Supervised Training of Conditional Monge Maps

Charlotte Bunne* Andreas Krause Marco Cuturi
ETH Zurich ETH Zurich Apple
bunnec@ethz.ch krausea@ethz.ch cuturi@apple.com
Abstract

Optimal transport (OT) theory describes general principles to define and select,
among many possible choices, the most efficient way to map a probability measure
onto another. That theory has been mostly used to estimate, given a pair of source
and target probability measures (u, v/), a parameterized map Ty that can efficiently
map p onto v. In many applications, such as predicting cell responses to treatments,
pairs of input/output data measures (1, /) that define optimal transport problems
do not arise in isolation but are associated with a context ¢, as for instance a
treatment when comparing populations of untreated and treated cells. To account
for that context in OT estimation, we introduce CONDOT, a multi-task approach
to estimate a family of OT maps conditioned on a context variable, using several
pairs of measures (1, ;) tagged with a context label ¢;. CONDOT learns a global
map Ty conditioned on context that is not only expected to fit all labeled pairs
in the dataset {(c;, (s, v:))}, i-e., To(ci)fus =~ v;, but should also generalize to
produce meaningful maps 7p(cnew) When conditioned on unseen contexts cpey. Our
approach harnesses and provides a novel usage for partially input convex neural net-
works, for which we introduce a robust and efficient initialization strategy inspired
by Gaussian approximations. We demonstrate the ability of CONDOT to infer the
effect of an arbitrary combination of genetic or therapeutic perturbations on single
cells, using only observations of the effects of said perturbations separately.

1 Introduction

A key challenge in the treatment of cancer is to predict the effect of drugs, or a combination thereof,
on cells of a particular patient. To achieve that goal, single-cell sequencing can now provide
measurements for individual cells, in treated and untreated conditions, but these are, however, not
in correspondence. Given such examples of untreated and treated cells under different drugs, can
we predict the effect of new drug combinations? We develop a general approach motivated by this
and related problems, through the lens of optimal transport (OT) theory, and, in that process, develop
tools that might be of interest for other application domains of OT. Given a collection of IV pairs
of measures (u;, v;) over R¢ (cell measurements), tagged with a context ¢; (encoding the treatment),
we seek to learn a context-dependent, parameterized transport map 7y such that, on training data, that
map To(c;) : R4 — R fits the dataset, in the sense that To(ci)tu; =~ v;. Additionally, we expect that
this parameterized map can generalize to unseen contexts and patients, to predict, given a patient’s
cells described in fipew, the effect of applying context cqey On these cells as 7o (Cpew )1t

Learning Mappings Between Measures From generative adversarial networks, to normalizing
flows and diffusion models, the problem of learning maps that move points from a source to a
target distribution is central to machine learning. OT theory (Santambrogio, 2015) has emerged as a
principled approach to carry out that task: For a pair of measures y, v supported on R?, OT suggests
that, among all maps 7" such that v can be reconstructed by applying 7" to every point in the support

*Work done during an internship at Apple.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



a. .. by scalar b. .. by covariate c. .. by action

e.g., time-course or dosage levels e.g., metadata or identifiers e.g., perturbations or decisions
target measures [ .’\Cl%. vy action a;

source — v

14 125% RN a
measure t Vi1 vT Hi@ CL2 Y K 0 V.
~ C1r 2 i

([ ] A, 1395 vy o
W Vi_q ¢ covariate Cr, ./ v combination a;;
- learn %(t)ﬁﬂ .. learn %(Cl,l’)ﬁﬂ .. learn 'Te((ai,aj))ﬁ,u

Figure 1: The evolution from a source y to a target measure v can depend on context variables ¢ of
various nature. This comprises a. scalars such as time or dosage ¢ which determine the magnitude of
an optimal transport, b. flow of measures into another one based on additional information (possibly
different between p and v) stored in vectors c; ;, or ¢. discrete and complex actions a;, possibly in
combination a;;. We seek a unified framework to produce a map 74(c) from any type of condition c.

of i (abbreviated with the push-forward notation as Ty = v/), one should favor so-called Monge
maps, which minimize the average squared-lengths of displacements ||z — T'(z)||?. A rich literature,
covered in Peyré and Cuturi (2019), addresses computational challenges of estimating such maps,
with impactful applications to various areas of science (cf., Hashimoto et al., 2016; Schmitz et al.,
2018; Schiebinger et al., 2019; Yang et al., 2020; Janati et al., 2020; Bunne et al., 2022a).

Neural OT We focus in this work on neural approaches that parameterize the optimal maps T’
as neural networks. An early approach is the work on Wasserstein GANs (Arjovsky et al., 2017),
albeit the transport map is not explicitly estimated. Several recent results have exploited a more
explicit connection between OT and NN, derived from the celebrated Brenier theorem (1987), which
states that Monge maps are necessarily gradients of convex functions. Such convex functions can
be represented using input convex neural networks (ICNN) (Amos et al., 2017), to parameterize
either the Monge map (Jacob et al., 2018; Yang and Uhler, 2019; Bunne et al., 2021, 2022b) or a
dual potential (Makkuva et al., 2020; Korotin et al., 2020) as, respectively, the gradient of an ICNN
or an ICNN itself. In this paper, we build on this line of work, but substantially generalize it, to learn
a parametric family of context-aware transport maps, using a collection of labeled pairs of measures.

Contributions We propose a framework that can leverage labeled pairs of measures {(c;, (1, vi)) }i
to infer a global parameterized map 7y. Hereby, the context ¢; belongs to an arbitrary set C. We
construct Ty so that it should be able, given a possibly unseen context label ¢ € C, to output a map
To(c) : R — RY, that is itself the gradient of a convex function. To that end, we propose to learn
these parameterized Monge maps Ty as the gradients of partially input convex neural networks
(PICNN), which we borrow from the foundational work of Amos et al. (2017). Our framework can
be also interpreted as a hypernetwork (Ha et al., 2016): The PICNN architecture can be seen as an
ICNN whose weights and biases are modulated by the context vector ¢, which parameterizes a family
of convex potentials in R%. Because both ICNN —and to a greater extent PICNN— are notoriously
difficult to train (Richter-Powell et al., 2021; Korotin et al., 2020, 2021), we use closed-form
solutions between Gaussian approximations to derive relevant parameter initializations for (P)ICNNs:
These choices ensure that, upon initialization, the gradient of the (P)ICNNs mimics the affine Monge
map obtained in closed form between Gaussian approximations of measures i, v; (Gelbrich, 1990).
Our framework is applied to three scenarios: Parameterization of transport through a real variable
(time or drug dosage), through an auxiliary informative variable (cell covariates) and through action
variables (genetic perturbations in combination) (see Fig. 1). Our results demonstrate the ability
of our architectures to better capture on out-of-sample observations the effects of these variables in
various settings, even when considering never-seen, composite context labels. These results suggest
potential applications of conditional OT to model personalized medicine outcomes, or to guide novel
experiments, where OT could serve as a predictor for never tested context labels.

2 Background on Neural Solvers for the 2-Wasserstein Problem

Optimal Transport The Monge problem between two measures 1, v € P(R?), here restricted to
measures supported on R? and compared with the squared Euclidean metric, reads

T* := arg inf / |z — T(z)||*du(z). (1)
Tip=v JRd



The existence of T is guaranteed under fairly general conditions (Santambrogio, 2015, Theorem
1.22), which require that 4 and v have finite Ly norm, and that y puts no mass on (d — 1) surfaces
of class Cs. This can be proved with the celebrated Brenier theorem (1987), which states that there
must exist a unique (up to the addition of a constant) potential f* : R¢ — R such that T* = V f*.
This theorem has far-reaching implications: It is sufficient, when seeking optimal transport maps,
to restrict the computational effort to seek a “good” convex potential, such that its gradient pushes
w towards v. This result has been exploited to propose OT solvers that rely on input convex neural
networks (ICNNs) (Amos et al., 2017), introduced below
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In practice, Monge maps can be estimated using a dual formulation (Makkuva et al., 2020; Korotin
et al., 2020; Bunne et al., 2022b; Alvarez-Melis et al., 2021; Mokrov et al., 2021). Indeed, T in (1)
is recovered as V f*, where f* is defined in (2), writing f* for the Legendre transform of f.

Convex Neural Architectures Input convex neural networks (ICNN) are neural networks 1)y that
admit certain constraints on their architecture and parameters 6, such that their output 1y () is a
convex function of their input = (Amos et al., 2017). As a result, they have been increasingly used as
drop-in replacements to the set of admissible functions in (2). Practically speaking, an ICNN is a
K -layer, fully connected network such that, at each layer index k from 0 to K — 1, a hidden state
vector 2y, is defined recursively as in (3),

2kr1 = op(WiEz + Wiz + br) 3)
and vy (z) = zx, where, by convention, zg and W§ are 0; o, are convex non-decreasing activation
functions; 6 = {bx, W¢, W }1_," are the weights and biases of the neural network. While ample
flexibility is provided to choose dimensions for intermediate hidden states zj, the last layer must
necessarily produce a scalar, hence Wy _; and W/_, are line vectors and bx_; € R. ICNNs are
characterized by the fact that all weight matrices W associated to latent representations z must have
non-negative entries. This, along with the specific activation functions, ensures the convexity of 1y.
We encode this constraint by identifying these matrices as the elementwise softplus or ReLU of other
matrices of the same size, or, alternatively, using a regularizer that penalizes the negative entries of
these matrices. Since the work by Amos et al. (2017), convex neural architectures have been used
within the context of OT to model convex dual functions (Makkuva et al., 2020), or normalizing flows
derived from convex potentials (Huang et al., 2021). Their expressivity and universal approximation
properties have been studied by Chen et al. (2019), who show that any convex function over a compact
convex domain can be approximated in sup norm by an ICNN.

3 Supervised Training of Conditional Monge Maps

We are given a dataset of N pairs of measures, each endowed with a label, (¢;, (p;, ;) € Cx P(R)2.
Our framework builds upon two pillars: (i.) we formulate the hypothesis that an optimal transport 77
(or, equivalently, the gradient of a convex potential f;) explains how measure p; was mapped to v;,
given context ¢;; (ii.) we build on the multi-task hypothesis (Caruana, 1997) that all of the N maps
T between p; and v; share a common set of parameters, that are modulated by context informations
c;. These ideas are summarized in an abstract regression model described below.

3.1 A Regression Formulation for Conditional OT Estimation

0 € © C R", Ty describes a function that takes an input vector ¢ € C, and outputs a function
To(c) : RY —» R? as a hypernetwork would (Ha et al., 2016). Assume momentarily that we are
given ground truth maps T;, that describe the effect of context ¢; on any measure, rather only pairs of
measures (j4;, v;). This is of course a major leap of faith, since even recovering an OT map T* from
two measures is in itself very challenging (Hiitter and Rigollet, 2021; Rigollet and Stromme, 2022;
Pooladian and Niles-Weed, 2021). If such maps were available, a direct supervised approach to learn
a unique 6 could hypothetically involve minimizing a fit function composed of losses between maps
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Unfortunately, such maps 7; are not given, since we are only provided unpaired samples before ;
and after v; that map’s application. By Brenier’s theorem, we know, however, that such an OT map
T exists, and that it would be necessarily the gradient of a convex potential function that maximizes
(2). As aresult, we propose to modify (4) to (i.) parameterize, for any ¢, the map 7y(c) as the gradient
w.r.t.  of a function fy(z,c) : R xC — R that is convex w.r.t. z, namely Tg(c) := x + V fo(z, c);
(ii.) estimate # by maximizing jointly the dual objectives (2) simultaneously for all N pairs of
measures, in order to ensure that the maps are close to optimal, to form the aggregate problem

maxg 55 Eu v, (fol 1)) 5)
We detail in App. B how the Legendre transforms that appear in the energy terms &,, ,, are handled
with an auxiliary function.

3.2 Integrating Context in Convex Architectures

We propose to incorporate context variables, in order to modulate a family of convex functions
fo(z, ¢) using partially input convex neural networks (PICNN). PICNNs are neural networks that can
be evaluated over a pair of inputs (z, ¢), but which are only required to be convex w.r.t. . Given an
input vector x and context vector ¢, a K -layer PICNN is defined as 1y (z, ¢) = zx, where, recursively
for 0 < k£ < K — 1 one has

upg1 =7 (Vieur, + i), ©

zhpr = o (Wi (20 0 [Witug, + B3] ) + Wi (2 0 (Wi uk + b)) + Wilug, + b)
where the PICNN is initialized as ug = ¢, zg = 0, o denotes the Hadamard elementwise product, and
Tk, 1s any activation function. The parameters of the PICNN are then given by

0 = {Vi, WZ, W WgZ  WZE W vk, by, b, bit }.

Similar to ICNNSs, the convexity w.r.t. input variable x is guaranteed as long as activation functions
o; are convex and non-decreasing, and the weight matrices W7 have non-negative entries. We
parameterize this by storing them as elementwise applications of softplus operations on precursor
matrices of the same size, or, alternatively, by regularizing their negative part. Finally, much like
ICNNSs, all matrices at the K — 1 layer are line vectors, and their biases scalars.

Such networks were proposed by Amos et al. (2017, Eq. 3) to address a problem that is somewhat
symmetric to ours: Their inputs were labeled as (y, x), where y is a label vector, typically much
smaller than that of vector . Their PICNN is convex w.r.t. y, in order to easily recover, given
a datapoint = (e.g., an image) the best label y that corresponds to x using gradient descent as a
subroutine, i.e. y*(z) = argmin, PICNNy(z,y). PICNN were therefore originally proposed to
learn a parameterized, implicit classification layer, amortized over samples, whose motivation rests
on the property that it is convex w.r.t. label variable y. By contrast, we use PICNNs that are convex
w.r.t. data points x. In addition to that swap, we do not use the convexity of the PICNN to define
an implicit layer (or to carry out gradient descent). Indeed, it does not make sense in our setting
to minimize vy (z, ¢) as a function of z, since x is an observation. Instead, our work rests on the
property that V11 (x, ¢) describes a parameterized family of OT maps. We note that PICNN's were
considered within the context of OT in (Fan et al., 2021, Appendix B). In that work, PICNN provide
an elegant reformulation for neural Wasserstein barycenters. Fan et al. (2021) considered a context
vector c that was restricted to be a small vector of probabilities.

3.3 Conditional Monge Map Architecture

Using PICNNs as a base module, the CONDOT architecture integrates operations on the contexts C.
As seen in Figure 1, context values ¢ may take various forms:

1. A scalar t denoting a strength or a temporal effect. For instance, McCann’s interpolation and
its time parameterization, oy, = ((1 — ¢)Id + tT")y9p (McCann, 1997) can be interpreted as a
trivial conditional OT model that creates, from an OT map g, a set of maps parameterized by ¢,
To(t) :=a — Vo (1 —t)||z]|?/2 + tpg(z)).

2. A covariate vector influencing the nature of the effect that led u; to v;, (capturing, e.g., patient
feature vectors).

3. One or multiple actions, possibly discrete, representing decisions or perturbations applied onto p;.

To provide a flexible architecture capable of modeling different types of conditions as well as
conditions appearing in combinations, the more general CONDOT architecture consists of the



hypernetwork 7y that is fed a context vector through embedding and combinator modules. This
generic architecture provides a one-size fits all approach to integrate all types of contexts c.

Embedding Module To give greater flexibility when setting the context variable ¢, CONDOT
contains an embedding module £ that translates arbitrary contexts into real-valued vectors. Besides
simple scalars ¢ (Fig. 1a) for which no embedding is required, discrete contexts can be handled with an
embedding module £;. When the set C is small, this can be done effectively using one-hot embeddings
Eone- For more complicated actions a such as treatments, there is no simple way to vectorize a context
c. Similarly to action embeddings in reinforcement learning (Chandak et al., 2019; Tennenholtz and
Mannor, 2019), we can learn embeddings for discrete actions into a learned continuous representation.
This often requires domain-knowledge on the context values. For molecular drugs, for example, we
can learn molecular representations &, such as chemical, motif-based (Rogers and Hahn, 2010) or
neural fingerprints (Rong et al., 2020; Schwaller et al., 2022). However, often this domain knowledge
is not available. In this work, we thus construct so-called mode-of-action embeddings, by computing
an embedding Ene, that encourages actions a with similar effect on target population v to have a
similar representation. In § 5, we analyze several embedding types for different use-cases.

Combinator Module While we often have access to

contexts ¢ in isolation, it is crucial to infer the effect of L

contexts applied in combination. A prominent example are

cancer combination therapies, in which multiple treatment ? _’q To | >
modalities are administered in combination to enhance 2 7 >

treatment efficacy (Kummar et al., 2010). In these settings, g £ E]"

the mode of operation between individual contexts c is ) ¢

often not known, and can thus not be directly modeled via = combinator

simple arithmetic operations such as min, max, sum, embedding map
mean. While we test as a baseline the case, applicable
to one-hot-embeddings, where simple additions are used
to model these combinations, we propose to augment the
CONDOT architecture with a parameterized combinator
module Cg. If the order in which the actions are applied
is irrelevant or unknown, the corresponding network Cg
needs to be permutation-invariant, which can be achieved
by using a deep set architecture (Zaheer et al., 2017). Receiving a flexible number of inputs from the
embedding module £,, CONDOT allows for a joint training of the PICNN parameters 6, embedding
parameters ¢, and combinator parameters ® in a single, end-to-end differentiable architecture.

Figure 2: CONDOT Architecture and
Modules. The embedding module &
embeds arbitrary conditions ¢, which are
then combined via module Cg. Using
the processed contexts ¢, the map 7p(c)
acts on g to predict the target measure v.

Training Procedure Given a dataset D = {c;, (11, Vi) }}*, of N pairs of populations before 1; and
after transport v; connected to a context c;, we detail in Algorithm 1 provided in § B, a training loop
that incorporates all of the architecture proposals described above. The training loss aims at making
sure the map Tp(c;) is an OT map from ; to v;, where ¢; may either be the original label itself or its
embedded/combined formulation in more advanced tasks. To handle the Legendre transform in (2),
we use the proxy dual objective defined in (Makkuva et al., 2020, Eq. 6) (15)-(16) in place of (2) in our
overall loss (5). This involves training the CONDOT architecture using two PICNNs, i.e., PICNNg,
and PICNNy_, that share the same embedding/combinator module, with a regularization (14) promot-
ing that for any c, the PICNNp, (-, c) resembles the Legendre transform of the other, PICNNj (-, ¢).

4 Initialization Strategies for Neural Convex Architectures

We address the problem of initializing the parameters of (P)ICNNs to ensure their gradient evaluated
at every point is (initially) meaningful in the context of OT, namely that it is able to map the
first and second moments of a measure y into those of a target measure v. The initializers we
propose build heavily on the quadratic layers proposed in the seminal reference (Korotin et al., 2020,
Appendix B.2), notably the “DenseQuad” layer, as well as on closed-form solutions available for
Gaussian approximations of measures (Gelbrich, 1990).

Closed-Form Potentials for Gaussians Given two Gaussian distributions A7, N3 with means
respectively mj, mo and covariance matrices X1, 2o (where X1 is assumed to be full rank), the
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Figure 3: a. From a measure x to several target measures v1, v, v3 provided with labels ¢y, ca, c3 we
can extract three Gaussian (quadratic) potentials in closed form, b. whose gradients transport on a
first approximation (i to areas in space that cover the three targets. ¢. Given a new label vector c, we
compare it to known labels to modulate the magnitude of each of the three potentials.

Brenier potential solving the OT problem from the first to the second Gaussian reads:
P, = 527 AT Az + 672 + (A, ) = §]|Az|3 + 0"z + (A, 1), where, @)

12 (wl/2w wl/2) 2 a-1/2 1/2 T
A= (9] (21 o ) oh . bi=my — AT Amy,

define both quadratic and linear terms and ¢(A, b) can be any constant. Importantly, note that we
write the quadratic term in factorized form AA” to enforce psd-ness, as done by Korotin et al. (2020),
not as usually done with a single psd matrix (Peyré and Cuturi, 2019, Remark 2.31).

Our quadratic potentials are only injected in the first state of hidden vector zq, to populate it with a
collection of relevant full-rank quadratic convex functions, with the goal of recovering an affine OT
map from the start, as illustrated in the experiments from § C.1.

Quadratic Potentials Lower Bounded by 0 Naturally, for any choice of ¢(A, b) one recovers the
property that Vf N1 = N. When used in deep architectures, the level of that constant does,
however, play a role, since convex functions in ICNN are typically thresholded or modulated using
rectifying functions. To remove this ambiguity, we settle on a choice for t(A, b) that is such that the
lowest value reached by f3,, ,, is 0. This can be obtained by setting

t(A,b) :=bT(ATA)" b, (®)
which results in the following choice, writing w = m; — (AT A)~'my,,
frrne (@) =314 (z+ (ATA) ') 13 = 5 A(z —w) [I3. )

To mimic these potential functions, we introduce a quadratic layer parameterized by a weight matrix
M and a “bias” vector m, defined as qar,n (z) = 3|/ M (x — m)||3. By design, qar,m(2) is a convex
quadratic, non-negative layer. Finally, one has the following relationships,

Varo, =1d, Vga N =N;. (10)

ICNN Initialization We explore two possible ICNN (3) initializers for OT.

Identity Initialization The first approach ensures that upon initialization the ICNN’s gradient mimics
the identity map, i.e., Vibp(z) = « for any z. We do so by injecting in the initial hidden state z
the norm of the input vector %Hx 2, cast as a trainable layer gy, initialized with M = I and
m = 0g4, see (10). The remaining parameters are chosen to propagate that norm throughout layers
using averages. This amounts to the following choices:

. Set all o; to be activations such that o (u) ~ 1 for u large enough, e.g., (leaky) ReLU or softplus.
. Introduce an initialization layer, zo = gas.m ()1, itself initialized with M = I and m = 04.

. Initialize all matrices W7 to & 14, 4, /d1, where d1, da are the dimensions of these matrices.

. Initialize all matrices W to =~ 0.

. Initialize biases b; to s1, where s is a large enough value s so that o/(s) =~ 1.

DB W=

Gaussian Initialization The second approach can be used to initialize an ICNN so that its gradient
mimics the affine transport between the Gaussian approximations of p and v. To this end, we follow
all of the steps outlined above, except for step 2 where the quadratic layer gy, is initialized instead
with M = A and m = m; — (AT A)~'my, using notations in (7), (8), (9), where m;, my, ¥1, ¥




Table 1: Evaluation of drug effect predictions from control cells to cells treated with drug Givinostat
when conditioning on various covariates influencing cellular responses such as drug dosage and cell
type. Results are reported based on MMD and the ¢, distance between perturbation signatures of
marker genes in the 1000 dimensional gene expression space.

Method Conditioned on Drug Dosage Conditioned on Cell Line
In-Sample Out-of-Sample In-Sample
MMD £5(PS) MMD £5(PS) MMD £5(PS)
CPA (Lotfollahi et al., 2021) 0.1502 £ 0.0769 2.47 £2.89 0.1568 £ 0.0729  2.65 +2.75 0.2551 £0.006  2.71 + 1.51

ICNN OT (Makkuva et al., 2020)  0.0365 £ 0.0473  2.37 +2.15 0.0466 £ 0.0479 224 +2.39 0.0206 £ 0.0109 1.16 £0.75
CONDOT (Identity initialization) ~ 0.0111 £ 0.0055 0.63 £ 0.09 0.0374 £0.0052  2.02 £0.10 0.0148 £ 0.0078  0.39 £ 0.06
CONDOT (Gaussian initialization) ~ 0.0128 £+ 0.0081  0.60 & 0.11 0.0325 £0.0062 1.84 £0.14 0.0146 £ 0.0074  0.41 £ 0.07
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Figure 4: a. Predictive performance of CONDOT and baselines w.r.t. the entropy-regularized Wasser-
stein distance on drug dosages in-sample, i.e., seen during training, and out-of-sample, i.e., unseen
during training. b. Marginal distributions of observed source and target distributions, as well as pre-
dictions on perturbed distributions by CONDOT and baselines of an exemplary gene across different
cell lines. Predicted marginals of each method should match the marginal of the target population.

are replaced by the empirical mean and covariances of x and v. Throughout the experiments, we use
the Gaussian and identity initialization. Further comparisons between the vanilla initialization and
those introduced in this work can be found in § C.1 (Fig. 8).

PICNN Initialization Recall for convenience that a K -layer PICNN architecture reads:
upt1 =% (Vieur, + vx)

zrp1 = o (WE (21 0 (Wi ur 4+ b)) + WiF (z o (W ur + b)) + Witug, + b)

Yy(x,¢) =2k

In their original form (Amos et al., 2017, Eq. 3), PICNNs are initialized by setting ug = ¢ and
zp = 0 to a zero vector of suitable size. Intuitively, the hidden states uj, act as context-dependent
modulators, whereas vectors zj, propagate, layer after layer, a collection of convex functions in x
that are iteratively refined, while retaining the property that they are each convex in x. A reasonable
initialization for a PICNN that is provided a context vector c is that if ¢ ~ ¢; (where j is in the
training set), one has that V11, (-, ¢) maps approximately 1; to v;, which can be obtained by having
g, (-, ¢) mimic the closed-form Brenier potential between the Gaussian approximations of j;, v;.
Alternatively, one may also default to an identity initialization as discusses above. To obtain either
behavior, we make the following modifications, and refer to the illustration in Fig. 3:

1. The modulator ug(c) = softmax(c? M), where C is initialized as M = [c;];, and V; = I,v; = 0.

2. 2o = [qn;,m, (v)];, where weight matrices and bias (M}, m;) are either initialized to (1, 0) or as
(A;,w;) recovered by solving the Gaussian affine map from p; to v; using (9).

3. Modulator ug is passed directly to hidden state upon first iteration W§* = I, b5 = 0.

4. All subsequent matrices W are initialized to ~ 14, 4, /dy, where dy, do are their dimensions,

5. W and W7 are ~ 0, the biases b, ~ 1, b} ~ 0.

5 Evaluation

Biological cells undergo changes in their molecular profiles upon chemical, genetic, or mechanical
perturbations. These changes can be measured using recent technological advancements in high-
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Figure 5: Comparison between a. CONDOT and ICNN OT (Makkuva et al., 2020) based on
embedding o, b. as well as Epe, and ¢. CONDOT and CPA (Lotfollahi et al., 2021) based on
embedding Eqpe On known and unknown perturbations or combinations. Results above the diagonal
suggest higher predictive performance of CONDOT.

resolution multivariate single-cell biology. Measuring single cells in their unperturbed or perturbed
state requires, however, to destroy them, resulting in populations p and v that are unpaired. The
relevance of OT to that comes from its ability to resolve such ambiguities through OT maps, holding
promises of a better understanding of health and disease. We consider various high-dimensional prob-
lems arising from this scenario to evaluate the performance of CONDOT (§ 3) versus other baselines.

5.1 Population Dynamics Conditioned on Scalars

Upon application of a molecular drug, the state of each cell x; of the unperturbed population
is altered, and observed in population v. Molecular drugs are often applied at different dosage
levels t, and the magnitude of changes in the gene expression profiles of single cells highly
correlates with that dosage. We seek to learn a global, parameterized transport map 7Ty sensitive
to that dosage.We evaluate our method on the task of inferring single-cell perturbation responses
to the cancer drug Givinostat, a histone deacetylase inhibitor with potential anti-inflammatory,
anti-angiogenic, and antineoplastic activities (Srivatsan et al., 2020), applied at different dosage
levels, i.e., t € {10nM, 100nM, 1,000 nM, 10,000 nM}. The dataset contains 3, 541 cells described
with the gene expression levels of 1, 000 highly-variable genes. In a first experiment, we measure
how well CONDOT captures the drug effects at different dosage levels via distributional distances
such as MMD (Gretton et al., 2012) and the ¢3-norm between the corresponding perturbation
signatures (PS), as well as the entropy-regularized Wasserstein distance (Cuturi, 2013). We compute
the metrics on 50 marker genes, i.e., genes mostly affected upon perturbation. For more details
on evaluation metrics, see § E.2. To put CONDOT’s performance into perspective, we compare it
to current state-of-the-art baselines (Lotfollahi et al., 2021) as well as parameterized Monge maps
without context variables (Bunne et al., 2021; Makkuva et al., 2020, ICNN OT), see § E.1. As
visible in Table | and Fig. 4a, CONDOT achieves consistently more accurate predictions of the target
cell populations at different dosage levels than OT approaches that cannot utilize context information,
demonstrated through a lower average loss and a smaller variance. This becomes even more evident
when moving to the setting where the population has been trained only on a subset of dosages and
we test CONDOT on out-of-sample dosages. Table | and Fig. 4a demonstrate that CONDOT is able
to generalize to previously unknown dosages, thus learning to interpolate the perturbation effects
from dosages seen during training. For further analysis, we refer the reader to § E (see Fig. 9 and 10).
We further provide an additional comparison of CONDOT, operating in the multi-task setting, to the
single-task performance of optimal transport-based methods § C.4. While the single-task setting of
course fails to generalize to new contexts and requires all contexts to be distinctly known, it provides
us with a pseudo lower bound, which CONDOT is able to reach (see Table 2).

5.2 Population Dynamics Conditioned on Covariates

Molecular processes are often highly dependent on additional covariates that steer experimental
conditions, and which are not present in the features measures in population x4 or v. This can be, for
instance, factors such as different cell types clustered within the populations. When the model can only
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Figure 6: Predictive performance for a. known perturbations, b. unknown perturbations in combina-
tion w.r.t. regularized Wasserstein distance and ¢. MMD over different train / test splits of increasing
difficulty for baseline CPA as well as CONDOT with different combinators C§™ and C°*. For more
details on the dataset splits, see §D.2.

be conditioned w.r.t. a small and fixed set of metadata information, such as cell types, it is sufficient to
encode these contexts using a one-hot embedding module Eype. To illustrate this problem, we consider
cell populations comprising three different cell lines (A549, MCF7, and K562). As visible in Table 1,
CoNDOT outperforms current baselines which equally condition on covariate information such as
CPA (Lotfollahi et al., 2021), assessed through various evaluation metrics. Figure 4b displays a gene
showing highly various responses towards the drug Givinostat dependent on the cell line. CONDOT
captures the distribution shift from control to target populations consistently across different cell lines.

5.3 Population Dynamics Conditioned on Actions

To recommend personalized medical procedures for patients, or to improve our understanding
of genetic circuits, it is key to be able to predict the outcomes of novel perturbations, arising
from combinations of drugs or of genetic perturbations. Rather than learning individual maps 7'
predicting the effect of individual treatments, we aim at learning a global map 7y which, given as
input the unperturbed population x as well as the action a of interest, predicts the cell state perturbed
by a. Thanks to its modularity, CONDOT can not only learn a map T}y for all actions known during
training, but also to generalize to unknown actions, as well as potential combinations of actions. We
will discuss all three scenarios below.

5.3.1 Known Actions

In the following, we analyze CONDOT'’s ability to accurately predict phenotypes of genetic perturba-
tions based on single-cell RNA-sequencing pooled CRISPR screens (Norman et al., 2019; Dixit et al.,
2016), comprising 98, 419 single-cell gene expression profiles with 92 different genetic perturbations,
each cell measured via a 1, 500 highly-variable gene expression vector. As, in a first step, we do not
aim at generalizing beyond perturbations encountered during training, we utilize again a one-hot em-
bedding Eye to condition Ty on each perturbation a. We compare our method to other baselines capa-
ble of modeling effects of a large set of perturbations such as CPA (Lotfollahi et al., 2021). Often, the
effect of genetic perturbations are subtle in the high-dimensional gene expression profile of single cells.
Using ICNN-parameterized OT maps without context information, we can thus assess the gain in accu-
racy of predicting the perturbed target population by incorporating context-awareness over simply pre-
dicting an average perturbation effect. Figure 5a and b demonstrate that compared to OT ablation stud-
ies, Fig. 5S¢ and Fig. 6a for the current state-of-the-art method CPA (Lotfollahi et al., 2021). Compared
to both, CONDOT captures the perturbation responses more accurately w.r.t. the Wasserstein distance.

5.3.2 Unknown Actions

With the emergence of new perturbations or drugs, we aim at inferring cellular responses to settings
not explored during training. One-hot embeddings, however, do not allow us to model unknown per-
turbations. This requires us to use an embedding £, which can provide us with a representation of an
unknown action a’. As genetic perturbations further have no meaningful embeddings as, for example,
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molecular fingerprints for drugs, we resort to mode-of-action embeddings introduced in § 3.3. Assum-
ing marginal sample access to all individual perturbations, we compute a multidimensional scaling
(MDS)-based embedding from pairwise Wasserstein distances between individual target populations,
such that perturbations with similar effects are closely represented. For details, see § E. As current
state-of-the-art methods are restricted to modeling perturbations via one-hot encodings, we compare
our method to ICNN OT only. As displayed in Fig. 5a, CONDOT accurately captures the response
of unknown actions (BAK1, FOXF1, MAP2K6, MAP4K3), which were not seen during training, at
a similar Wasserstein loss as perturbation effects seen during training. For more details, see § E.

5.3.3 Actions in Combination

While experimental studies can often measure perturbation effects in biological systems in isolation,
the combinatorial space of perturbations in composition is too large to capture experimentally. Often,
however, combination therapies are cornerstones of cancer therapy (Mokhtari et al., 2017). In the fol-
lowing, we test different combinator architectures to predict genetic perturbations in combination from
single targets. Similarly to Lotfollahi et al. (2021), we can embed combinations by adding individual
one-hot encodings of single perturbations (i.e., Cihe). In addition, we parameterize a combinator via a
permutation-invariant deep set, as introduced in § 3.3, based on mode-of-action embeddings of individ-
ual perturbations (i.e., Cj°"). We split the dataset into train / test splits of increasing difficulty (details
on the dataset splits in §D.2). Initially containing all individual perturbations as well as some combina-
tions, the number of perturbations seen in combination during training decreases over each split. For
more details, see § E. We compare different combinators to ICNN OT (Fig. 5b) and CPA (Lotfollahi
etal., 2021) (Fig. 5c, Fig. 6b, c). While the performance drops compared to inference on known pertur-
bations (Fig. 6a) and decreases with increasing difficulty of the train / test split, CONDOT outperforms
all baselines. When embedding these high-dimensional populations in a low-dimensional UMAP
space (MclInnes et al., 2018), one can see that CONDOT captures the entire perturbed population, while
ICNN OT and CPA fail in capturing certain subpopulations in the perturbed state (see Fig. 7 and 11).

6 Conclusion

We have developed the CONDOT framework that is able to infer OT maps from not only one pair of
measures, but many pairs that come labeled with a context value. To ensure that CONDOT encodes
optimal transports, we parameterize it as a PICNN, an input-convex NN that modulates the values of
its weights matrices according to a sequence of feature representations of that context vector. We
showcased the generalization abilities of CONDOT in the extremely challenging task of predicting
outcomes for unseen combinations of treatments. These abilities and PICNN more generally hold
several promises, both as an augmentation of the 0TT toolbox (Cuturi et al., 2022), and for future
applications of OT to single-cell genomics.
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