A Proof of results from Section 3

A. 1 Proof of Lemma 2

Proof. First we prove result in the case that $\left\|d_{k}\right\|<\gamma_{2} r_{k}$. By (6b) the statement $\left\|d_{k}\right\|<\gamma_{2} r_{k}$ implies $\delta_{k}=0$. Combining $\delta_{k}=0$ with (6a) and (9) and using the fact $1-\gamma_{1}>0$ yields

$$
\left\|\nabla f\left(x_{k}+d_{k}\right)\right\| \leq \frac{L}{2\left(1-\gamma_{1}\right)}\left\|d_{k}\right\|^{2} \leq c_{1} L\left\|d_{k}\right\|^{2}
$$

Next we prove the result in the case that $\hat{\rho}_{k} \leq \beta$. Then

$$
\begin{aligned}
M_{k}\left(d_{k}\right)+\frac{L}{6}\left\|d_{k}\right\|^{3} & \geq f\left(x_{k}+d_{k}\right)-f\left(x_{k}\right)=-\hat{\rho}_{k}\left(-M_{k}\left(d_{k}\right)+\frac{\theta}{2}\left\|\nabla f\left(x_{k}+d_{k}\right)\right\|\left\|d_{k}\right\|\right) \\
& \geq-\beta\left(-M_{k}\left(d_{k}\right)+\frac{\theta}{2}\left\|\nabla f\left(x_{k}+d_{k}\right)\right\|\left\|d_{k}\right\|\right)
\end{aligned}
$$

where the the first inequality uses (10), the first equality uses the definition of $\hat{\rho}_{k}$, and the second inequality uses $\hat{\rho}_{k} \leq \beta$ and $-M_{k}\left(d_{k}\right)+\frac{\theta}{2}\left\|\nabla f\left(x_{k}+d_{k}\right)\right\|\left\|d_{k}\right\| \geq 0$.
Rearranging the previous inequality using $1-\beta>0$ and then applying (6 d) yields:

$$
\begin{equation*}
\frac{L}{3(1-\beta)}\left\|d_{k}\right\|^{2}+\frac{\beta \theta}{1-\beta}\left\|\nabla f\left(x_{k}+d_{k}\right)\right\| \geq-\frac{2 M_{k}\left(d_{k}\right)}{\left\|d_{k}\right\|} \geq \gamma_{3} \delta_{k}\left\|d_{k}\right\| \tag{13}
\end{equation*}
$$

Now, by (9), (6a) and the triangle inequality, and (13) respectively:

$$
\begin{aligned}
\left\|\nabla f\left(x_{k}+d_{k}\right)\right\| & \leq\left\|\nabla M_{k}\left(d_{k}\right)\right\|+\frac{L}{2}\left\|d_{k}\right\|^{2} \leq \delta_{k}\left\|d_{k}\right\|+\gamma_{1}\left\|\nabla f\left(x_{k}+d_{k}\right)\right\|+\frac{L}{2}\left\|d_{k}\right\|^{2} \\
& \leq L\left(\frac{1}{3 \gamma_{3}(1-\beta)}+\frac{1}{2}\right)\left\|d_{k}\right\|^{2}+\left(\frac{\beta \theta}{\gamma_{3}(1-\beta)}+\gamma_{1}\right)\left\|\nabla f\left(x_{k}+d_{k}\right)\right\|
\end{aligned}
$$

Rearranging the latter inequality for $\left\|\nabla f\left(x_{k}+d_{k}\right)\right\|$ and using $\frac{\beta \theta}{\gamma_{3}(1-\beta)}+\gamma_{1}<1$ from the requirements of Algorithm 1 yields:

$$
\begin{aligned}
\left\|\nabla f\left(x_{k}+d_{k}\right)\right\| & \leq \frac{\frac{1}{3 \gamma_{3}(1-\beta)}+\frac{1}{2}}{1-\frac{\beta \theta}{\gamma_{3}(1-\beta)}-\gamma_{1}} L\left\|d_{k}\right\|^{2}=\frac{2+3 \gamma_{3}(1-\beta)}{6\left(\gamma_{3}\left(1-\gamma_{1}\right)(1-\beta)-\beta \theta\right)} L\left\|d_{k}\right\|^{2} \\
& \leq \frac{5-3 \beta}{6\left(\gamma_{3}\left(1-\gamma_{1}\right)(1-\beta)-\beta \theta\right)} L\left\|d_{k}\right\|^{2}
\end{aligned}
$$

A. 2 Proof of Lemma 5

Proof. For conciseness let $m=\left|\mathcal{P}_{\epsilon}\right|$. Suppose that the indices of \mathcal{P}_{ϵ} are ordered increasing value by a permutation function π, i.e., $\mathcal{P}_{\epsilon}=\{\pi(i): i \in[m]\}$ with $\pi(1)<\cdots<\pi(m)$. Then

$$
\Delta_{f} \geq f\left(x_{\pi(1)}\right)-f\left(x_{\pi(m)}\right)=\sum_{i=1}^{m-1} f\left(x_{\pi(i)}\right)-f\left(x_{\pi(i+1)}\right)
$$

where the first inequality uses the fact that $f\left(x_{\pi(i)}\right)$ is non-increasing in $\pi(i)$ and $f\left(x_{\pi(i)}\right) \geq f_{\star}$ and the equality is simply the definition of the telescoping sum of $f\left(x_{\pi(m)}\right)-f\left(x_{\pi(1)}\right)$. Therefore,

$$
\begin{aligned}
\Delta_{f} & \geq \sum_{i=1}^{m-1} f\left(x_{\pi(i)}\right)-f\left(x_{\pi(i+1)}\right)=\sum_{i=1}^{m-1} \hat{\rho}_{\pi(i)}\left(-M_{k}\left(d_{\pi(i)}\right)+\frac{\theta}{2}\left\|\nabla f\left(x_{\pi(i)}+d_{\pi(i)}\right)\right\|\left\|d_{\pi(i)}\right\|\right) \\
& \geq \sum_{i=1}^{m-1} \beta\left(-M_{k}\left(d_{\pi(i)}\right)+\frac{\theta}{2}\left\|\nabla f\left(x_{\pi(i)}+d_{\pi(i)}\right)\right\|\left\|d_{\pi(i)}\right\|\right) \geq \frac{\beta \theta}{2} \sum_{i=1}^{m-1}\left\|\nabla f\left(x_{\pi(i)}+d_{\pi(i)}\right)\right\|\left\|d_{\pi(i)}\right\| \\
& \geq \frac{\epsilon \beta \theta}{2}(m-1) \underline{d}_{\epsilon}
\end{aligned}
$$

where the first equality uses the definition of $\hat{\rho}_{\pi(i)}$, the second inequality follows from $\hat{\rho}_{\pi(i)} \geq \beta$ for $\pi(i) \in \mathcal{P}_{\epsilon}$, the third inequality uses that $-M_{k}\left(d_{\pi(i)}\right) \geq 0$, the final inequality uses that $\pi(i) \in \mathcal{P}_{\epsilon}$ implies that $\left\|\nabla f\left(x_{\pi(i)}+d_{\pi(i)}\right)\right\| \geq \epsilon$ (by definition of $\pi(i) \in \mathcal{P}_{\epsilon}$) and $\underline{d}_{\epsilon} \leq\left\|d_{\pi(i)}\right\|$ (due to Lemma 4).
Rearranging the latter inequality for m using the fact that $\beta \theta \epsilon \underline{d}_{\epsilon}>0$ and $\Delta_{f} \geq 0$ yields $m \leq$ $\frac{2 \Delta_{f}}{\beta \theta \epsilon \underline{d}_{\epsilon}}+1=\frac{\bar{d}_{\epsilon}}{\underline{d}_{\epsilon} \omega}+1=$ where the equalities use the definitions of \bar{d}_{ϵ} and \underline{d}_{ϵ}.

A. 3 Proof of Theorem 1

Proof. Define:

$$
\begin{aligned}
n_{j} & :=\left|\left\{k \in \mathbf{N}: k \notin \mathcal{P}_{\epsilon}, k<K_{\epsilon}, \underline{k}_{\epsilon}<k \leq j\right\}\right| \\
p_{j} & :=\left|\left\{k \in \mathcal{P}_{\epsilon}: \underline{k}_{\epsilon}<k \leq j\right\}\right| .
\end{aligned}
$$

First we establish that

$$
\begin{equation*}
n_{\infty} \leq p_{\infty}+\log _{\omega}\left(\max \left\{\frac{\bar{d}_{\epsilon}}{\underline{d}_{\epsilon}}, 1\right\}\right) \tag{14}
\end{equation*}
$$

Consider the induction hypothesis that

$$
\begin{equation*}
r_{k} \leq r_{\underline{k}_{\epsilon}} \omega^{p_{k}-n_{k}} \quad \forall k \in\left[\underline{k}_{\epsilon}, K_{\epsilon}\right) \cap \mathbf{N} . \tag{15}
\end{equation*}
$$

If $k=\underline{k}_{\epsilon}$ then $p_{k}=n_{k}=0$ and the hypothesis holds. Suppose that the induction hypothesis holds for $k=j$. Note that for all $j \in \mathbf{N}$ either $p_{j+1}=p_{j}+1$ (and $n_{j+1}=n_{j}$) or $n_{j+1}=n_{j}+1$ (and $p_{j+1}=p_{j}$). If $p_{j+1}=p_{j}+1$ then

$$
r_{j+1}=\left\|d_{j}\right\| \omega \leq r_{j} \omega \leq r_{\underline{k}_{\epsilon}} \omega^{p_{j}-n_{j}+1}=r_{\underline{\underline{k}}_{\epsilon}} \omega^{p_{j+1}-n_{j+1}}
$$

On the other hand, if $n_{j+1}=n_{j}+1$ then

$$
r_{j+1}=\left\|d_{j}\right\| / \omega \leq r_{j} / \omega \leq r_{\underline{k}_{\epsilon}} \omega^{p_{j}-n_{j}-1}=r_{\underline{k}_{\epsilon}} \omega^{p_{j+1}-n_{j+1}}
$$

Therefore by induction (15) holds. By (15) and Lemma 4,

$$
\underline{d}_{\epsilon} \leq \bar{d}_{\epsilon} \omega^{p_{k}-n_{k}}
$$

which establishes (14).
By Lemma 4 we have $\underline{k}_{\epsilon} \leq 1+\log _{\gamma_{2} \omega}\left(\max \left\{1, \underline{d}_{\epsilon} / r_{1}, r_{1} / \bar{d}_{\epsilon}\right\}\right)$ and Lemma 5 we have $p_{\infty} \leq \frac{\bar{d}_{\epsilon}}{\underline{d}_{\epsilon} \omega}+1$; using these inequalities in conjuction with (14) gives

$$
\begin{aligned}
K_{\epsilon} & =\underline{k}_{\epsilon}+p_{\infty}+n_{\infty}+1 \leq \underline{k}_{\epsilon}+2 p_{\infty}+\log _{\omega}\left(\max \left\{\bar{d}_{\epsilon} / \underline{d}_{\epsilon}\right\}\right)+1 \\
& \leq \log _{\omega \gamma_{2}}\left(\max \left\{1, \underline{d}_{\epsilon} / r_{1}, r_{1} / \bar{d}_{\epsilon}\right\}\right)+\frac{2 \bar{d}_{\epsilon}}{\underline{d}_{\epsilon} \omega}+\log _{\omega}\left(\max \left\{1, \bar{d}_{\epsilon} / \underline{d}_{\epsilon}\right\}\right)+3 \\
& \leq \frac{2 \bar{d}_{\epsilon}}{\underline{d}_{\epsilon} \omega}+2 \log _{\omega \gamma_{2}}\left(\max \left\{\frac{\bar{d}_{\epsilon}}{\underline{d}_{\epsilon}}, \frac{\underline{d}_{\epsilon}}{r_{1}}, \frac{r_{1}}{\bar{d}_{\epsilon}}, 1\right\}\right)+3 \\
& =c_{2} \cdot \frac{\Delta_{f} L^{1 / 2}}{\epsilon^{-3 / 2}}+2 \log _{\omega \gamma_{2}}\left(\max \left\{\frac{c_{2} \omega}{2} \cdot \frac{\Delta_{f} L^{1 / 2}}{\epsilon^{3 / 2}}, \frac{\gamma_{2}}{\omega c_{1}^{1 / 2}} \cdot \frac{\epsilon^{1 / 2}}{L^{1 / 2} r_{1}}, \frac{\beta \theta}{2 \omega} \cdot \frac{r_{1} L^{1 / 2}}{\epsilon^{1 / 2}}, 1\right\}\right)+3
\end{aligned}
$$

where

$$
c_{2}:=\frac{4 c_{1}^{1 / 2} \omega}{\beta \theta \gamma_{2}}
$$

is a problem-independent constant. As $c_{1}, c_{2}, \omega, \beta, \theta, \gamma_{1}, \gamma_{2}$ and γ_{3} are problem-independent constants (see the definition of c_{1} in Lemma 2 and the requirements of Algorithm 1) the result follows.

B Proof of Theorem 2

We first prove Theorem 3 and then reduce Theorem 2 to Theorem 3. The following fact will be useful.

Fact 3 ([53]). If f is α-strongly convex and S-smooth on the set C (i.e., $\alpha \mathbf{I} \preceq \nabla^{2} f(x) \preceq S \mathbf{I}$ for all $x \in C)$ then

$$
\begin{equation*}
\alpha\left\|x-x_{\star}\right\| \leq\|\nabla f(x)\| \leq S\left\|x-x_{\star}\right\| \tag{16}
\end{equation*}
$$

where x_{\star} is any minimizer of f.
Theorem 3. Suppose that f is L-Lipschitz, $\nabla f\left(x_{\star}\right)=0$ and there exists $\alpha, S, t>0$ such that $\alpha \mathbf{I} \preceq \nabla^{2} f(x) \preceq S \mathbf{I}$ for all $x \in\left\{x \in \mathbf{R}^{n}:\left\|x-x_{\star}\right\| \leq t\right\}$. Consider the set

$$
C:=\left\{x \in \mathbf{R}^{n}: f(x) \leq f\left(x_{\star}\right)+\frac{2 \eta^{2}}{\alpha},\left\|x-x_{\star}\right\| \leq \eta\right\}
$$

with

$$
\eta=\min \left\{t, \frac{\alpha^{3}\left(1-\gamma_{1}\right)}{2 L S^{2}} \min \left\{\frac{1}{2}, \omega \gamma_{2}-1\right\}, \frac{12(1-\beta) \alpha}{L \omega \gamma_{2}}, \frac{\beta \theta(1-\beta) \alpha}{4 \omega \gamma_{2} L c_{1}}\right\}
$$

then if $x_{i} \in C$ then for $k \geq 2+i+\log _{\gamma_{2} \omega}\left(\frac{\eta}{\left\|d_{i}\right\|}\right)$ we have

$$
\left\|x_{k+1}-x_{\star}\right\| \leq \frac{2 L S^{2}}{\alpha^{3}\left(1-\gamma_{1}\right)}\left\|x_{k}-x_{\star}\right\|^{2}
$$

Proof. We begin by establishing the premise of Lemma 6. First we establish $x_{k} \in C \Longrightarrow x_{k+1} \in C$. Suppose that $x_{k} \in C$ then $f\left(x_{k+1}\right) \leq f\left(x_{k}\right) \leq f\left(x_{\star}\right)+\frac{2 \eta^{2}}{\alpha}$. By strong convexity we get $x_{k+1} \in C$. Next we establish that $\min \left\{\gamma_{2} r_{k},\left\|x_{k+1}-x_{\star}\right\|\right\} \leq\left\|d_{k}\right\| \leq \omega \gamma_{2}\left\|x_{k}-x_{\star}\right\|$. By strong convexity and (6d) we have

$$
\frac{\alpha+\delta_{k}}{2}\left\|d_{k}\right\|^{2}-\left\|\nabla f\left(x_{k}\right)\right\|\left\|d_{k}^{N}\right\| \leq M_{k}\left(d_{k}^{N}\right) \leq 0
$$

which implies $\left\|d_{k}\right\| \leq \frac{2\left\|\nabla f\left(x_{k}\right)\right\|}{\alpha+\delta_{k}}$. Furthermore, by (9), (6a) and $\left\|d_{k}\right\| \leq \frac{2\left\|\nabla f\left(x_{k}\right)\right\|}{\alpha+\delta_{k}}$ we have

$$
\left\|\nabla f\left(x_{k}+d_{k}\right)+\delta_{k} d_{k}\right\| \leq\left\|\nabla M_{k}\left(d_{k}\right)+\delta_{k} d_{k}\right\|+\frac{L}{2}\left\|d_{k}\right\|^{2} \leq \gamma_{1}\left\|\nabla f\left(x_{k}+d_{k}\right)\right\|+\frac{2 L\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\alpha^{2}}
$$

which after rearranging

$$
\begin{equation*}
\left\|\nabla f\left(x_{k}+d_{k}\right)+\delta_{k} d_{k}\right\| \leq \frac{2 L}{\alpha^{2}\left(1-\gamma_{1}\right)}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \tag{17}
\end{equation*}
$$

By strong convexity and smoothness,

$$
\begin{equation*}
\left\|x_{k}+d_{k}-\hat{x}_{k}\right\| \leq \frac{2 L S^{2}}{\alpha^{3}\left(1-\gamma_{1}\right)}\left\|x_{k}-x_{\star}\right\|^{2} \tag{18}
\end{equation*}
$$

where $\hat{x}_{k}:=\min f(x)+\frac{\delta_{k}}{2}\left\|x-x_{k}\right\|^{2}$. Therefore, as $\left\|x_{k}-x_{\star}\right\| \leq \frac{\alpha^{3}\left(1-\gamma_{1}\right)}{2 L S^{2}} \min \left\{\frac{1}{2}, \omega \gamma_{2}-1\right\}$,

$$
\left\|x_{k}+d_{k}-\hat{x}_{k}\right\| \leq \min \left\{\frac{1}{2}, \omega \gamma_{2}-1\right\}\left\|x_{k}-x_{\star}\right\|
$$

which combined with the triangle inequality and $\left\|\hat{x}_{k}-x_{k}\right\| \leq\left\|x_{k}-x_{\star}\right\|$ gives

$$
\left\|d_{k}\right\| \leq\left\|x_{k}+d_{k}-\hat{x}_{k}\right\|+\left\|x_{k}-\hat{x}_{k}\right\| \leq \omega \gamma_{2}\left\|x_{k}-x_{\star}\right\|
$$

Furthermore, if $\left\|d_{k}\right\|<\gamma_{2} r_{k}$ then by (6b) we have $\delta_{k}=0$ and $\hat{x}_{k}=x_{\star}$ which gives

$$
\left\|x_{k}+d_{k}-x_{\star}\right\| \leq \frac{1}{2}\left\|x_{k}-x_{\star}\right\| \leq\left\|x_{k}-x_{\star}\right\|-\left\|x_{k}+d_{k}-x_{\star}\right\| \leq\left\|d_{k}\right\|
$$

Next we show $x_{k} \in C$ implies $\hat{\rho}_{k} \geq \beta$. To obtain a contradiction we assume $\hat{\rho}_{k}<\beta$, by the definition of the model, (6a) and strong convexity we get

$$
\begin{aligned}
M_{k}\left(d_{k}\right) & =\frac{1}{2} d_{k}^{T} \nabla^{2} f\left(x_{k}\right) d_{k}+\nabla f\left(x_{k}\right)^{T} d_{k}=d_{k}^{T}\left(\boldsymbol{\nabla}^{2} f\left(x_{k}\right) d_{k}+\delta_{k} d_{k}+\nabla f\left(x_{k}\right)\right)-\frac{1}{2} d_{k}^{T}\left(\boldsymbol{\nabla}^{2} f\left(x_{k}\right)+2 \delta_{k} \mathbf{I}\right) d_{k} \\
& \leq \gamma_{1}\left\|d_{k}\right\|\left\|\nabla f\left(x_{k+1}\right)\right\|-\frac{1}{2} d_{k}^{T}\left(\boldsymbol{\nabla}^{2} f\left(x_{k}\right)+2 \delta_{k} \mathbf{I}\right) d_{k} \\
& \leq \gamma_{1}\left\|d_{k}\right\|\left\|\boldsymbol{\nabla} f\left(x_{k+1}\right)\right\|-\frac{\alpha}{2}\left\|d_{k}\right\|^{2}
\end{aligned}
$$

It follows that by inequality (10), $\left\|d_{k}\right\| \leq \omega \gamma_{2}\left\|x_{k}-x_{\star}\right\| \leq \frac{12}{L}(1-\beta) \alpha$, inequality (11), $\left\|d_{k}\right\| \leq$ $\omega \gamma_{2}\left\|x_{k}-x_{\star}\right\| \leq \frac{\beta \theta(1-\beta) \alpha}{4 L c_{1}}$ we have

$$
\begin{aligned}
f\left(x_{k}\right)-f\left(x_{k+1}\right) & \geq-\beta M_{k}\left(d_{k}\right)+\frac{(1-\beta) \alpha}{2}\left\|d_{k}\right\|^{2}-\frac{L}{6}\left\|d_{k}\right\|^{3} \\
& \geq-\beta M_{k}\left(d_{k}\right)+\frac{(1-\beta) \alpha}{4}\left\|d_{k}\right\|^{2} \\
& \geq-\beta M_{k}(d)+\frac{(1-\beta) \alpha}{4 L c_{1}}\left\|\nabla f\left(x_{k}\right)\right\| \\
& \geq-\beta M_{k}(d)+\beta \theta\left\|\nabla f\left(x_{k}\right)\right\|\left\|d_{k}\right\|
\end{aligned}
$$

which gives our desired contradiction.
With the premise of Lemma 6 established we conclude that for $k \geq 2+i+\log \left(\eta /\left\|d_{i}\right\|\right)$ we have $\delta_{k}=0$ and therefore by (18) we get the desired result.

The following Lemma is a standard result but we include it for completeness.
Lemma 7. If $\nabla^{2} f\left(x_{\star}\right)$ is twice differentiable and positive definite, then there exists a neighborhood N and positive constants $\alpha, \beta>0$ such that $\alpha \mathbf{I} \preceq \nabla^{2} f(x) \preceq S \mathbf{I}$ for all $x \in N$.

Proof. As $\nabla^{2} f$ is twice differentiable and the fact that continuous functions on compact sets are bounded we conclude that there exists a neighborhood N around x_{\star} that $\nabla^{2} f$ is L-Lipschitz for some constant $L \in(0, \infty)$. Then by using the fact that there exists positive constants $\alpha^{\prime}, \beta^{\prime} \in(0, \infty)$ s.t. $\alpha^{\prime} \mathbf{I} \preceq \nabla^{2} f\left(x_{\star}\right) \preceq \beta^{\prime} \mathbf{I}$ we conclude for sufficiently small ball around x_{\star} we have $\alpha^{\prime} / 2 \mathbf{I} \preceq$ $\nabla^{2} f(x) \preceq 2 \beta^{\prime} \mathbf{I}$ for all x in a sufficiently small neighborhood $N^{\prime} \subseteq N$.

Proof of Theorem 2. Follows by Lemma 7 and Theorem 3.

C Solving trust-region subproblem

In this section, we detail our approach to solve the trust-region subproblem. We first attempt to take a Newton's step by checking if $\nabla^{2} f\left(x_{k}\right) \succeq 0$ and $\left\|\nabla^{2} f\left(x_{k}\right)^{-1} \nabla f\left(x_{k}\right)\right\| \leq r_{k}$. However, if that is not the case, then the optimally conditions mentioned in (6), will be a key ingredient in our approach to find δ and hence $d_{k}(\delta)$. Based on these optimally conditions, we will define a univariate function ϕ that we seek to find its root at each iteration. In our implementation we use $\gamma_{3}=1.0$ for (6 d) which is the same as satisfying (5d). The function ϕ is defined as bellow:

$$
\phi(\delta):= \begin{cases}-1, & \text { if } \nabla^{2} f\left(x_{k}\right)+\delta \mathbf{I} \nsucceq 0 \text { or }\left\|d_{k}(\delta)\right\|>r_{k} \\ +1, & \text { if } \nabla^{2} f\left(x_{k}\right)+\delta \mathbf{I} \succeq 0 \&\left\|d_{k}(\delta)\right\|<\gamma_{2} r_{k} \\ 0, & \text { if } \nabla^{2} f\left(x_{k}\right)+\delta \mathbf{I} \succeq 0 \&\left\|d_{k}(\delta)\right\| \leq r_{k}\end{cases}
$$

where:

$$
d_{k}(\delta):=\left(\boldsymbol{\nabla}^{2} f\left(x_{k}\right)+\delta \mathbf{I}\right)^{-1}\left(-\nabla f\left(x_{k}\right)\right)
$$

When we fail to take a Newton's step, we first find an interval $\left[\delta, \delta^{\prime}\right]$ such that $\phi(\delta) \times \phi\left(\delta^{\prime}\right) \leq 0$. Then we apply bisection method to find δ_{k} such that $\phi\left(\delta_{k}\right)=0$. In case our root finding logic failed, then we use the approach from the hard case section under chapter 4 "Trust-Region Methods" in [44] to find the direction d_{k}.
The logic to find the interval $\left[\delta, \delta^{\prime}\right]$ is summarized as follow. We first compute $\phi(\delta)$ using the δ value from the previous iteration. Then we search for δ^{\prime} by starting with $\delta^{\prime}=2 \delta$. We compute $\phi\left(\delta^{\prime}\right)$ and in the case $\phi\left(\delta^{\prime}\right)<0$, we update δ^{\prime} to become twice its current value, otherwise if $\phi\left(\delta^{\prime}\right)>0$, we update δ^{\prime} to become half its current value. We keep repeating this logic until we get a δ^{\prime} such that $\phi(\delta) \times \phi\left(\delta^{\prime}\right) \leq 0$ or until we reach the maximum iteration limit which is marked as a failure.

The whole approach is summarized in Algorithm 2:

```
Algorithm 2: trust-region subproblems solver
if \(\boldsymbol{\nabla}^{2} f\left(x_{k}\right) \succeq 0\) then
    \(d_{k}=-\boldsymbol{\nabla}^{2} f\left(x_{k}\right)^{-1} \nabla f\left(x_{k}\right)\)
    if \(\left\|d_{k}\right\| \leq r\) then
        return \(d_{k}\);
```


if hard case then

```
Find \(d_{k}\) using [44, pages 87-88] ;
return \(d_{k}\)
else
Find initial interval \(\left[\delta, \delta^{\prime}\right]\) using the \(\phi\) function such that \(\phi(\delta) \times \phi\left(\delta^{\prime}\right) \leq 0\);
Use bisection method to find \(\delta_{k}\) such that \(\phi\left(\delta_{k}\right)=0\);
return \(d_{k}\left(\delta_{k}\right)\)
```


D Experimental results details

D. 1 Learning linear dynamical systems

The time-invariant linear dynamical system is defined by:

$$
\begin{aligned}
h_{t+1} & =A h_{t}+B u_{t}+\xi_{t} \\
x_{t} & =h_{t}+\vartheta_{t}
\end{aligned}
$$

where the vectors h_{t} and x_{t} represent the hidden and observed state of the system at time t. Here $u_{t}, \vartheta_{t} \sim N(0,1)^{d}, \xi_{t} \sim N(0, \sigma)^{d}$ and A and B are linear transformations.

The goal is to recover the parameters of the system using maximum likelihood estimation and hence we formulate the problem as follow:

$$
\min _{A, B, h} \sum_{t=1}^{T} \frac{\left\|h_{t+1}-A h_{t}-B u_{t}\right\|^{2}}{\sigma^{2}}+\left\|x_{t}-h_{t}\right\|^{2}
$$

We synthetically generate examples with noise both in the observations and also the evolution of the system. The entries of the matrix B are generated using a Normal distribution $N(0,1)$. For the matrix A, we first generate a diagonal matrix D with entries drawn from a uniform distribution $U[0.9,0.99]$ and then we construct a random orthogonal matrix Q by randomly sampling a matrix $W \sim N(0,1)^{d \times d}$ and then performing an QR factorization. Finally using the matrices Q and D, we define A :

$$
A=Q^{T} D Q
$$

We compare our method against the Newton trust-region method available through the Optim.jl package [51] licensed under https://github.com/JuliaNLSolvers/Optim.jl/blob/ master/LICENSE.md. In the results/learning problem subdirectory in the git repository, we present the full results of running our experiments on 60 randomly generated instances with $T=50, d=4$, and $\sigma=0.01$ where we used a value of 10^{-5} for the gradient termination tolerance. This experiment was performed on a MacBook Air (M1, 2020) with 8GB RAM.

D. 2 Matrix completion

The original power consumption data is denoted by a matrix $D \in R^{n_{1} \times n_{2}}$ where n_{1} represents the number of measurements taken per day within a 15 mins interval and n_{2} represents the number of days. Part of the data is missing, hence the goal is to recover the original data. The set $\Omega=$ $\left\{(i, j) \mid D_{i, j}\right.$ is observed $\}$ denotes the indices of the observed data in the matrix D.
We decompose D as a product of two matrices $P \in R^{n_{1} \times r}$ and $Q \in R^{n_{2} \times r}$ where $r<n_{1}$ and $r<n_{2}$:

$$
D=P Q^{T}
$$

To account for the effect of time and day on the power consumption data, we use a baseline estimate [54]:

$$
d_{i, j}=\mu+r_{i}+c_{j}
$$

where μ denotes the mean for all observed measurements, r_{i} denotes the observed deviation during time i, and c_{j} denotes the observed deviation during day j [49, 54].
We formulate the matrix completion problem as the regularized squared error function of SVD model [49, Equation 10]:

$$
\min _{r, c, p, q} \sum_{(i, j) \in \Omega}\left(D_{i, j}-\mu-r_{i}-c_{j}-p_{i} q_{j}^{T}\right)+\lambda_{1}\left(r_{i}^{2}+c_{j}^{2}\right)+\lambda_{2}\left(\left\|p_{i}\right\|_{2}^{2}+\left\|q_{j}\right\|_{2}^{2}\right)
$$

We use the public data set of Ausgrid, but we only use the data from a single substation (the Newton trust-region method [51] is very slow for this example so testing it on all substations takes a prohibitively long time). We limit our option to 30 days and 12 hours measurements i.e the matrix D is of size 48×30 because with a larger matrix size, the Newton trust-region [51] was always reaching the iterations limit.

We compare our method against Newton trust-region algorithm available through the Optim.jl package [51] licensed under https://github.com/JuliaNLSolvers/Optim.jl/blob/master/ LICENSE.md. In the results/matrix completion subdirectory in the git repository, we include the full results of running our experiments on 10 instances by randomly generating the sampled measurements from the matrix D with the same values for the regularization parameters as in [49] where we used a value of 10^{-5} for the gradient termination tolerance. This experiment was performed on a MacBook Air (M1, 2020) with 8GB RAM.

