 2019.

[37] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter W Battaglia. Learning to simulate complex physics with graph networks. In International
Conference on Machine Learning, 2020.

[38] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural
networks. In International Conference on Machine Learning, pages 9323–9332. PMLR, 2021.

[39] Connor Schenck and Dieter Fox. SPNets: Differentiable fluid dynamics for deep neural
networks. In Conference on Robot Learning, 2018.

[40] Barbara Solenthaler and Renato Pajarola. Predictive-corrective incompressible sph. ACM Trans.
Graph., 28(3):40, 2009.

12



[41] Hyeontae Son and Young Min Kim. Saum: Symmetry-aware upsampling module for consistent
point cloud completion. In Proceedings of the Asian Conference on Computer Vision (ACCV),
November 2020.

[42] Shuran Song and Jianxiong Xiao. Deep sliding shapes for amodal 3d object detection in RGB-D
images. CoRR, abs/1511.02300, 2015.

[43] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation learning
for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019.

[44] T Tezduyar, S Aliabadi, M Behr, A Johnson, V Kalro, and M Litke. Flow simulation and high
performance computing. Computational Mechanics, 18(6):397–412, 1996.

[45] Nathaniel Thomas, Tess E. Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and
Patrick Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for
3d point clouds. CoRR, abs/1802.08219, 2018.

[46] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating
eulerian fluid simulation with convolutional networks. ICML, 2017.

[47] Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-
loop: Learning from differentiable physics to interact with iterative pde-solvers. Advances in
Neural Information Processing Systems, 2020.

[48] Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid sim-
ulation with continuous convolutions. In International Conference on Learning Representations,
2019.

[49] Soledad Villar, David W Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars
are universal: Equivariant machine learning, structured like classical physics. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages 28848–28863. Curran Associates, Inc.,
2021.

[50] Robin Walters, Jinxi Li, and Rose Yu. Trajectory prediction using equivariant continuous
convolution. arXiv preprint arXiv:2010.11344, 2020.

[51] Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1457–1466, 2020.

[52] Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models
for improved generalization. arXiv preprint arXiv:2002.03061, 2020.

[53] Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[54] Steffen Wiewel, Byungsoo Kim, Vinicius C Azevedo, Barbara Solenthaler, and Nils Thuerey. La-
tent space subdivision: Stable and controllable time predictions for fluid flow. arXiv:2003.08723,
2020.

[55] David C Wilcox. Turbulence Modeling for CFD. DCW industries, 3rd edition, 2006.
[56] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object

detection. CoRR, abs/1711.06396, 2017.

13


	Introduction
	Related Work

	Method
	Conservation of Momentum
	Antisymmetric Continuous Convolution
	Neural Network Formulation
	Training and Long-term Stability

	Results
	Conclusion
	Appendix
	Implementation Details
	Training Details
	Neural Network Architecture
	Discussion: Comparing CConv and GNS

	Simulation Data Sets
	Additional Results


