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Abstract

We analyze the convergence rates of stochastic gradient algorithms for smooth
finite-sum minimax optimization and show that, for many such algorithms, sam-
pling the data points without replacement leads to faster convergence compared to
sampling with replacement. For the smooth and strongly convex-strongly concave
setting, we consider gradient descent ascent and the proximal point method, and
present a unified analysis of two popular without-replacement sampling strategies,
namely Random Reshuffling (RR), which shuffles the data every epoch, and Single
Shuffling or Shuffle Once (SO), which shuffles only at the beginning. We obtain
tight convergence rates for RR and SO and demonstrate that these strategies lead to
faster convergence than uniform sampling. Moving beyond convexity, we obtain
similar results for smooth nonconvex-nonconcave objectives satisfying a two-sided
Polyak-Łojasiewicz inequality. Finally, we demonstrate that our techniques are
general enough to analyze the effect of data-ordering attacks, where an adversary
manipulates the order in which data points are supplied to the optimizer. Our
analysis also recovers tight rates for the incremental gradient method, where the
data points are not shuffled at all.

1 Introduction

The approximate solution of large-scale optimization problems using first-order stochastic gradient
methods constitutes one of the foundations of classical machine learning. However, emerging
problems in machine learning go beyond pattern recognition and involve real-world decision making,
where learning algorithms interact with unknown or even adversarial environments or are deployed
in multi-agent settings. Decision making in such environments often involves solving a minimax
optimization problem of the form minx maxy F (x,y), whose analysis has been a focus of research
in mathematics, economics, and theoretical computer science [38, 13, 10]. Recent examples of its
applications in machine learning include adversarial learning [32, 52, 6], reinforcement learning [30,
58, 11, 42], imitation learning [14, 8, 24], and generative adversarial networks [18, 2]. In most of these
applications, the objective F (x,y) has a finite-sum structure, i.e., F (x,y) = 1/n

∑n
i=1 fi(x,y)

where n denotes the size of the dataset and each component function fi denotes the objective
associated with the ith data point. The resultant problem is known as finite-sum minimax optimization:
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min
x∈Rdx

max
y∈Rdy

1

n

n∑
i=1

fi(x,y). (1)

When n is large and the fi’s are differentiable (which holds for most applications), approximate
solutions to (1) are computed using stochastic gradient algorithms. These algorithms typically sample
an index i ∈ [n] at each iteration as per some specified sampling routine, and use the gradients of fi
to compute the next iterate. Among these methods, perhaps the simplest and most commonly used
algorithm is Stochastic Gradient Descent Ascent (SGDA), a natural extension of Stochastic Gradient
Descent (SGD) for minimax optimization.

Similar to the stochastic optimization literature, analysis of stochastic minimax optimization often
assumes that, at every iteration, the index i is sampled uniformly with replacement. Analysis of the
resulting algorithm closely parallels the analysis of SGD, and relies on the fact that uniform sampling
leads to unbiased gradient estimates. Recent works [20, 31] have also extended this paradigm to
i.i.d uniform sampling of mini-batches. While uniform sampling assumptions simplify theoretical
analysis, practical implementations of these algorithms often deviate from this paradigm, and instead
incorporate various heuristics, which are often empirically found to improve runtime. A common
and notable heuristic is to replace uniform sampling by procedures that perform multiple passes
over the entire dataset, and in each such pass (called an epoch), sample the data points without
replacement. Thus, each data point is sampled exactly once in every epoch. These procedures are
generally implemented using one of the following approaches:

Random Reshuffling (RR): Uniformly sample a random permutation of [n] at the start of every
epoch, and process the data points within that epoch as per the order specified by the permutation.

Single Shuffling or Shuffle Once (SO): Uniformly sample a random permutation at the beginning
and reuse it across all epochs to order the data points.

Incremental Gradient (IG): Do not permute the data points at all and follow a fixed deterministic
data ordering for every epoch.

Sampling without replacement is ubiquitous in both stochastic minimization [7, 48, 4] and stochastic
minimax optimization [18, 2] as it often exhibits faster runtime than uniform sampling. However,
these empirical benefits come at the cost of limited theoretical understanding, due to the absence of
provably unbiased gradient estimates.

It is well known in the optimization literature that SGD with replacement has a tight rate of O(1/nK)
for smooth and strongly convex minimization [44, 25], where n is the number of component functions
and K denotes the number of epochs. On the contrary, recent works on SGD without replacement
for smooth and strongly convex minimization [1, 36, 34, 39] show that both RR and SO achieve a
non-asymptotic rate of Õ(1/nK2), once the number of epochs K is larger than a certain threshold
K0 (usually polynomial in the condition number), and thereby converge faster than SGD with
replacement. These rates match the lower bound of Ω(1/nK2) for RR and SO established in prior
works [43, 48], modulo logarithmic factors. For RR, prior works have also established a similar
Õ(1/nK2) rate for nonconvex objectives satisfying the Polyak-Łojasiewicz (PŁ) inequality [1, 34].
While the asymptotic behavior of IG has been known to the community for a long time in both smooth
and non-smooth settings [5, 37], non-asymptotic Õ(1/K2) convergence rates have been established
quite recently [34, 39, 22], and are complemented by a matching Ω(1/K2) lower bound [48].

1.1 Contributions

Although the empirical benefits of sampling without replacement have been substantiated for min-
imization, analysis of these methods for minimax optimization have received much less attention,
despite being widely prevalent in many applications. Our work aims to fill this gap by analyzing
these methods for minimax optimization. To this end, our main contributions are as follows:

Unified analysis of RR and SO for smooth strongly convex-strongly concave problems: We
analyze RR and SO in conjunction with simultaneous Gradient Descent Ascent (GDA), calling
the resulting algorithms GDA-RR and GDA-SO, respectively. Assuming the components fi are
smooth and F is strongly convex-strongly concave, we present a unified analysis of GDA-RR/SO
and establish a convergence rate of Õ(exp(−K/5κ2) + 1/nK2) for both (where κ is the condition
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number). Comparing with lower bounds, we show that our rates are nearly tight, i.e., they differ from
the lower bound only by an exponentially decaying term. Moreover, when K ≥ 10κ2 log(n1/2K),
the convergence rate matches the lower bounds for GDA-RR/SO, modulo logarithmic factors, and
also converges provably faster than SGDA with replacement. Under the same setting, we obtain
similar guarantees for the RR and SO variants of the Proximal Point Method (PPM), named PPM-RR
and PPM-SO respectively. Our analysis for both GDA-RR/SO and PPM-RR/SO is general enough
to cover smooth strongly monotone finite-sum variational inequalities, which covers minimization,
minimax optimization, and multiplayer games.

RR for smooth two-sided PŁ objectives: We consider a class of nonconvex-nonconcave problems
where the objective F satisfies a two-sided Polyak-Łojasiewicz inequality. For such problems, we
propose an algorithm that combines RR with two-timescale Alternating Gradient Descent Ascent
(AGDA), which we call AGDA-RR. We show that AGDA-RR has a nearly tight convergence
rate of Õ(exp(−K/365κ3) + 1/nK2) when the gradient variance is uniformly bounded. When
K ≥ 730κ3 log(n1/2K), this rate matches the lower bound (modulo logarithmic factors) and
improves on the best known rates of with-replacement algorithms for this class of problems.

Minimax optimization under data ordering attacks: Our techniques for analyzing RR/SO general-
ize to the analysis of finite-sum minimax optimization under data ordering attacks [51]. These attacks
target the inherent randomness assumptions of stochastic gradient algorithms, significantly increasing
training time and reducing model quality, only by manipulating the order in which the algorithm
receives data points, without performing any data contamination. To model these attacks, we propose
the Adversarial Shuffling (AS) setup, where the data points are shuffled every epoch by a computa-
tionally unrestricted adversary. In this setup, we show that GDA and PPM (now called GDA-AS and
PPM-AS) have a convergence rate of Õ(exp(−K/5κ2)+1/K2) for smooth strongly convex-strongly
concave objectives, and AGDA (now called AGDA-AS) has a rate of Õ(exp(−K/365κ3) + 1/K2)
for two-sided PŁ objectives. We note that, compared to RR and SO, the convergence rate worsens
by a factor of 1/n for large enough K. When n is large (true for most applications), this slowdown
significantly impacts convergence and thus, theoretically justifies the empirical observations in prior
work [51]. We also establish that our analysis in the AS regime also applies to the Incremental
Gradient (IG) variants of these algorithms (namely GDA-IG, PPM-IG, and AGDA-IG), and use this
to show that our obtained rates for GDA-RR and AGDA-RR are nearly tight.

To the best of our knowledge, our work is the first to: 1) analyze RR, SO, and IG for strongly monotone
unconstrained variational inequalities, 2) analyze RR and IG for a class of nonconvex-nonconcave
minimax problems, 3) provably demonstrate the advantages of sampling without replacement for
both these settings and justify its empirical benefits in a wide variety of problems ranging from
minimization, minimax optimization to smooth multiplayer games, 4) analyze sampling without
replacement under data-ordering attacks. Furthermore, unlike prior works on sampling without
replacement for minimax optimization [55, 33], which are restricted to random reshuffling and
require the component functions to be convex-concave, Lipschitz, and smooth, our analysis does not
impose any restrictions on the components fi other than smoothness, allowing them to be arbitrary
nonconvex-nonconcave functions.

2 Notation and Preliminaries

We work with Euclidean spaces (Rd, ⟨., .⟩) equipped with the standard inner product ⟨x1,x2⟩ and the
induced norm |x|. For any x ∈ Rdx and y ∈ Rdy , we denote z = (x,y) ∈ Rd where d = dx + dy.
Moreover, for any z1 = (x1,y1) ∈ Rd and z2 = (x2,y2) ∈ Rd, ⟨z1, z2⟩ = ⟨x1,x2⟩+ ⟨y1,y2⟩ and
|z1|2 = |x1|2 + |y1|2. Whenever z = (x,y) is clear from the context, we write f(x,y) as f(z). We
use Sn to denote the set of all permutations of [n] = {1, . . . , n}. For any matrix A, its operator norm
is denoted by |A| = sup|x|=1 |Ax|. We use the O notation to characterize the dependence of our
convergence rates on n and K, suppressing numerical and problem-specific constants such as κ, µ, σ,
etc. Additionally, we use the Õ notation to suppress logarithmic factors of n and K.

Our work studies finite-sum minimax optimization (1). Solutions to (1) are known as global minimax
points of F = 1/n

∑n
i=1 fi, which we assume to always exist. We also assume that the components

fi are continuously differentiable, and hence, the same applies to F . This allows us to define the
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gradient operators ωi : Rd → Rd and ν : Rd → Rd as follows:

ωi(x,y) = [∇xfi(x,y),−∇yfi(x,y)], ν(x,y) = 1/n

n∑
i=1

ωi(x,y).

We also impose the following smoothness assumption on the components fi.
Assumption 1 (Component Smoothness). The component functions fi are l-smooth, i.e., each
gradient operator ωi is l-Lipschitz

|ωi(z2)− ωi(z1)| ≤ l |z2 − z1| .

Consequently, the operator ν is also l-Lipschitz, i.e., F is l-smooth.

3 Analysis for Strongly Convex-Strongly Concave Objectives

In this section, we analyze two very popular without-replacement algorithms for finite-sum minimax
optimization, Gradient Descent Ascent (GDA) without replacement and Proximal Point Method
(PPM) without replacement. For each of these, we present a unified analysis of the Random
Reshuffling (RR) and Shuffle Once (SO) variants (called GDA-RR/SO and PPM-RR/SO respectively).
For a fixed K > 0, GDA-RR/SO approximately solves (1) by iterating over the entire dataset for K
epochs, and within each epoch, uses the operators ωi to perform the following iterative update:

zki ← zki−1 − αωτk(i)(z
k
i−1) ∀i ∈ [n], (2)

where τk is a uniformly sampled random permutation of [n] and 0 < α < 1/l is a constant step-size.
GDA-RR resamples τk at the start of every epoch, whereas GDA-SO samples it only once in the
beginning. The details of both algorithms are presented in Algorithm 1. The Proximal Point Method
without replacement is a closely related algorithm which, instead of performing gradient descent-style
updates within an epoch, solves the following implicit update equation for zki :

zki = zki−1 − αωτk(i)(z
k
i ) ∀i ∈ [n]. (3)

As before, τk is resampled at every epoch for PPM-RR, and sampled once and fixed for all epochs
for PPM-SO. We present the details in Algorithm 2. The l-smoothness of ωi along with the choice
of α < 1/l ensures that zki is uniquely defined, since it is a fixed point of the contraction mapping
ζ(z) = zki−1−αωτk(i)(z). This method is actually a generalization of the (stochastic) proximal point
method for minimization problems, and is popular for problems where (3) can be solved easily or in
closed form. We refer the readers to Rockafellar [47], Patrascu and Necoara [41] for a review of this
method and its connections to the original proximal point method for minimization.

3.1 Setting

We analyze GDA-RR/SO and PPM-RR/SO for smooth finite-sum strongly convex-strongly concave
(or SC-SC) objectives. This allows us to formulate the minimax optimization problem for F as a root
finding problem for the gradient operator ν, as described below.
Assumption 2 (Strong Convexity-Strong Concavity). The objective F is µ strongly convex-strongly
concave (or SC-SC), i.e., F (.,y) is µ-strongly convex for any y ∈ Rdy and −F (x, .) is µ-strongly
convex for any x ∈ Rdx .

Assumption 2 has the following consequences for the gradient operator ν:
Lemma 1. Let F satisfy Assumptions 1 and 2. Then, the gradient operator ν is µ-strongly monotone:

⟨ν(z1)− ν(z2), z1 − z2⟩ ≥ µ |z1 − z2|2 ∀ z1, z2 ∈ Rd.

Furthermore, (1) admits a unique solution z∗, which is also the unique solution of ν(z∗) = 0.

Lemma 1 allows us to recast (1) for SC-SC objectives as the following root finding problem:

Find z ∈ Rd such that ν(z) = 1/n

n∑
i=1

ωi(z) = 0. (4)
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Algorithm 1: GDA-RR/SO/AS
Input :Number of epochs K,

step-size α > 0, and
initialization z0

Initialize z10 ← z0
SO: Sample τ ∼ Uniform(Sn)
for k ∈ [K] do

RR: Sample τk ∼ Uniform(Sn)
SO: τk ← τ
AS: Adversary chooses τk ∈ Sn
for i ∈ [n] do

zki ← zki−1 − αωτk(i)(z
k
i−1)

end
zk+1
0 ← zkn

end

Algorithm 2: PPM-RR/SO/AS
Input :Number of epochs K, step-size

α > 0, and initialization z0
Initialize z10 ← z0
SO: Sample τ ∼ Uniform(Sn)
for k ∈ [K] do

RR: Sample τk ∼ Uniform(Sn)
SO: τk ← τ
AS: Adversary chooses τk ∈ Sn
for i ∈ [n] do

Solve the implicit update for zki where,
zki = zki−1 − αωτk(i)(z

k
i )

end
zk+1
0 ← zkn

end

Figure 1: GDA-RR/SO/AS and PPM-RR/SO/AS for solving (4). Violet lines denote steps that are
only performed for RR, Olive lines denote the same for SO and Magenta for AS.

Problem (4) is more general than SC-SC minimax optimization, and is a special case of strongly
monotone variational inequalities [13] without constraints. Notably, (4) includes the Nash Equilibrium
problem for unconstrained multiplayer games with smooth strongly convex objectives [50] and is
sometimes called a finite-sum unconstrained variational inequality in the literature [31]. We also
highlight that smooth strongly convex optimization is a special case of (4). However, unlike the
optimization setting, ν is no longer restricted to be the gradient of a strongly convex function, which,
as we shall see, has important consequences for the attainable convergence rates of our algorithms.

3.2 Analysis of RR/SO

We now state the expected last-iterate convergence guarantees for Algorithms 1 and 2 for solving (4),
where the expecation is taken over the stochasticity of the sampled permutation(s).
Theorem 1 (Convergence of GDA-RR/SO and PPM-RR/SO). Consider Problem (4) for the µ-
strongly monotone operator ν(z) = 1/n

∑n
i=1 ωi(z) where each ωi is l-Lipschitz, but not necessarily

monotone. Let z∗ denote the unique root of ν. Then, there exists a step-size α ≤ µ/5nl2 for which
both GDA-RR/SO and PPM-RR/SO satisfy the following for any K ≥ 1:

E[|zK+1
0 −z∗|2] ≤ 2e

−K/5κ2 |z0−z∗|2+
2µ2 + 8κ2σ2

∗ log
3(|ν(z0)|n1/2K/µ)

µ2nK2
= Õ(e

−K/5κ2
+1/nK2),

where κ = l/µ is the condition number and σ2
∗ = 1/n

∑n
i=1 |ωi(z

∗)|2 is the gradient variance at z∗.

Proof. We present an outline for GDA-RR/SO and defer the full proof to Appendix C.2 (for GDA-
RR/SO) and Appendix D.2 (for PPM-RR/SO). Furthermore, we recall that the updates of GDA-RR/SO
are given by zki = zki−1 − αωτk(i)(z

k
i−1).

We begin with the following key insight from earlier works on sampling without replacement for
minimization [23, 1, 37, 22]: for small enough step-sizes, the epoch iterates zk0 of GD without
replacement approximately follow the trajectory of full-batch gradient descent. To this end, we derive
the following epoch-level update rule for GDA-RR/SO by linearizing ωτk(i)(z

k
i−1) around z∗:

zk+1
0 − z∗ = Hk(z

k
0 − z∗) + α2rk, (5)

where |Hk| ≤ 1 − nαµ/2 and rk =
∑n−1

i=1 Aτk(i)

∑i
j=1 ωτk(j)(z

∗) with
∣∣Aτk(i)

∣∣ ≤ le1/5. The
term rk encapsulates the noise of the stochastic gradient updates accumulated over an entire epoch.
To ensure convergence, we control the influence of the noise term rk by using standard properties
of without-replacement sample means to show that E[|rk|2] ≤ l2n3σ2

∗/4 for both RR and SO. We
then complete the proof by unrolling (5) for K epochs, substituting the upper bounds for |Hk| and
E[|rk|2] wherever necessary, and setting α = min{µ/5nl2, 2 log(|ν(z0)|n1/2K/µ)/µnK}.
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As we show in Appendix C, the update rule (5) resembles the linearized update rule of full batch
GDA with added noise. In fact, for n = 1, rk = 0 and thus, we recover the rates of full-batch
GDA. Expressing GDA-RR/SO (and later AS) as noisy full-batch GDA in this fashion is a central
component of our unified analysis, and relies on the fact that

∑n
i=1 ωτk(i)(z

∗) = 0 ∀ τk ∈ Sn, which
is specific to sampling without replacement. Comparing to SGDA with replacement, we note that
sampling the components i.i.d. uniformly as u(i) ∼ Uniform([n]) gives rise to an additional noise
term αpk in the update rule, where pk =

∑n
i=1 ωu(i)(z

∗) vanishes only in expecation, and has a
variance of E[|pk|2] = nσ2

∗ . Subsequently, the dominant noise term for SGDA updates is O(α2nσ2
∗)

whereas that of GDA-RR/SO is O(α4n3σ2
∗), which qualitatively demonstrates the implicit variance

reduction of sampling without replacement. As we shall see in the complete proof, this allows RR/SO
to converge faster (for large enough K) by carefully selecting α.

Comparison with lower bounds: Since smooth strongly convex minimization is a special case
of (4), the Ω(1/nK2) lower bound established in prior works [48, 43] for smooth strongly convex
minimization using GD with RR/SO also applies to GDA-RR/SO. Comparing with this lower bound,
we note that the convergence rate of GDA-RR/SO is nearly tight, i.e., it differs from the lower bound
only by an exponentially decaying term. In fact, for K ≥ 10κ2 log(n1/2K), the convergence rate
becomes Õ(1/nK2), which precisely matches the lower bound, modulo logarithmic factors.

Comparison with uniform sampling: Similarly, the Ω(1/nK) lower bound of SGD with re-
placement for smooth and strongly convex functions [44] also applies to SGDA with replacement.
On the contrary, both GDA-RR and GDA-SO converge with a faster rate of Õ(1/nK2) when
K ≥ 10κ2 log(n1/2K). Thus, GDA-RR/SO provably outperform SGDA with replacement (modulo
logarithmic factors) when K ≥ 10κ2 log(n1/2K). As we show in Appendix C.2, the κ2 dependence
of this inequality cannot be improved for constant step-sizes. A similar argument also applies to
stochastic PPM. To the best of our knowledge, the fastest known convergence rate for stochastic PPM
is O(1/nK) for minimizing smooth strongly convex functions [41]. Hence, Theorem 1 suggests
that PPM-RR/SO enjoy a faster Õ(1/nK2) convergence rate for both minimization and minimax
optimization when K ≥ 10κ2 log(n1/2K).

3.3 Analysis in the Adversarial Shuffling Regime

We now consider without-replacement minimax optimization algorithms in an adversarial setting. We
focus on a novel class of training-time attacks known as data ordering attacks proposed by Shumailov
et al. [51]. These attacks differ from standard data-perturbation attacks [19] and exploit the fact that
most implementations of stochastic gradient optimizers do not verify whether the permutation τk
is truly sampled at random. Shumailov et al. [51] propose three distinct attack strategies, namely,
batch reordering, which changes the order in which mini-batches are supplied to the algorithm, batch
reshuffling, which changes the order in which individual data points are supplied, and replacing
which prevents certain data points from being observed by the algorithm by consistently replacing
them with other data points in the training set.

We analyze the convergence of without-replacement GDA and PPM under batch reshuffling attacks.
To this end, we consider an adversarial modification of RR/SO where the permutations τk, instead of
being sampled by the algorithm, are now selected by an adversary using a strategy unknown to the
algorithm. We also the assume that, while choosing τk, the adversary is computationally unrestricted
and has complete knowledge of all the components ωi, the minimax point z∗, and the iterates zki
observed so far. We call this setup Adversarial Shuffling (AS) and obtain convergence rates of GDA
and PPM (named GDA-AS and PPM-AS) when solving (4). Thus, our analysis naturally holds for
minimization, minimax optimization as well as finite-sum multiplayer games. The details are stated
in Algorithms 1 and 2, respectively. Our last iterate convergence guarantees are deterministic and
hold uniformly over any sequence of permutations τ1, . . . , τK that the adversary can choose.
Theorem 2 (Convergence of GDA-AS and PPM-AS). Consider Problem (4) for the µ-strongly mono-
tone operator ν(z) = 1/n

∑n
i=1 ωi(z) where each ωi is l-Lipschitz, but not necessarily monotone.

Let z∗ denote the unique root of ν. Then, there exists a step-size α ≤ µ/5nl2 for which both GDA-AS
and PPM-AS satisfy the following for any K ≥ 1:

max
τ1,...,τK∈Sn

|zK+1
0 −z∗|2≤2e

−K/5κ2 |z0−z∗|2+
2µ2+24κ2σ2

∗ log
3(|ν(z0)|K/µ)

µ2K2
=Õ(e

−K/5κ2
+1/K2),
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where κ, σ2
∗ are as defined in Theorem 1 and τ1, . . . , τK are the permutations chosen by the adversary.

Convergence rates of IG and comparison with lower bounds: We note that the Incremental
Gradient and the Incremental Proximal Point Methods, which do not shuffle the data, are a special
case of GDA-AS/PPM-AS with τ1, . . . , τK = id. Thus, Theorem 2 also gives us convergence rates for
GDA-IG/PPM-IG. Moreover, since GDA-AS generalizes GDA-IG and (4) covers minimization, the
Ω(1/K2) lower bound of IG established in prior works [48] for smooth strongly convex minimization
also applies to GDA-AS. Thus, our obtained rate for GDA-AS is nearly tight and matches the lower
bound (modulo logarithmic factors) for K ≥ 10κ2 log(K).

Effectiveness of batch reshuffling: When K ≥ 10κ2 log(K), Õ(1/K2) becomes the dominant
term in the convergence rate of AS. This is worse than that of RR/SO by a factor of 1/n and causes a
significant slowdown in convergence, since, in many applications, the dataset size n is much larger
than K. Thus, our analysis justifies the effectiveness of batch reshuffling attacks in reducing model
accuracy and increasing training time, which is empirically verified by Shumailov et al. [51].

4 RR for Two-Sided PŁ Objectives

We now analyze RR for a class of smooth nonconvex-nonconcave problems where the objective F
satisfies a two-sided Polyak Łojasiewicz inequality, first proposed in Yang et al. [54]. We denote this
function class as 2PŁ and formally state the assumption as follows.
Assumption 3 (Two-sided Polyak Łojasiewicz Inequality or 2PŁ condition). For any x ∈ Rdx ,y ∈
Rdy , the sets argmaxỹ F (x, ỹ) and argminx̃ F (x̃,y) are non-empty. Furthermore, there exist
positive constants µ1, µ2 such that F satisfies the following:

|∇xF (x,y)|2 ≥ 2µ1[F (x,y)− min
x̃∈Rdx

F (x̃,y)], |∇yF (x,y)|2 ≥ 2µ2[ max
ỹ∈Rdy

F (x, ỹ)− F (x,y)].

The 2PŁ condition is satisfied in several practical settings, including, but not limited to, robust least
squares [12], imitation learning for linear quadratic regulators [14, 8], and various other problems in
reinforcement learning and robust control [11, 8]. Clearly, any SC-SC function is 2PŁ. However, 2PŁ
functions need not be SC-SC, or even convex-concave. We refer the readers to Yang et al. [54] for a
detailed discussion of the 2PŁ class and its applications.

Analysis of RR for 2PŁ objectives is challenging not only due to nonconvexity-nonconcavity, but
also because F may not have a unique minimax point. Indeed, as we demonstrate in Appendix E.1, it
is possible to construct 2PŁ functions where the set of minimax points is an unbounded proper subset
of Rd. Hence, the notion of gradient variance at the minimax point, which we used in our earlier
analyses, is no longer meaningful. To overcome this, we impose the following assumption.
Assumption 4 (Bounded Gradient Variance). There exists a positive constant σ such that the
component gradient operators ωi satisfy the following for any z ∈ Rd:

1/n

n∑
i=1

|ωi(z)− ν(z)|2 ≤ σ2.

4.1 Analysis of AGDA-RR and AGDA-AS

In order to establish the provable benefits of RR for smooth finite-sum minimax optimization of 2PŁ
objectives, we propose the Alternating Gradient Descent Ascent with Random Reshuffling (AGDA-
RR) algorithm. AGDA-RR achieves near-optimal convergence guarantees for 2PŁ objectives by
combining RR with alternating updates [17, 57, 3] and timescale separation [29, 15, 16], two ideas
that have been very useful for improving convergence and stability in nonconvex-nonconcave minimax
optimization. Within each epoch k ∈ [K], AGDA-RR uniformly samples a random permutation τk,
makes one full pass over the dataset, and performs gradient descent (with RR) updates for the variable
x using the permutation τk. This is followed by sampling another permutation πk and performing
gradient ascent (with RR) updates for y using the permutation πk. The detailed procedure is stated
in Algorithm 3. We also analyze a variant of AGDA-RR in the adversarial shuffling setting, which
we call AGDA-AS. The procedure, as described in Algorithm 4, is almost identical to AGDA-RR,
except that the permutations τk and πk are chosen by an adversary.
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Algorithm 3: AGDA-RR
Input :Number of epochs K, step-sizes

α, β > 0, and initialization (x0,y0)
Initialize (x1

0,y
1
0)← (x0,y0)

for k ∈ [K] do
Sample a permutation τk ∈ Sn
for i ∈ [n] do

xk
i ← xk

i−1 − α∇xfτk(i)(x
k
i−1,y

k
0)

end
Sample a permutation πk ∈ Sn
for i ∈ [n] do

yk
i ← yk

i−1 + β∇yfπk(i)(x
k
n,y

k
i−1)

end
(xk+1

0 ,yk+1
0 )← (xk

n,y
k
n)

end

Algorithm 4: AGDA-AS
Input :Number of epochs K, step-sizes

α, β > 0, and initialization (x0,y0)
Initialize (x1

0,y
1
0)← (x0,y0)

for k ∈ [K] do
Adversary chooses a permutation τk ∈ Sn
for i ∈ [n] do

xk
i ← xk

i−1 − α∇xfτk(i)(x
k
i−1,y

k
0)

end
Adversary chooses a permutation πk ∈ Sn
for i ∈ [n] do

yk
i ← yk

i−1 + β∇yfπk(i)(x
k
n,y

k
i−1)

end
(xk+1

0 ,yk+1
0 )← (xk

n,y
k
n)

end

Before presenting a convergence analysis, we highlight that the absence of a unique minimax point
prevents us from using the squared distance to the optimum as a Lyapunov function. To this end, we
use the Lyapunov function Vλ : Rd → R which was previously suggested by Yang et al. [54]. We
begin by first defining the best response function Φ : Rd → R and its minimum Φ∗ as follows,

Φ(x) = max
y∈Rdy

F (x,y), Φ∗ = min
x∈Rdx

Φ(x) = min
x∈Rdx

max
y∈Rdy

F (x,y).

Assumption 3 ensures that Φ is well defined and the existence of a global minimax point guarantees
that Φ∗ is finite. Subsequently, for any λ > 0, we define the Lyapunov function Vλ as

Vλ(x,y) = [Φ(x)− Φ∗] + λ[Φ(x)− F (x,y)].

By definition of Φ, Vλ is non-negative for any λ > 0 and Vλ(z) = 0 if and only if z is a minimax
point of F . Hence, we present our convergence proofs for AGDA-RR and AGDA-AS in terms of Vλ.
Theorem 3 (Convergence of AGDA-RR/AS). Let Assumptions 1, 3, and 4 hold and let η = 73l2/2µ2

2.
Then, there exists a step-size α ≤ 1/5ηnl such that for β = ηα, AGDA-RR satisfies the following for
λ = 1/10 and any K ≥ 1:

E[Vλ(z
K+1
0 )] ≤ e

−K/365κ3
Vλ(z0) +

µ1 + cκ8σ2 log2(Vλ(z0)n
1/2K)

µ1nK2
= Õ(e

−K/365κ3
+ 1/nK2),

where κ = max{l/µ1, l/µ2} and c > 0 is a constant independent of κ, µ1, µ2, σ
2. Under the same

setting, AGDA-AS satisfies the following (ĉ > 0 is a constant independent of κ, µ1, µ2, σ
2):

max
τ1,π1,...,τK ,πK∈Sn

Vλ(z
K+1
0 )≤e

−K/365κ3
Vλ(z0)+

µ1+ĉκ8σ2 log2(Vλ(z0)K)

µ1K2
=Õ(e

−K/365κ3
+1/K2),

where τ1, π1 . . . , τK , πK are the permutations chosen by the adversary.

Convergence to a Saddle Point: As demonstrated in Appendix E.4, the convergence guarantee of
Theorem 3, which is presented in terms of Vλ, can be easily translated into an equivalent convergence
guarantee in terms of dist(z,Z∗)2, where Z∗ denotes the set of saddle points of F . In particular,
Theorem 3 implies the following convergence guarantee for AGDA-RR:

E[dist(zK+1
0 ,Z∗)2] = Õ(e−

K/365κ3
+ 1/nK2),

as well as the following convergence rate for AGDA-AS:

max
τ1,π1,...,τK ,πK∈Sn

dist(zK+1
0 ,Z∗)2 = Õ(e−

K/365κ3
+ 1/K2),

Comparison with lower bounds: Strongly convex minimization is a special case of 2PŁ minimax
optimization, since minimizing the strongly convex function f is equivalent to minimax optimization
of the 2PŁ function F (x,y) = f(x)− ⟨y,y⟩. In fact, the x iterates of AGDA-RR for F are exactly
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Figure 2: Relative distance of the epoch iterates from the global minimax point (i.e. |zk0 − z∗|2/|z0−
z∗|2 vs k). The solid lines are the average over 50 runs and the shaded regions are 95% confidence
intervals. The y-axis of 3a is on a linear scale whereas that of 3b and 3c is on a logarithmic scale.

that of GD with RR for f . Hence, the Ω(1/nK2) lower bound for strongly convex minimization using
GD with RR also applies to AGDA-RR. Thus our convergence rate for AGDA-RR is nearly tight and
matches the lower bound (modulo logarithmic factors) for K ≥ 730κ3 log(n1/2K). Similarly, the
Incremental Gradient version of AGDA is a special case of AGDA-AS with τ1, π1, . . . , τK , πK = id
and hence, AGDA-AS is nearly tight and matches the Ω(1/K2) lower bound (modulo logarithmic
factors) for K ≥ 730κ3 log(K).

Comparison with stochastic AGDA: Similarly, the Ω(1/nK) lower bound of SGD with replacement
also holds for the Stochastic AGDA algorithm [54], which samples the component functions with
replacement and performs two-timescale alternating updates similar to AGDA-RR. Hence, Theorem 3
demonstrates that AGDA-RR provably outperforms stochastic AGDA when K ≥ 730κ3 log(n1/2K).

Bounded iterate assumption Assumption 4 is also used in analyzing RR for PŁ function mini-
mization [34]. In this setting, an alternative bounded iterate assumption, which assumes that all the
iterates zki lie within a compact set, has also been used [1]. As shown in Appendix E.2, our proof of
Theorem 3 easily adapts to this assumption. In the absence of either assumption, Li et al. [28] use
time-varying step-sizes to obtain asymptotic O(1/K2) rates for RR on PŁ (and more generally for
KŁ) minimization.

5 Experiments

We evaluate our theoretical results by benchmarking on finite-sum SC-SC quadratic minimax games.
This class of problems appears in several applications such as reinforcement learning [11], robust
regression, [12] and online learning [26]. The objective F and the components fi are given by:

F (x,y) = 1/n

n∑
i=1

fi(x,y) =
1

2
xTAx+ xTBy − 1

2
yTCy,

fi(x,y) =
1

2
xTAix+ xTBiy −

1

2
yTCiy − uT

i x− vT
i y,

where A and C are strictly positive definite. We generate the components fi randomly, such that∑n
i=1 ui =

∑n
i=1 vi = 0 and the expected singular values of B are larger than that of A and C.

This ensures that the bilinear coupling term xTBy is sufficiently strong, since a weak coupling
practically reduces to quadratic minimization, which has already been investigated in prior works.
Finally, to investigate how the presence of nonconvex-nonconcave components impacts convergence,
a few randomly chosen fi’s are allowed to be nonconvex-nonconcave quadratics. For each algorithm
analyzed in the text, we benchmark sampling without replacement against uniform sampling by
running each method for 100 epochs using constant step-sizes that are selected independently for
each method via grid search. Further details regarding the setup is discussed in Appendix G.

We present our results in Figure 2, where we plot the relative distance of the epoch iterates from the
minimax point, defined as |zk0−z∗|2/|z0−z∗|2, averaged over 50 independent runs. In agreement with
our theoretical findings, sampling without replacement consistently outperforms uniform sampling
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Figure 3: Convergence of GDA, PPM and AGDA averaged over 20 random instances. Shaded regions
represent 95% confidence intervals.

across all three setups. Furthermore, to demonstrate that our observations are not particular to one
specific instance, we repeat the experiment for 20 independently sampled quadratic games, and for
each instance, perform 5 independent runs of each algorithm and plot the average relative distance
of the epoch iterates from the minimax point. The results, presented in Figure 3, substantiates the
superior convergence of sampling without replacement across multiple instances.

6 Conclusion

We derived near optimal convergence rates for several without-replacement stochastic gradient
algorithms for finite-sum minimax optimization, and demonstrated that they converge faster than
algorithms that use uniform sampling. We considered two problem classes, strongly convex-strongly
concave problems (generalized to unconstrained strongly monotone variational inequalities) and
nonconvex-nonconcave problems with two-sided PŁ objectives. We also formally defined adversarial
shuffling, where an attacker can control the order in which data points are supplied to the optimizer,
and analyzed minimax optimization in this regime. Interesting future directions include the analysis
of inexact proximal point methods, more general function classes, and time-varying step-sizes.
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