
Appendix

Organization The appendix is organized as follows: In Section A, we provide proofs of the
theorem and propositions in Section 4. In Section B, we show additional experimental results —
Meta-interpolation with first order MAML, the effect of the number of meta-training and meta-
validation tasks, ablation study for location of interpolation, and the effect of the number of tasks for
interpolation. In Section C, we provide detailed descriptions of the experimental setup used in the
main paper together with the exact data splits for meta-training, meta-validation and meta-testing
for all the datasets used. Finally, we specify the exact architecture of the Prototypical Networks
used for all the experiments and further describe the Set Transformer in detail in Section C.3. All
hyperparameters are specified in Section C.4.

A Proofs

A.1 Proof of Theorem 1

Proof. Define ϕ := ϕlθl = f lθl ◦ · · · ◦ f
1
θ1

, and g := fLθL ◦ · · · ◦ f l+1
θl+1

. Define the dimensionality as

ϕ(xst,i) ∈ Rd, and g(ϕ(xst,i)) ∈ RD. From the definition, since we use f̂θ,λ in both training and
testing time, we have

Lsingleton (λ, θ; Tt) = − 1

n

n∑
i=1

log
exp(−d(f̂θ,λ(xqt,i), cyqt,i))∑
k′ exp(−d(f̂θ,λ(x

q
t,i), ck′))

where
ck =

1

Nt,k

∑
(xs

t,i,y
s
t,i)∈Ds

t

1{yst,i=k}(g ◦ φλ)({ϕ(x
s
t,i)})

Nt,k =
∑

(xs
t,i,y

s
t,i)∈Ds

t

1{yst,i=k}

In the analysis of the loss functions, without the loss of generality, we can set the permutation σt
on {1, . . . ,K} to be the identity since the every combination can be realized by one permutation σ
instead of the two permutations σt, σt′ . Therefore, using the definition of the T̂t,t′ , we can write the
corresponding loss by

Lmix(λ, θ, T̂t,t′) = − 1

n

n∑
i=1

log
exp(−d(f̂θ,λ(xqt,i), ĉyqt,i))∑
k′ exp(−d(f̂θ,λ(x

q
t,i), ĉk′))

where

ĉk :=
1

|Sk|
∑

({xs
t,i,x

s
t′,j},k)∈Sk

(g ◦ φλ)({ϕ(xst,i), ϕ(xst′,j)})

Sk := {({xst,i,xst′,j}, k) | (xst,i, yst,i) ∈ Ds
t , y

s
t,i = k, (xst′,j , y

s
t′,j) ∈ Ds

t′ , y
s
t′,j = σ(k)}

This can be rewritten as:

ĉk =
1

Nt,t′,k

∑
(xs

t′,j ,y
s
t′,j)∈Ds

t′

1{ys
t′,i=σ(k)}

∑
(xs

t,i,y
s
t,i)∈Ds

t

1{yst,i=k}(g ◦ φλ)({ϕ(x
s
t,i), ϕ(x

s
t′,j)})

Nt,t′,k =
∑

(xs
t′,j ,y

s
t′,j)∈Ds

t′

1{ys
t′,i=σ(k)}

∑
(xs

t,i,y
s
t,i)∈Ds

t

1{yst,i=k}

=

 ∑
(xs

t′,j ,y
s
t′,j)∈Ds

t′

1{ys
t′,i=σ(k)}


 ∑

(xs
t,i,y

s
t,i)∈Ds

t

1{yst,i=k}


= Nt′,kNt,k
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Thus,

ĉk =
1

Nt′,k

∑
(xs

t′,j ,y
s
t′,j)∈Ds

t′

1{ys
t′,j=σ(k)}

 1

Nt,k

∑
(xs

t,i,y
s
t,i)∈Ds

t

1{yst,i=k}(g ◦ φλ)({ϕ(x
s
t,i), ϕ(x

s
t′,j)})

 .

Define the set
It,k := {i : yst,i = k}.

Then,

ĉk =
1

|It′,σ(k)|
∑

j∈It′,σ(k)

1

|It,k|
∑
i∈It,k

(g ◦ φλ)({ϕ(xst,i), ϕ(xst′,j)}).

Summarizing the computation so far, we have that

Lsingleton (λ, θ; Tt) = − 1

n

n∑
i=1

log
exp(−d(f̂θ,λ(xqt,i), cyqt,i))∑
k′ exp(−d(f̂θ,λ(x

q
t,i), ck′))

ck =
1

|It,k|
∑
i∈It,k

(g ◦ φλ)({ϕ(xst,i)})

and

Lmix(λ, θ, T̂t,t′) = − 1

n

n∑
i=1

log
exp(−d(f̂θ,λ(xqt,i), ĉyqt,i))∑
k′ exp(−d(f̂θ,λ(x

q
t,i), ĉk′))

ĉk =
1

|It′,σ(k)|
∑

j∈It′,σ(k)

1

|It,k|
∑
i∈It,k

(g ◦ φλ)({ϕ(xst,i), ϕ(xst′,j)})

with
It,k = {i : yst,i = k}.

We now analyze the relationship of φλ({h, h′}) and φλ({h}). From this definition, we first
compute φλ({h, h′}) as follows. By writing σ1 = softmax(

√
d−1Q

{h,h′}
1 (K

{h,h′}
1 )⊤) and

σ2 = softmax(
√
d−1Q2(K

{h,h′}
2 )⊤),

φλ({h, h′}) = A(Q2,K
{h,h′}
2 , V

{h,h′}
2 )

= softmax(
√
d−1Q2(K

{h,h′}
2 )⊤)(H

{h,h′}
2 WV

2 + 12b
V
2 )

= softmax(
√
d−1Q2(K

{h,h′}
2 )⊤)(A(Q

{h,h′}
1 ,K

{h,h′}
1 , V

{h,h′}
1 )WV

2 + 12b
V
2 )

= σ2(σ1(H
{h,h′}WV

1 + 12b
V
1 )W

V
2 + 12b

V
2 )

= σ2σ1H
{h,h′}WV

1 W
V
2 + σ2σ112b

V
1 W

V
2 + σ212b

V
2 .

Here, by writing p1 = p
(t,t′,i,j)
1 , p′1 = p̃

(t,t′,i,j)
1 , and p2 = p

(t,t′,i,j)
2 , we can rewrite that

σ1 = softmax(
√
d−1Q

{h,h′}
1 (K

{h,h′}
1 )⊤) =

[
p1 1− p1
p′1 1− p′1

]
∈ R2×2

σ2 = softmax(
√
d−1Q2(K

{h,h′}
2 )⊤) = [p2 1− p2] ∈ R1×2

Thus, by letting p̄ = p2p1 + (1− p2)p
′
1 ∈ [0, 1],

σ2σ1 = [p2 1− p2]

[
p1 1− p1
p′1 1− p′1

]
= [p2p1 + (1− p2)p

′
1 p2(1− p1) + (1− p2)(1− p′1)] = [p̄ 1− p̄] .

Using these,

σ2σ1H
{h,h′} = [p̄ 1− p̄]

[
h⊤

(h′)⊤

]
= p̄h⊤ + (1− p̄)(h′)⊤

σ2σ112 = [p̄ 1− p̄]

[
1
1

]
= 1,
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and

σ212 = [p2 1− p2]

[
1
1

]
= 1.

Thus, by letting W = (WV
1 W

V
2 )⊤ ∈ Rd×d and b = (bV1 W

V
2 + bV2 )

⊤ ∈ Rd, and by defining
α = 1− p̄, we have that

φλ({h, h′}) =W (h+ α(h′ − h)) + b.

For φλ({h}), similarly, by writing σ1 = softmax(
√
d−1Q

{h}
1 (K

{h}
1 )⊤) and σ2 =

softmax(
√
d−1Q2(K

{h}
2 )⊤),

φλ({h}) = A(Q2,K
{h}
2 , V

{h}
2 )

= σ2σ1h
⊤WV

1 W
V
2 + σ2σ1b

V
1 W

V
2 + σ2b

V
2 .

Here, since σ1 = softmax(
√
d−1Q

{h}
1 (K

{h}
1 )⊤) ∈ R and σ2 = softmax(

√
d−1Q2(K

{h}
2 )⊤) ∈ R,

we have σ1 = σ2 = 1 and thus,
φλ({h}) =Wh+ b.

Therefore, we have that

φλ({h, h′}) =W (h+ α(h′ − h)) + b,

φλ({h}) =Wh+ b.

where W and b does not depend on the (h, h′). Using these and by defining ht,i = ϕ(xst,i), we have
that

ck =
1

|It,k|
∑
i∈It,k

g(h⊤t,iW + b) ∈ RD

ĉk :=
1

|It′,σ(k)|
∑

j∈It′,σ(k)

1

|It,k|
∑
i∈It,k

g
(
W
[
ht,i + α

(t,t′)
ij (ht′,j − ht,i)

]
+ b
)
∈ RD.

With these preparation, we are now ready to prove the regularization form. Fix t, t′ and write
αij = α

(t,t′)
ij . Define a vector α such that α = (αij)i,j . Then,

ĉk(α) :=
1

|It′,σ(k)|
∑

j∈It′,σ(k)

1

|It,k|
∑
i∈It,k

g
(
W
[
ht,i + αij(ht′,j − ht,i)

]
+ b
)

Then, from the results of the calculations above, we have that

ĉk(α) = ĉk,

ĉk(0) = ck.

Using the assumptions that ∂rg(z) = 0 for all r ≥ 2, for any J , the J-th approximation of ĉk(α) is
given by

ĉk(α)J = ĉk(0) +
1

|It′,σ(k)|
∑

j∈It′,σ(k)

1

|It,k|
∑
i∈It,k

αij∂g (Wht,i + b)W (ht′,j − ht,i)

Let γ̄ ≥ 1 to be set later and define

∆k :=
1

|It′,σ(k)|
∑

j∈It′,σ(k)

1

|It,k|
∑
i∈It,k

αij
γ̄
∂g (Wht,i + b)W (ht′,j − ht,i).

Then,
ĉk(α)J = ĉk(0) + γ̄∆k.

Define c = (c1, . . . , cK) and ∆ = (∆1, . . . ,∆K). For any given t, define

Lt(c) := − 1

n

n∑
i=1

log
exp(−d(f̂θ,λ(xqt,i), cyqt,i))∑
k′ exp(−d(f̂θ,λ(x

q
t,i), ck′))

.
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Then, we have that

Lt(c+ γ̄∆) = − 1

n

n∑
i=1

log
exp(−d(f̂θ,λ(xqt,i), (c+ γ̄∆)yqt,i))∑
k′ exp(−d(f̂θ,λ(x

q
t,i), (c+ γ̄∆)k′))

= Lmix(λ, θ, T̂t,t′),

Lt(c) = Lsingleton (λ, θ; Tt) .

The J-th approximation of Lmix(λ, θ, T̂t,t′) is given by

Lmix(λ, θ, T̂t,t′)J = Lt(c+ γ̄∆)J = Lt(c) +

J∑
j=1

γ̄j

j!
φ(j)(0)

= Lsingleton (λ, θ; Tt) +
J∑
j=1

γ̄j

j!
φ(j)(0),

where φ(j) is the j-th order derivative of φ : γ 7→ Lt(c+ γ∆). Here, for any j ∈ N+, by defining
b′ = c+ γ∆ ∈ RKD,

φ(j)(γ) =
KD∑
i1=1

KD∑
i2=1

· · ·
KD∑
ij=1

∂jLt(b
′)

∂b′i1∂b
′
i2
· · · ∂b′ij

∆i1∆i2 · · ·∆ij .

Then, by using the vectorization of the tensor vec[∂jLt(b′)] ∈ R(KD)j , we can rewrite this equation
as

φ(j)(γ) = vec[∂jLt(c+ γ∆)]⊤∆⊗j , (9)

where ∆⊗j = ∆⊗∆⊗ · · · ⊗∆ ∈ R(KD)j . By combining these with γ̄ = 1,

Lmix(λ, θ, T̂t,t′)J = Lsingleton (λ, θ; Tt) +
J∑
j=1

1

j!
vec[∂jLt(c)]

⊤∆⊗j ,

where
∆k =

1

|It′,σ(k)|
∑

j∈It′,σ(k)

1

|It,k|
∑
i∈It,k

α
(t,t′)
ij ∂g (Wht,i + b)W (ht′,j − ht,i).

A.2 Proof of Proposition 1

Proof. We now apply our general regularization form theorem to this special case from the previous
paper [50] on the ProtoNet loss. In this special case, we have that ϕ(x) = x, W = I, b = 0, ht,i =
xst,i, g(x) = x⊤θ, and

Lt(c) =
1

n

n∑
i=1

1

1 + exp(⟨xqt,i, θ⟩ − c1/2− c2/2)
.

Here, for c = (c1, c2) with

c1 =
1

Nt,1

∑
(xs

t,i,y
s
t,i)∈Ds

t

1{yst,i=1}φλ({xst,i})⊤ θ = θ⊤c′1 (10)

and
c2 =

1

Nt,2

∑
(xs

t,i,y
s
t,i)∈Ds

t

1{yst,i=2}φλ({xst,i})⊤ θ = θ⊤c′2, (11)

we recover that
Lt(c) = L (λ, θ; Tt) .
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Thus, to instantiate our general theorem to this special case, we only need to compute the ∂jLt(c)
and ∂g(h⊤t,iW + b) up to the second order approximation.

∂g(h⊤t,iW + b) = ∂g(xst,i) = θ

∂jg(h⊤t,iW + b) = ∂jg(xst,i) = 0 ∀j ≥ 2

Define zt,i := ⟨xqt,i − (c′1 + c′2)/2, θ⟩. Since c1 = θ⊤c′1 and c2 = θ⊤c′2 by Equation 10 and 11,

⟨xqt,i − (c′1 + c′2)/2, θ⟩ = ⟨xqt,i, θ⟩ − (⟨c′1/2, θ⟩+ ⟨c′2/2, θ⟩)

= ⟨xqt,i, θ⟩ − θ⊤c′1/2− θ⊤c′2/2

= ⟨xqt,i, θ⟩ − c1/2− c2/2

Thus, we have Lt(c) = 1
n

∑n
i=1

1
1+exp(zt,i)

. Then,

∂Lt(c)

∂c1
= − 1

n

n∑
i=1

[1 + exp(zt,i)]
−2 exp(zt,i)

∂zt,i
∂c1

=
1

n

n∑
i=1

1

2
[1 + exp(zt,i)]

−2 exp(zt,i)

Similarly,

∂Lt(c)

∂c2
= − 1

n

n∑
i=1

[1 + exp(zt,i)]
−2 exp(zt,i)

∂zt,i
∂c2

=
1

n

n∑
i=1

1

2
[1 + exp(zt,i)]

−2 exp(zt,i)

For the second order, by defining the logistic function ψ(zt,i) =
exp(zt,i)

1+exp(zt,i)
,

∂Lt(c)

∂c1∂c1
=

1

n

n∑
i=1

−2

2
[1 + exp(zt,i)]

−3 exp(zt,i)
∂ exp(zt,i)

∂c1
+

1

2
[1 + exp(zt,i)]

−2 ∂ exp(zt,i)

∂c1

=
1

n

n∑
i=1

1

2
[1 + exp(zt,i)]

−3 exp(zt,i)
2 − 1

4
[1 + exp(zt,i)]

−2 exp(zt,i)

=
1

n

n∑
i=1

1

2
[1 + exp(zt,i)]

−2 exp(zt,i)(ψ(zt,i)− 0.5)

=
1

n

n∑
i=1

1

2

ψ(zt,i)(ψ(zt,i)− 0.5)

1 + exp(zt,i)

Similarly,
∂Lt(c)

∂c2∂c2
=

1

n

n∑
i=1

1

2

ψ(zt,i)(ψ(zt,i)− 0.5)

1 + exp(zt,i)

∂Lt(c)

∂c1∂c2
=
∂Lt(c)

∂c2∂c1
=

1

n

n∑
i=1

1

2

ψ(zt,i)(ψ(zt,i)− 0.5)

1 + exp(zt,i)

Therefore, the second approximation of Et′,σ[Lmix(λ, θ, T̂t,t′)] is

Lsingleton (λ, θ; Tt) + Et′,σ

 2∑
j=1

1

j!
vec[∂jLt(c)]

⊤∆⊗j


= Lsingleton (λ, θ; Tt) + Et′,σ

[
vec[∂Lt(c)]

⊤∆+
1

2
vec[∂2Lt(c)]

⊤∆⊗2

]
where ∆ = [∆⊤

1 ,∆
⊤
2 ]

⊤ with

∆k =
1

|It′,σ(k)|
∑

j∈It′,σ(k)

1

|It,k|
∑
i∈It,k

α
(t,t′)
ij (ht′,j − ht,i)

⊤θ

= θ⊤δt,t′,σ,k
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where
δt,t′,σ,k :=

1

|It′,σ(k)|
∑

j∈It′,σ(k)

1

|It,k|
∑
i∈It,k

α
(t,t′)
ij (ht′,j − ht,i).

For the first order term,

vec[∂Lt(c)]
⊤∆ =

1

n

n∑
i=1

1

2
[1 + exp(zt,i)]

−2 exp(zt,i)(θ
⊤δt,t′,σ,k + θ⊤δt,t′,σ,k)

=

(
1

n

n∑
i=1

1

2
[1 + exp(zt,i)]

−2

)
exp(zt,i)θ

⊤δt,t′,σ

where

δt,t′,σ =

2∑
k=1

1

|It′,σ(k)|
∑

j∈It′,σ(k)

1

|It,k|
∑
i∈It,k

α
(t,t′)
ij (ht′,j − ht,i).

For the second order term,

vec[∂2Lt(c)]
⊤∆⊗2 = [∆⊤ ⊗∆⊤] vec[∂2Lt(c)]

= ∆⊤∂2Lt(c)∆

=
[
∆⊤

1 ∆⊤
2

] [ ∂Lt(c)
∂c1∂c1

∂Lt(c)
∂c1∂c2

∂Lt(c)
∂c2∂c1

∂Lt(c)
∂c2∂c2

] [
∆1

∆2

]
= ∆2

1

∂Lt(c)

∂c1∂c1
+∆2

2

∂Lt(c)

∂c2∂c2
+ 2∆1∆2

∂Lt(c)

∂c1∂c2

=

(
1

n

n∑
i=1

1

2

ψ(zt,i)(ψ(zt,i)− 0.5)

1 + exp(zt,i)

)(
∆2

1 +∆2
2 + 2∆1∆2

)
=

(
1

n

n∑
i=1

1

2

ψ(zt,i)(ψ(zt,i)− 0.5)

1 + exp(zt,i)

)
(∆1 +∆2)

2

=

(
1

n

n∑
i=1

1

2

ψ(zt,i)(ψ(zt,i)− 0.5)

1 + exp(zt,i)

)(
θ⊤δt,t′,σ

)2
Since Et′,σ[δt,t′,σ] = 0 with the α being balanced, the second approximation of Et′,σ[Lmix(λ, θ, T̂t,t′)]
becomes:

Lsingleton (λ, θ; Tt) +

(
1

n

n∑
i=1

1

4

ψ(zt,i)(ψ(zt,i)− 0.5)

1 + exp(zt,i)

)
Et′,σ

[(
θ⊤δt,t′,σ

)2]
.

= Lsingleton (λ, θ; Tt) +

(
1

n

n∑
i=1

1

4

ψ(zt,i)(ψ(zt,i)− 0.5)

1 + exp(zt,i)

)
θ⊤Et′,σ

[
δt,t′,σδ

⊤
t,t′,σ

]
θ.

A.3 Proof of Proposition 2

Proof. Let ξ1, . . . , ξn be independent uniform random variables taking values in {−1, 1}; i.e.,
Rademacher variables. We first bound the empirical Rademacher complexity part as follows:

Ex1,...,xn
R̂n(FR) = Ex1,...,xn

Eξ sup
f∈FR

1

n

n∑
i=1

ξif(xi)

= Ex1,...,xn
Eξ sup

θ:∥θ∥2
Σ≤R

1

n

n∑
i=1

ξiθ
⊤xi

= Ex1,...,xn
Eξ sup

θ:∥θ∥2
Σ≤R

Ex′
1

n

n∑
i=1

ξiθ
⊤(xi − x′)
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≤ Ex1,...,xn

1

n
Eξ sup

θ:θ⊤Σθ≤R
∥Σ1/2θ∥2Ex′

∥∥∥∥∥
n∑
i=1

ξiΣ
†/2(xi − x′)

∥∥∥∥∥
2

≤ Ex1,...,xn

√
R

n
Ex′Eξ

√√√√ n∑
i=1

n∑
j=1

ξiξj(Σ†/2(xi − x′))⊤(Σ†/2(xj − x′))

≤ Ex1,...,xn

√
R

n

√√√√Ex′Eξ

n∑
i=1

n∑
j=1

ξiξj(Σ†/2(xi − x′))⊤(Σ†/2(xj − x′))

= Ex1,...,xn

√
R

n

√√√√Ex′

n∑
i=1

(Σ†/2(xi − x′))⊤(Σ†/2(xi − x′))

= Ex1,...,xn

√
R

n

√√√√Ex′

n∑
i=1

(xi − x′)⊤Σ†(xi − x′)

where Σ† denotes the Moore–Penrose inverse of Σ. By taking expectation and using this bound on
the empirical Rademacher complexity, we now bound the Rademacher complexity as follows:

Rn(FR) = Ex1,...,xn
R̂n(FR) ≤ Ex1,...,xn

√
R

n

√√√√ n∑
i=1

Ex′(xi − x′)⊤Σ†(xi − x′)

≤
√
R

n

√√√√ n∑
i=1

Exi,x′(xi − x′)⊤Σ†(xi − x′)

=

√
R

n

√√√√ n∑
i=1

∑
k,l

(Σ†)klExi,x′(xi − x′)k(xi − x′)l

=

√
R

n

√√√√ n∑
i=1

∑
k,l

(Σ†)kl(Σ)kl

=

√
R

n

√√√√ n∑
i=1

tr(ΣΣ†)

=

√
R

n

√√√√ n∑
i=1

rank(Σ)

=

√
R
√
rank(Σ)√
n

B Additional Experiments

B.1 First-order MAML

As stated in the introduction, we focus solely on metric based meta-learning due to their efficiency and
better empirical performance over the gradient based methods on the few-task meta-learning problem.
Moreover it is challenging to combine our method with Model-Agnostic Meta-Learning (MAML) [10]
since it yields a tri-level optimization problem which requires differentiating through second order
derivatives. Furthermore, tri-level optimization is still known to be a challenging problem [4, 7]
and currently an active line of research. Thus, instead of using the original MAML, we perform
additional experiments on the ESC-50 and Metabolism dataset with first-order MAML (FOMAML)
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Table 7: First-order MAML (FOMAML) on Metabolism ESC-50 dataset.

Metabolism ESC50

Method 5shot 5shot

FOMAML 65.18± 2.20 72.14± 0.73
FOMAML + MLTI 63.94± 2.87 71.52± 0.55
FOMAML + Meta-Interpolation 66.79± 2.35 76.68± 1.02
ProtoNet + Meta-Interpolation 72.92± 1.74 79.22± 0.96

Table 8: Acc. on ESC-50 as varying # of meta-training tasks.
Model 5 Tasks 10 Tasks 15 Tasks 20 Tasks
ProtoNet 51.41± 3.93 60.63± 3.61 65.49± 2.05 69.05± 1.49
MLTI 58.98± 3.54 61.60± 2.04 66.29± 2.41 70.62± 1.96
Ours 72.74 ± 0.84 74.78 ± 1.43 77.47 ± 1.33 79.22 ± 0.96

Table 9: Acc. on ESC-50 as varying # of
meta-validation tasks.

Model 5 Tasks 10 Tasks 15 Tasks
ProtoNet 69.48± 1.03 69.20± 1.17 69.05± 1.49
MLTI 68.09± 2.07 69.40± 2.02 70.62± 1.96
Ours 77.68 ± 1.38 77.13 ± 1.23 79.22 ± 0.96

which approximates the Hessian with a zero matrix. As shown in Table 7, the experimental results
show that Meta-Interpolation with first-order MAML outperforms MLTI, which again confirms the
general effectiveness of our set-based task augmentation scheme. However, it largely underperforms
our original Meta-Interpolation framework with metric-based meta-learning.

B.2 Effect of the number of meta-training and validation tasks

We analyze the effect of the number of meta-training tasks on ESC-50 dataset. As shown in Table 8,
Meta-Interpolation consistently outperforms the baselines by large margins, regardless of the number
of the tasks. Furthermore, we report the test accuracy as a function of the number of meta-validation
tasks in Table 9. Although the generalization performance of Meta-Interpolation slightly decreases as
we reduce the number of meta-validation tasks, it still outperforms the relevant baselines by a large
margin.

B.3 Location of interpolation

Table 10: Accuracy for different lo-
cation of interpolation on ESC-50.

Layer Accuracy

Input Layer 66.83± 1.31
Layer 1 74.04± 2.05
Layer 2 79.22± 0.96
Layer 3 77.62± 1.46

Contrary to Manifold Mixup, we fix the layer of interpolation as
shown in Table 17. Otherwise, we cannot use the same architec-
ture of Set Transformer to interpolate the output of different layers
since the hidden dimension of each layer is different. Moreover,
we report the test accuracy by changing the layer of interpolation.
Interpolating hidden representation of support sets from layer
2, which is the model used in the main experiments on ESC50
dataset, achieves the best performance.

B.4 Effect of Cardinality for Interpolation
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Figure 4: Acc. as a function of set size.

Since the set function φλ can handle sets of arbitrary cardi-
nality n ∈ N, we plot the test accuracy on the ESC-50 dataset
with varying set sizes from one to five. As shown in Figure 4,
for sets of cardinality one, where we do not perform any inter-
polation, we observe significant degradation in performance.
This suggests that the interpolation of instances is crucial for
better generalization. On the other hand, for set sizes from
two to five, the gain is marginal with increasing cardinality.
Furthermore, increasing the set size introduces extra compu-
tational overhead. Thus, we set the cardinality to two for task
interpolation in all the experiments.
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C Experimental Setup

C.1 Dataset Description

Metabolism We use the following split for the metabolism dataset:
Meta-Train = {CYP1A2_Veith, CYP3A4_Veith, CYP2C9_Substrate_CarbonMangels}

Meta-Validation = {CYP2D6_Veith, CYP2D6_Substrate_CarbonMangels}
Meta-Test = {CYP2C19_Veith, CYP2C9_Veith, CYP3A4_Substrate_CarbonMangels}

Following Yao et al. [50], we balance each subdataset by selecting 1000 samples from each sub-
dataset. Each data sample is processed by extracting a 1024-bit fingerprint feature from the SMILES
representation of each chemical compound using the RDKit [15] library.

Tox21 We use the following split for the metabolism dataset2:
Meta-Train = {NR-AR, NR-AR-LBD, NR-AhR, NR-Aromatase, NR-ER, NR-ER-LBD}

Meta-Validation = {NR-PPAR-gamma, SR-ARE}
Meta-Test = {SR-ATAD5, SR-HSE, SR-MMP, SR-p53}

NCI We download the dataset from the github repository 3 and use the following splits for meta-
training, meta-validation, and meta-testing:

Meta-Train = {41, 47, 83, 109}
Meta-Validation = {81, 145}

Meta-Test = {1, 33, 123}

GLUE-SciTail We use Hugging Face Datasets library [25] to download MNLI, QNLI, SNLI, RTE,
and SciTail datasets and tokenize it ELECTRA tokenizer with setting maximum length to 128. We
list meta-train, meta-validation, and meta-test split as follows:

Meta-Train = {MNLI, QNLI}
Meta-Validation = {SNLI, RTE}

Meta-Test = {SciTail}

ESC-50 We download ESC-50 dataset [34] from the github repository4 and use the meta-training,
meta-validation, and meta-test split as follows:

Meta-train set:
dog, rooster, pig, cow, frog, cat, hen, insects, sheep, crow,

rain, sea_waves, crackling_fire, crickets, chirping_birds,
water_drops, wind, pouring_water, toilet_flush, thunderstorm

Meta-validation set:
crying_baby, sneezing, clapping, breathing, coughing, footsteps,

laughing, brushing_teeth, snoring, drinking_sipping, door_wood_knock,
mouse_click, keyboard_typing, door_wood_creaks, can_opening

Meta-test set:
washing_machine, vacuum_cleaner, clock_alarm, clock_tick,

glass_breaking, helicopter, chainsaw, siren,
car_horn, engine, train, church_bells, airplane, fireworks, hand_saw

2https://tdcommons.ai/single_pred_tasks/tox/#tox21
3https://github.com/GRAND-Lab/graph_datasets/tree/master/Graph_Repository
4https://github.com/karolpiczak/ESC-50
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RMNIST Following Yao et al. [50], we create RMNIST dataset by changing the size, color, and
angle of the images from the original MNIST dataset. To be specific, we merge training and test split
of MNIST and randomly select 5,600 images for each class and split into 56 subdatasets where each
class has 100 examples. We only choose 16/6/10 subdatasets for meta-train, meta-validation, and
meta-test split, respectively and do not use the rest of them. Each subdatset with the corresponding
composition of image transformations is considered a distinct task. Following are the specific splits.

Meta-train set:

(red, full, 90◦), (indigo, full, 0◦), (blue, full, 270◦), (orange, half, 270◦),
(green, full, 90◦), (green, full, 270◦), (orange, full, 180◦), (red, full, 180◦),
(green, full, 0◦), (orange, full, 0◦), (violet, full, 270◦), (orange, half, 90◦),

(violet, half, 180◦), (orange, full, 90◦), (violet, full, 180◦), (blue, full, 90◦)

Meta-validation set:

(indigo, half, 270◦), (blue, full, 0◦), (yellow, half, 180◦),
(yellow, half, 0◦), (yellow, half, 90◦), (violet, half, 0◦)

Meta-test set:

(yellow, full, 270◦), (red, full, 0◦), (blue, half, 270◦), (blue, half, 0◦), (blue, half, 180◦),
(red, half, 270◦), (violet, full, 90◦), (blue, half, 90◦), (green, half, 270◦), (red, half, 90◦)

Mini-ImageNet-S Following Yao et al. [50], we reduce the number of meta-training tasks by
choosing subset of the original meta-training classes. We specify the classes used for meta-training
tasks as follows:

n03017168, n07697537, n02108915, n02113712, n02120079, n04509417,
n02089867, n03888605, n04258138, n03347037, n02606052, n06794110

For meta-validation and meta-testing classes, we use the same classes as the original Mini-ImageNet.

CIFAR-100-FS Similar to Mini-ImageNet-S, we choose 12/16/20 classes for meta-training, meta-
validation, meta-test classes. Followings are the specific classes for each split:

Meta-Train = {0, . . . , 11}
Meta-Validation = {64, . . . , 79}

Meta-Test = {80, . . . , 99}

C.2 Prototypical Network Architecture

We summarize neural network architectures for ProtoNet on each datasets in Table 11, 12, 13, 14, 15,
and 16. For Glue-SciTail, we use pretrained ELECTRA-small [8] which we download from Hugging
Face [48].

Table 11: Conv4 architecture for RMNIST.
Output Size Layers

3× 28× 28 Input Image
32× 14× 14 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
32× 7× 7 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
32× 3× 3 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
32× 1× 1 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
32 Flatten
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Table 12: Conv4 architecture for Mini-ImageNet-S.
Output Size Layers

3× 84× 84 Input Image
32× 42× 42 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
32× 21× 21 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
32× 10× 10 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
32× 5× 5 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
800 Flatten

Table 13: Conv4 architecture for CIFAR-100-FS.
Output Size Layers

3× 32× 32 Input Image
32× 16× 16 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
32× 8× 8 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
32× 4× 4 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
32× 2× 2 conv2d(3× 3, stride 1, padding 1), BatchNorm2D, ReLU, Maxpool(2× 2, stride 2)
128 Flatten

Table 14: Fully connected networks for Metabolism, Tox21, and NCI.
Output Size Layers

1024 Input SMILE
500 Linear(1024, 500, bias=True), BatchNorm1D, LeakyReLU
500 Linear(500, 500, bias=True), BatchNorm1D, LeakyReLU
500 Linear(500, 500, bias=True)

Table 15: Fully connected networks for ESC-50.
Output Size Layers

650 Input VGGish feature
500 Linear(650, 500, bias=True), BatchNorm1D, LeakyReLU
500 Linear(500, 500, bias=True), BatchNorm1D, LeakyReLU
500 Linear(500, 500, bias=True)

Table 16: ELECTRA-small for GLUE-SciTail.
Output Size Layers

128 Input sentence
128× 256 ElectraModel(“google/electra-small-discriminator”)
256 [CLS] embedding
256 Linear(256, 256, bias=True), ReLU
256 Linear(256, 256, bias=True), ReLU
256 Linear(256, 256, bias=True)

C.3 Set Transformer

We describe Set Transformer [23], φλ, in more detail. Let X ∈ Rn×d be a stack of n d-
dimensional row vectors. Let WQ

1,j ,W
K
1,j ,W

V
1,j ∈ Rd×dk be weight matrices for self-attention

and let bQ1,j , b
K
1,j , b

V
1,j ∈ Rdk be bias vectors for j = 1, . . . , 4. For encoding an input X , we compute
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self-attention as follows:

Q
(j)
1 = XWQ

1,j + 1(bQ1,j)
⊤ ∈ Rn×dk

K
(j)
1 = XWK

1,j + 1(bK1,j)
⊤ ∈ Rn×dk

V
(j)
1 = XWV

1,j + 1(bV1,j)
⊤ ∈ Rn×dk

A
(j)
1 (X) = LayerNorm

(
Q

(j)
1 + softmax

(
Q

(j)
1 (K

(j)
1 )⊤/

√
dk

)
V

(j)
1

)
∈ Rn×dk

O1(X) = Concat(A(1)
1 (X), . . . , A

(4)
1 (X)) ∈ Rn×dh

(12)

where 1 = (1, . . . , 1)⊤ ∈ Rn is a vector of ones, dh = 4dk, and softmax is applied for each row.
After self-attention, we add a skip connection with layer normalization [1] as follows:

g1(X) := LayerNorm
(
(O1(X)) + ReLU(W1O1(X) + 1b⊤1 )

)
(13)

where W1 ∈ Rdh×dh , b1 ∈ Rdh . Similarly, we compute another self-attention on top of g1(X) with
WQ

2,j ,W
K
2,j ,W

V
2,j ∈ Rdk×dk weight matrices for self-attention and let bQ2,j , b

K
2,j , b

V
2,j ∈ Rdk be bias

vectors, for j = 1 . . . , 4.
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O2(g1(X)) = Concat(A(1)
2 (g1(X)), . . . , A

(4)
2 (g1(X)) ∈ Rn×dh

(14)

After self-attention, we also add a skip connection after the second self-attention with dropout [41].

(g2 ◦ g1)(X) := Dropout(H2(X)) (15)

H2(X) = LayerNorm(
(
O2(g1(X)) + ReLU(O2(g1(X))W2 + 1b⊤2 )

)
) (16)

where W2 ∈ Rdh×dh , b2 ∈ Rdh .

After encodingX with two-layers of self-attention, we perform pooling with attention. Let S ∈ R1×dh

be learnable parameters and WQ
3,j ,W

K
3,j ,W

V
3,j ∈ Rdh×dk be weight matrices for the pooling-attention

and let bQ3,j , b
K
3,j , b

V
3,j ∈ Rdk be bias vectors, for j = 1, . . . , 4. We pool (g2 ◦ g1)(X) as follows:

Q
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O3((g2 ◦ g1)(X)) = Concat
(
A

(1)
3 ((g2 ◦ g1)(X)), . . . , A

(4)
3 ((g2 ◦ g1)(X))

)
∈ R1×dh

(17)

After pooling, we add another skip connection with dropout as follows:

(g3 ◦ g2 ◦ g1)(X) := Dropout (H3(X))

H3(X) = LayerNorm
(
O3 ((g2 ◦ g1)(X)) + ReLU(O3((g2 ◦ g1)(X))W3 + 1b⊤3 )

)
(18)

where W3 ∈ Rdh×dh , b3 ∈ Rdh . Finally, we perform affine-transformation after the pooling as
follows:

(g4 ◦ g3 ◦ g2 ◦ g1)(X) :=
(
(g3 ◦ g2 ◦ g1)(X)W4 + 1b⊤4

)⊤
(19)

where W4 ∈ Rdh×d, b4 ∈ Rd.

To summarize, Set Transformer is the set function φλ := g4 ◦ g3 ◦ g2 ◦ g1 : Rn×d → Rd that can
handle a set with arbitrary cardinality n ∈ N.
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C.4 Hyperparameters

In Table 17 and 18, we summarize all the hyperparameters for each datasets, where MI stands for
Mini-ImageNet-S. For CIFAR-100-FS, we use the same hyperparameters for both 1-hot and 5-shot.

Table 17: Hyperparameters for non-image domains.
Hyperparameters Metabolism Tox21 NCI GLUE-SciTail ESC-50

learning rate α 1 · 10−3 1 · 10−3 1 · 10−3 3 · 10−5 1 · 10−3

optimizer Adam [21] Adam Adam AdamW [28] Adam
scheduler none none none linear none
batch size 4 4 4 1 4
query size for meta-training 10 10 10 10 5
maximum training iterations 10,000 10,000 10,000 50,000 10,000
number of episodes for meta-test 3,000 3,000 3,000 3,000 3,000
hyper learning rate η 1 · 10−4 1 · 10−4 1 · 10−4 1 · 10−4 1 · 10−4

hyper optimizer Adam Adam Adam Adam Adam
hyper scheduler linear linear linear linear linear
update period S 100 100 100 1,000 100
input size for set function d 500 500 500 256 500
hidden size for set function dh 1,024 1,024 500 1,024 1,024
layer for interpolation l 1 1 1 2 2
iterations for Neumann series q 5 5 5 10 5
distance metric d(·, ·) Euclidean Euclidean Euclidean Euclidean Euclidean

Table 18: Hyperparameters for image domains.
Hyperparameters RMNIST MI (1-shot) MI (5-shot) CIFAR-100-FS (1-shot, 5-shot)

learning rate α 1 · 10−1 1 · 10−3 1 · 10−3 1 · 10−3

optimizer SGD Adam Adam Adam
scheduler none none none none
batch size 4 4 4 4
query size for meta-training 1 15 15 15
maximum training iterations 10,000 50,000 50,000 50,000
number of episodes for meta-test 3,000 3,000 3,000 3,000
hyper learning rate η 1 · 10−4 1 · 10−4 1 · 10−4 1 · 10−4

hyper optimizer Adam Adam Adam Adam
hyper scheduler linear linear linear linear
update period S 1000 1,000 1,000 1,000
input size for set function d 1,568 500 500 256
hidden size for set function dh 1,568 14,112 56,448 8,192
layer for interpolation l 2 2 1 1
iterations for Neumann series q 5 5 5 5
distance metric d(·, ·) Euclidean Euclidean Euclidean Euclidean
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