
A Proof of results from Section 3

A.1 Proof of Lemma 2

Proof. First we prove result in the case that ∥dk∥ < γ2rk. By (6b) the statement ∥dk∥ < γ2rk
implies δk = 0. Combining δk = 0 with (6a) and (9) and using the fact 1− γ1 > 0 yields

∥∇f(xk + dk)∥ ≤
L

2(1− γ1)
∥dk∥2 ≤ c1L∥dk∥2 .

Next we prove the result in the case that ρ̂k ≤ β. Then

Mk(dk) +
L

6
∥dk∥3 ≥ f(xk + dk)− f(xk) = −ρ̂k

(
−Mk(dk) +

θ

2
∥∇f(xk + dk)∥∥dk∥

)
≥ −β

(
−Mk(dk) +

θ

2
∥∇f(xk + dk)∥∥dk∥

)
where the the first inequality uses (10), the first equality uses the definition of ρ̂k, and the second
inequality uses ρ̂k ≤ β and −Mk(dk) +

θ
2∥∇f(xk + dk)∥∥dk∥ ≥ 0.

Rearranging the previous inequality using 1− β > 0 and then applying (6d) yields:

L

3(1− β)
∥dk∥2 +

βθ

1− β
∥∇f(xk + dk)∥ ≥ −

2Mk(dk)

∥dk∥
≥ γ3δk∥dk∥. (13)

Now, by (9), (6a) and the triangle inequality, and (13) respectively:

∥∇f(xk + dk)∥ ≤ ∥∇Mk(dk)∥+
L

2
∥dk∥2 ≤ δk∥dk∥+ γ1∥∇f(xk + dk)∥+

L

2
∥dk∥2

≤ L

(
1

3γ3(1− β)
+

1

2

)
∥dk∥2 +

(
βθ

γ3(1− β)
+ γ1

)
∥∇f(xk + dk)∥.

Rearranging the latter inequality for ∥∇f(xk + dk)∥ and using βθ
γ3(1−β) + γ1 < 1 from the require-

ments of Algorithm 1 yields:

∥∇f(xk + dk)∥ ≤
1

3γ3(1−β) +
1
2

1− βθ
γ3(1−β) − γ1

L∥dk∥2 =
2 + 3γ3(1− β)

6(γ3(1− γ1)(1− β)− βθ)
L∥dk∥2

≤ 5− 3β

6(γ3(1− γ1)(1− β)− βθ)
L∥dk∥2.

A.2 Proof of Lemma 5

Proof. For conciseness let m = |Pϵ|. Suppose that the indices of Pϵ are ordered increasing value by
a permutation function π, i.e., Pϵ = {π(i) : i ∈ [m]} with π(1) < · · · < π(m). Then

∆f ≥ f(xπ(1))− f(xπ(m)) =

m−1∑
i=1

f(xπ(i))− f(xπ(i+1))

where the first inequality uses the fact that f(xπ(i)) is non-increasing in π(i) and f(xπ(i)) ≥ f⋆ and
the equality is simply the definition of the telescoping sum of f(xπ(m))− f(xπ(1)). Therefore,

∆f ≥
m−1∑
i=1

f(xπ(i))− f(xπ(i+1)) =

m−1∑
i=1

ρ̂π(i)

(
−Mk(dπ(i)) +

θ

2
∥∇f(xπ(i) + dπ(i))∥∥dπ(i)∥

)

≥
m−1∑
i=1

β

(
−Mk(dπ(i)) +

θ

2
∥∇f(xπ(i) + dπ(i))∥∥dπ(i)∥

)
≥ βθ

2

m−1∑
i=1

∥∇f(xπ(i) + dπ(i))∥∥dπ(i)∥

≥ ϵβθ

2
(m− 1)

¯
dϵ

15

where the first equality uses the definition of ρ̂π(i), the second inequality follows from ρ̂π(i) ≥ β for
π(i) ∈ Pϵ, the third inequality uses that −Mk(dπ(i)) ≥ 0, the final inequality uses that π(i) ∈ Pϵ

implies that ∥∇f(xπ(i) + dπ(i))∥ ≥ ϵ (by definition of π(i) ∈ Pϵ) and
¯
dϵ ≤ ∥dπ(i)∥ (due to

Lemma 4).

Rearranging the latter inequality for m using the fact that βθϵ
¯
dϵ > 0 and ∆f ≥ 0 yields m ≤

2∆f

βθϵ
¯
dϵ

+ 1 = d̄ϵ

¯
dϵω

+ 1 = where the equalities use the definitions of d̄ϵ and
¯
dϵ.

A.3 Proof of Theorem 1

Proof. Define:

nj := |{k ∈ N : k ̸∈ Pϵ, k < Kϵ,
¯
kϵ < k ≤ j}|

pj := |{k ∈ Pϵ :
¯
kϵ < k ≤ j}|.

First we establish that

n∞ ≤ p∞ + logω

(
max

{
d̄ϵ

¯
dϵ

, 1

})
. (14)

Consider the induction hypothesis that

rk ≤ r
¯
kϵ
ωpk−nk ∀k ∈ [

¯
kϵ,Kϵ) ∩N. (15)

If k =
¯
kϵ then pk = nk = 0 and the hypothesis holds. Suppose that the induction hypothesis holds

for k = j. Note that for all j ∈ N either pj+1 = pj + 1 (and nj+1 = nj) or nj+1 = nj + 1 (and
pj+1 = pj). If pj+1 = pj + 1 then

rj+1 = ∥dj∥ω ≤ rjω ≤ r
¯
kϵ
ωpj−nj+1 = r

¯
kϵ
ωpj+1−nj+1 .

On the other hand, if nj+1 = nj + 1 then

rj+1 = ∥dj∥/ω ≤ rj/ω ≤ r
¯
kϵω

pj−nj−1 = r
¯
kϵω

pj+1−nj+1 .

Therefore by induction (15) holds. By (15) and Lemma 4,

¯
dϵ ≤ d̄ϵω

pk−nk

which establishes (14).

By Lemma 4 we have
¯
kϵ ≤ 1+logγ2ω(max{1,

¯
dϵ/r1, r1/d̄ϵ}) and Lemma 5 we have p∞ ≤ d̄ϵ

¯
dϵω

+1;
using these inequalities in conjuction with (14) gives

Kϵ =
¯
kϵ + p∞ + n∞ + 1 ≤

¯
kϵ + 2p∞ + logω

(
max{d̄ϵ/

¯
dϵ}
)
+ 1

≤ logωγ2
(max{1,

¯
dϵ/r1, r1/d̄ϵ}) +

2d̄ϵ

¯
dϵω

+ logω(max{1, d̄ϵ/
¯
dϵ}) + 3

≤ 2d̄ϵ

¯
dϵω

+ 2 logωγ2

(
max

{
d̄ϵ

¯
dϵ

, ¯
dϵ
r1

,
r1
d̄ϵ

, 1

})
+ 3

= c2 ·
∆fL

1/2

ϵ−3/2
+ 2 logωγ2

(
max

{
c2ω

2
· ∆fL

1/2

ϵ3/2
,

γ2

ωc
1/2
1

· ϵ1/2

L1/2r1
,
βθ

2ω
· r1L

1/2

ϵ1/2
, 1

})
+ 3

where

c2 :=
4c

1/2
1 ω

βθγ2

is a problem-independent constant. As c1, c2, ω, β, θ, γ1, γ2 and γ3 are problem-independent con-
stants (see the definition of c1 in Lemma 2 and the requirements of Algorithm 1) the result follows.

B Proof of Theorem 2

We first prove Theorem 3 and then reduce Theorem 2 to Theorem 3. The following fact will be useful.

16

Fact 3 ([53]). If f is α-strongly convex and S-smooth on the set C (i.e., αI ⪯∇2f(x) ⪯ SI for all
x ∈ C) then

α∥x− x⋆∥ ≤ ∥∇f(x)∥ ≤ S∥x− x⋆∥ (16)

where x⋆ is any minimizer of f .
Theorem 3. Suppose that f is L-Lipschitz, ∇f(x⋆) = 0 and there exists α, S, t > 0 such that
αI ⪯∇2f(x) ⪯ SI for all x ∈ {x ∈ Rn : ∥x− x⋆∥ ≤ t}. Consider the set

C :=

{
x ∈ Rn : f(x) ≤ f(x⋆) +

2η2

α
, ∥x− x⋆∥ ≤ η

}
with

η = min

{
t,
α3(1− γ1)

2LS2
min

{
1

2
, ωγ2 − 1

}
,
12(1− β)α

Lωγ2
,
βθ(1− β)α

4ωγ2Lc1

}
then if xi ∈ C then for k ≥ 2 + i+ logγ2ω(

η
∥di∥) we have

∥xk+1 − x⋆∥ ≤
2LS2

α3(1− γ1)
∥xk − x⋆∥2.

Proof. We begin by establishing the premise of Lemma 6. First we establish xk ∈ C =⇒ xk+1 ∈ C.
Suppose that xk ∈ C then f(xk+1) ≤ f(xk) ≤ f(x⋆) +

2η2

α . By strong convexity we get xk+1 ∈ C.

Next we establish that min{γ2rk, ∥xk+1− x⋆∥} ≤ ∥dk∥ ≤ ωγ2∥xk − x⋆∥. By strong convexity and
(6d) we have

α+ δk
2
∥dk∥2 − ∥∇f(xk)∥∥dNk ∥ ≤Mk(d

N
k) ≤ 0

which implies ∥dk∥ ≤ 2∥∇f(xk)∥
α+δk

. Furthermore, by (9), (6a) and ∥dk∥ ≤ 2∥∇f(xk)∥
α+δk

we have

∥∇f(xk + dk)+ δkdk∥ ≤ ∥∇Mk(dk)+ δkdk∥+
L

2
∥dk∥2 ≤ γ1∥∇f(xk +dk)∥+

2L∥∇f(xk)∥2
α2

which after rearranging

∥∇f(xk + dk) + δkdk∥ ≤
2L

α2(1− γ1)
∥∇f(xk)∥2 (17)

By strong convexity and smoothness,

∥xk + dk − x̂k∥ ≤
2LS2

α3(1− γ1)
∥xk − x⋆∥2 (18)

where x̂k := min f(x) + δk
2 ∥x− xk∥2. Therefore, as ∥xk − x⋆∥ ≤ α3(1−γ1)

2LS2 min
{

1
2 , ωγ2 − 1

}
,

∥xk + dk − x̂k∥ ≤ min

{
1

2
, ωγ2 − 1

}
∥xk − x⋆∥

which combined with the triangle inequality and ∥x̂k − xk∥ ≤ ∥xk − x⋆∥ gives

∥dk∥ ≤ ∥xk + dk − x̂k∥+ ∥xk − x̂k∥ ≤ ωγ2∥xk − x⋆∥
Furthermore, if ∥dk∥ < γ2rk then by (6b) we have δk = 0 and x̂k = x⋆ which gives

∥xk + dk − x⋆∥ ≤
1

2
∥xk − x⋆∥ ≤ ∥xk − x⋆∥ − ∥xk + dk − x⋆∥ ≤ ∥dk∥.

Next we show xk ∈ C implies ρ̂k ≥ β. To obtain a contradiction we assume ρ̂k < β, by the
definition of the model, (6a) and strong convexity we get

Mk(dk) =
1

2
dTk∇

2f(xk)dk +∇f(xk)
T dk = dTk (∇

2f(xk)dk + δkdk +∇f(xk))−
1

2
dTk (∇

2f(xk) + 2δkI)dk

≤ γ1∥dk∥∥∇f(xk+1)∥ −
1

2
dTk (∇

2f(xk) + 2δkI)dk

≤ γ1∥dk∥∥∇f(xk+1)∥ −
α

2
∥dk∥2.

17

It follows that by inequality (10), ∥dk∥ ≤ ωγ2∥xk − x⋆∥ ≤ 12
L (1 − β)α, inequality (11), ∥dk∥ ≤

ωγ2∥xk − x⋆∥ ≤ βθ(1−β)α
4Lc1

we have

f(xk)− f(xk+1) ≥ −βMk(dk) +
(1− β)α

2
∥dk∥2 −

L

6
∥dk∥3

≥ −βMk(dk) +
(1− β)α

4
∥dk∥2

≥ −βMk(d) +
(1− β)α

4Lc1
∥∇f(xk)∥

≥ −βMk(d) + βθ∥∇f(xk)∥∥dk∥
which gives our desired contradiction.

With the premise of Lemma 6 established we conclude that for k ≥ 2 + i+ log (η/∥di∥) we have
δk = 0 and therefore by (18) we get the desired result.

The following Lemma is a standard result but we include it for completeness.

Lemma 7. If ∇2f(x⋆) is twice differentiable and positive definite, then there exists a neighborhood
N and positive constants α, β > 0 such that αI ⪯∇2f(x) ⪯ SI for all x ∈ N .

Proof. As ∇2f is twice differentiable and the fact that continuous functions on compact sets are
bounded we conclude that there exists a neighborhood N around x⋆ that ∇2f is L-Lipschitz for
some constant L ∈ (0,∞). Then by using the fact that there exists positive constants α′, β′ ∈ (0,∞)
s.t. α′I ⪯ ∇2f(x⋆) ⪯ β′I we conclude for sufficiently small ball around x⋆ we have α′/2I ⪯
∇2f(x) ⪯ 2β′I for all x in a sufficiently small neighborhood N ′ ⊆ N .

Proof of Theorem 2. Follows by Lemma 7 and Theorem 3.

C Solving trust-region subproblem

In this section, we detail our approach to solve the trust-region subproblem. We first attempt to take a
Newton’s step by checking if ∇2f(xk) ⪰ 0 and ∥∇2f(xk)

−1∇f(xk)∥ ≤ rk. However, if that is
not the case, then the optimally conditions mentioned in (6), will be a key ingredient in our approach
to find δ and hence dk(δ). Based on these optimally conditions, we will define a univariate function ϕ
that we seek to find its root at each iteration. In our implementation we use γ3 = 1.0 for (6d) which
is the same as satisfying (5d). The function ϕ is defined as bellow:

ϕ(δ) :=

−1, if ∇2f(xk) + δI ⪰̸ 0 or ∥dk(δ)∥ > rk
+1, if ∇2f(xk) + δI ⪰ 0 & ∥dk(δ)∥ < γ2rk
0, if ∇2f(xk) + δI ⪰ 0 & ∥dk(δ)∥ ≤ rk

where:
dk(δ) := (∇2f(xk) + δI)−1(−∇f(xk))

When we fail to take a Newton’s step, we first find an interval [δ, δ′] such that ϕ(δ) × ϕ(δ′) ≤ 0.
Then we apply bisection method to find δk such that ϕ(δk) = 0. In case our root finding logic failed,
then we use the approach from the hard case section under chapter 4 "Trust-Region Methods" in [44]
to find the direction dk.

The logic to find the interval [δ, δ′] is summarized as follow. We first compute ϕ(δ) using the δ value
from the previous iteration. Then we search for δ′ by starting with δ′ = 2δ. We compute ϕ(δ′) and
in the case ϕ(δ′) < 0, we update δ′ to become twice its current value, otherwise if ϕ(δ′) > 0, we
update δ′ to become half its current value. We keep repeating this logic until we get a δ′ such that
ϕ(δ)× ϕ(δ′) ≤ 0 or until we reach the maximum iteration limit which is marked as a failure.

The whole approach is summarized in Algorithm 2:

18

Algorithm 2: trust-region subproblems solver

if ∇2f(xk) ⪰ 0 then
dk = −∇2f(xk)

−1∇f(xk)
if ∥dk∥ ≤ r then

return dk;
if hard case then

Find dk using [44, pages 87-88] ;
return dk

else
Find initial interval [δ, δ′] using the ϕ function such that ϕ(δ)× ϕ(δ′) ≤ 0 ;
Use bisection method to find δk such that ϕ(δk) = 0 ;
return dk(δk)

D Experimental results details

D.1 Learning linear dynamical systems

The time-invariant linear dynamical system is defined by:

ht+1 = Aht +But + ξt
xt = ht + ϑt

where the vectors ht and xt represent the hidden and observed state of the system at time t. Here
ut, ϑt ∼ N(0, 1)d, ξt ∼ N(0, σ)d and A and B are linear transformations.

The goal is to recover the parameters of the system using maximum likelihood estimation and hence
we formulate the problem as follow:

min
A,B,h

T∑
t=1

∥ht+1 −Aht −But∥2
σ2

+ ∥xt − ht∥2

We synthetically generate examples with noise both in the observations and also the evolution of
the system. The entries of the matrix B are generated using a Normal distribution N(0, 1). For
the matrix A, we first generate a diagonal matrix D with entries drawn from a uniform distribution
U [0.9, 0.99] and then we construct a random orthogonal matrix Q by randomly sampling a matrix
W ∼ N(0, 1)d×d and then performing an QR factorization. Finally using the matrices Q and D, we
define A:

A = QTDQ

We compare our method against the Newton trust-region method available through the Op-
tim.jl package [51] licensed under https://github.com/JuliaNLSolvers/Optim.jl/blob/
master/LICENSE.md. In the results/learning problem subdirectory in the git repository, we present
the full results of running our experiments on 60 randomly generated instances with T = 50, d = 4,
and σ = 0.01 where we used a value of 10−5 for the gradient termination tolerance. This experiment
was performed on a MacBook Air (M1, 2020) with 8GB RAM.

D.2 Matrix completion

The original power consumption data is denoted by a matrix D ∈ Rn1×n2 where n1 represents the
number of measurements taken per day within a 15 mins interval and n2 represents the number
of days. Part of the data is missing, hence the goal is to recover the original data. The set Ω =
{(i, j)|Di,j is observed} denotes the indices of the observed data in the matrix D.

We decompose D as a product of two matrices P ∈ Rn1×r and Q ∈ Rn2×r where r < n1 and
r < n2:

D = PQT .

19

To account for the effect of time and day on the power consumption data , we use a baseline estimate
[54]:

di,j = µ+ ri + cj

where µ denotes the mean for all observed measurements, ri denotes the observed deviation during
time i, and cj denotes the observed deviation during day j [49, 54].

We formulate the matrix completion problem as the regularized squared error function of SVD model
[49, Equation 10]:

min
r,c,p,q

∑
(i,j)∈Ω

(Di,j − µ− ri − cj − piq
T
j) + λ1(r

2
i + c2j) + λ2(∥pi∥22 + ∥qj∥22)

We use the public data set of Ausgrid, but we only use the data from a single substation (the
Newton trust-region method [51] is very slow for this example so testing it on all substations takes a
prohibitively long time). We limit our option to 30 days and 12 hours measurements i.e the matrix D
is of size 48× 30 because with a larger matrix size, the Newton trust-region [51] was always reaching
the iterations limit.

We compare our method against Newton trust-region algorithm available through the Optim.jl pack-
age [51] licensed under https://github.com/JuliaNLSolvers/Optim.jl/blob/master/
LICENSE.md. In the results/matrix completion subdirectory in the git repository, we include the full
results of running our experiments on 10 instances by randomly generating the sampled measurements
from the matrix D with the same values for the regularization parameters as in [49] where we used a
value of 10−5 for the gradient termination tolerance. This experiment was performed on a MacBook
Air (M1, 2020) with 8GB RAM.

20

