
Uncertainty Estimation for Multi-view Data:
The Power of Seeing the Whole Picture

Appendix

A Proofs and Derivations

Proof of Lemma 1

Proof. With x2:n = [x2, · · · , xn], we rewrite the KL divergence between p(x) and q(x) as follows:

KL [p(x)||q(x)] =
∫
x1∈X1

∫
x2:n∈X2:n

p1(x1)p2:n(x2:n) log

(
p1(x1)p2:n(x2:n)

q1(x1)q2:n(x2:n)

)
dx2:ndx1 (1)

=

∫
x1∈X1

∫
x2:n∈X2:n

p1(x1)p2:n(x2:n) log

(
p1(x1)

q1(x1)

)
dx2:ndx1+∫

x1∈X1

∫
x2:n∈X2:n

p1(x1)p2:n(x2:n) log

(
p2:n(x2:n)

q2:n(x2:n)

)
dx2:ndx1 (2)

=

∫
x2:n∈X2:n

p2:n(x2:n)dx2:n︸ ︷︷ ︸
=1

∫
x1∈X1

p1(x1) log

(
p1(x1)

q1(x1)

)
dx1

+

∫
x1∈X1

p1(x1)dx1︸ ︷︷ ︸
=1

∫
x2:n∈X2:n

p2:n(x2:n) log

(
p2:n(x2:n)

q2:n(x2:n)

)
dx2:n (3)

= KL [p(x1)||q(x1)] + KL [p2:n(x2:n)||q2:n(x2:n)] (4)

We can repeat Equation (1)-(3) on the second term of Equation (4) to prove the lemma.

Proof of Theorem 2 We let the true posterior p(f |X, ỹc) factorized as p(f |X, ỹc) =∏
v p(fv| ỹc). By using the Lemma 1, we form the KL between [qPoE(f) and p(f |X, ỹc) as:

KL [qPoE(f)||p(f |X, ỹc)] = KL

[∏
v

q(fv)||
∏
v

p(fv| ỹc)

]
(5)

=
∑
v

KL [q(fv)||p(fv| ỹc)] (6)

Derivation of ELBO By expanding Equation (6), we formulate ELBOs for each view as follows:∑
v

KL [q(fv)||p(fv| ỹc)]

=
∑
v

∫
q(fv) log

q(fv)

p(fv|ỹc)
dfv

=
∑
v

[∫
q(fv) log q(fv) dfv −

∫
q(fv) log

p(ỹc|fv)p(fv)

p(ỹc)
dfv

]
=
∑
v

[∫
q(fv) log

q(fv)

p(fv)
dfv −

∫
q(fv) log p(ỹc|fv) dfv + log p(ỹc)

]
(7)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

By rearranging Equation (7), we obtain:

log p(ỹc) ≥
∑
v

[∫
q(fv) log p(ỹc|fv) dfv −

∫
q(fv) log

q(fv)

p(fv)
dfv

]
=
∑
v

[∫
q(fv) log p(ỹc|fv) dfv −

∫∫
q(fv,uv) log

q(fv)

p(fv)
duv dfv

]
=
∑
v

[∫
q(fv) log p(ỹc|fv) dfv −

∫∫
q(fv,uv) log

q(fv,uv)/p(uv|fv)

p(fv,uv)/p(uv|fv)
duv dfv

]
=
∑
v

[∫
q(fv) log p(ỹc|fv) dfv −

∫∫
q(fv,uv) log

q(fv,uv)

p(fv,uv)
duv dfv

]
=
∑
v

[∫
q(fv) log p(ỹc|fv) dfv −

∫∫
q(fv,uv) log

p(fv|uv)q(uv)

p(fv|uv)p(uv)
duv dfv

]
=
∑
v

[∫
q(fv) log p(ỹc|fv) dfv −

∫∫
q(fv,uv) log

q(uv)

p(uv)
duv dfv

]
=
∑
v

[∫
q(fv) log p(ỹc|fv) dfv −KL [q(uv)||p(uv)]

]
=
∑
v

ELBOv (8)

The KL term in Equation (8) has an analytical expression because both q(uv) and p(uv) are Gaussian
distributions. However, the log likelihood term is not analytical yet. We further factorize the likelihood
across data points as:

∫
q(fv) log p(ỹc|fv) dfv =

∫
q(fv) log

(
N∏
i=1

p(ỹi,c|fi,v)

)
dfv

=

∫
q(fv)

N∑
i=1

log p(ỹi,c|fi,v) dfv

=

N∑
i=1

(∫
q(fv) log p(ỹi,c|fi,v) dfv

)

=

N∑
i=1

(∫∫
q(fj,v,fi,v) log p(ỹi,c|fi,v) dfj dfv

)
, j = {n}Nn=1 \ {i}

=

N∑
i=1

(∫
q(fi,v) log p(ỹi,c|fi,v) dfi,v

)

=

N∑
i=1

Eq(fi,v) [log p(ỹi,c|fi,v)] (9)

By substituting Equation (9) in Equation (8) and introducing β to control the regularization term, the
ELBO for a view is defined as:

ELBOv =

N∑
i=1

Eq(fv,i) [log p(ỹi,c|fv,i)]− β ·KL [q(uv)||p(uv)] (10)

Note that q(fv) has an analytical solution because the conditional prior p(fv|uv) =
N (fv;KNMK−1

MMuv,KNN − KNMK−1
MMKT

NM) and the marginal variational distribution
q(uv) = N (uv;mvSv) are both Gaussian distributions. By using Gaussian linear transforma-

2

tion and integrating uv out, we can derive the solution as follows:

q(fv) :=

∫
p(fv|uv)q(uv) duv

=

∫
N (fv;KNMK−1

MMuv,KNN −KNMK−1
MMKT

NM)N (uv;mvSv) duv

=

∫
N (fv;KNMK−1

MMmv,KNMK−1
MMSv(KNMK−1

MM)T +KNN

−KNMK−1
MMKT

NM)N (uv;mvSv) duv

= N (fv;KNMK−1
MMmv,KNMK−1

MMSv(KNMK−1
MM)T +KNN

−KNMK−1
MMKT

NM)

∫
N (uv;mvSv) duv

= N (fv;KNMK−1
MMmv,KNMK−1

MMSv(KNMK−1
MM)T +KNN −KNMK−1

MMKT
NM)

Inference Given test samples X∗ = {Xv,∗}Vv=1, the predictive distribution p(f∗,v|ỹc) of single
view is estimated by the variational distribution as:

p(f∗,v|ỹc) =

∫∫
p(f∗,v|f ,uv|ỹc)p(f ,uv|uv) df duv

≈
∫∫

p(f∗,v|f ,uv)q(f ,uv) df duv

=

∫∫
p(f∗,v|f ,uv)p(f |uv)q(uv) df duv

=

∫
p(f∗,v|uv)q(uv) duv

= q(f∗,v) (11)

where p(f∗,v|uv) can be formed by the joint prior distribution of:[
f∗,v
uv

]
∼ N

(
0,

[
K∗∗ K∗M
KT

∗M KMM

])

B Detailed Experimental Settings and Results

In this section, we provide detailed experimental settings and additional experimental results for the
synthetic dataset experiment in Appendix B.1, the robustness to noise experiment in Appendix B.2,
and OOD samples detection experiment in Appendix B.3.

B.1 Synthetic Dataset Experiment

Dataset The original moon dataset in Scikit-learn1 has two sets of 2D data points: upper unit circle
points (class 1) and lower unit circle points (class 2). We modified the original code by changing
the radius of circle with three radius values (view 1: 1.7, view 2: 1.0, and view 3: 0.3) with a fixed
random state. We generated 1,000 points for each set with a different radius, forming an individual
input view. The third view with radius 0.3 was further translated to make the points overlapping,
representing a noisy view. OOD samples were generated by randomly sampling 200 points from a
normal distribution with standard deviation of 0.04.

Feature Extractor To make the comparisons between methods be fair, we used the same feature
extractor architecture. Similar to [8], we used a non-trainable fully connected layer to project the input
to a hidden dimension. Then, six residual fully connected layers with the same hidden dimension are
stacked. We used 128 units as the hidden dimension.

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.
html

3

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

(a) SNGP (U) with NV (b) SNGP (U)

0.1

0.3

0.5

0.7

0.9

U
ncertainty

Figure 1: Uncertainty surfaces (U) of SNGP (a) with the noisy view (NV) and (b) without the noisy
view.

Implementation Details On top of the feature extractor, we used different output layers as follows:

• SNGP’s GP layer: We followed the settings provided by its authors in their tutorial2 with
gp_cov_momentum = −1 for computing the model’s covariance and λ = π/8 for the
mean-filed estimation. Since SNGP is a unimodal model, we used early fusion method to
concatenate input points into X ∈ RN×2V . The constant learning rate of 0.001 was used.

• DE(LF): For each view, a fully connected layer was trained individually with the constant
learning rate of 0.001. Given ith test sample, predictive probabilities from all views were
averaged.

• TMC: We used the identical architecture proposed by [4] where each view is built with a
fully connected layer with l2 regularization coefficient of 0.0001. lambda_epochs = 10
for annealing KL term was used.

• MGP (Ours): GPs with αϵ = 0.001 and 200 inducing points were used for each view. lv and
σ2
v were initialized with {1.0}Dd=1 where D is the output dimension of the feature extractor,

and Zv was initialized with the first 200 samples of the training set. To stabilize the training,
we first trained GP layer for 10 warm-up epochs without training the feature extractor with
the learning rate of 0.01 which was linearly decreased to 0.003. Then, the entire model was
trained with the learning rate of 0.003. We used β = 1 for the regularization coefficient.
Our framework is based on GPflow [9].

We implemented all the methods in Tensorflow and trained them for 30 epochs with the Adam
optimizer [6] on single Nvidia GeForce RTX 3090 (24GB) GPU.

Uncertainty Quantification TMC and SNGP quantify predictive uncertainty based on the Demp-
ster–Shafer theory [1]. TMC’s output has explicit expression of uncertainty quantity, and SNGP
estimates the uncertainty with output logits as:

U(xi) =
C

C +
∑C

c=1 exp (hc(xi))
(12)

where hc(xi) is the cth class logit of SNGP. The difference between uncertainty surfaces of SNGP
trained with the noisy view and without the noisy view is shown in Figure 1.

For MGP, we used the sum of predictive variance over all classes as uncertainty, which is another
way of quantifying uncertainty [2]. The uncertainty surfaces of each view are shown in Figure 2.

SNGP with Spectral Normalization The original SNGP uses the residual feature extractor with
spectral normalization. We implemented the same experiment with the feature extractor using spectral
normalization with norm_multiplier = 0.9 as introduced in the tutorial. The results are plotted in
Figure 3.

B.2 Robustness to Noise Experiment

Implementation Details We used the same datasets of the TMC’s datasets (Handwritten, CUB,
PIE, Caltech101, Scene15, and HMDB). For details of the datasets, refer to [4]. The experimental

2https://www.tensorflow.org/tutorials/understanding/sngp

4

https://www.tensorflow.org/tutorials/understanding/sngp

(a) View 1 (U) (b) View 2 (U) (c) View 3 (U)

0.1

0.3

0.5

0.7

0.9

U
ncertainty

(d) View 1 (U) (e) View 2 (U) (f) View 3 (U)

0.1

0.3

0.5

0.7

0.9

U
ncertainty

(g) View 1 (U) (h) View 2 (U) (i) View 3 (U)

0.1

0.3

0.5

0.7

0.9

U
ncertainty

Figure 2: Uncertainty surfaces (U) of view 1, 2, and 3 from DE(LF) (a)-(c), TMC (d)-(f), and MGP
(g)-(i).

(a) SNGP (P) with NV (b) SNGP (P)

0.1

0.3

0.5

0.7

0.9

Probability

(c) SNGP (U) with NV (d) SNGP (U)

0.1

0.3

0.5

0.7

0.9

U
ncertainty

Figure 3: Top row: Predictive probability surfaces (P) of SNGP using spectral normalization with the
noisy view (NV) (left) and without the noisy view (right); bottom row: Uncertainty surfaces of SNGP
using spectral normalization (U) with the noisy view (NV) (left) and without the noisy view (right).

settings are similar to Appendix B.1 except that the feature extractor was not used because the datasets
are feature sets. In addition to the methods used in B.1, we implemented MC Dropout and DE(EF)
models with the seetings as follows:

• MC Dropout: We used a dropout layer with the dropout rate of 0.2 and a fully connected
layer on top of the dropout layer. During inference, 100 samples were used to make
a prediction. We used the early fusion method to concatenate multi-view features into
unimodal feature.

5

10 1 101 103

Noise std

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

MCD
DE (EF)
SNGP
DE (LF)
TMC
MGP (Ours)

(a) Handwritten

10 1 101 103

Noise std

0.6

0.8

A
cc

ur
ac

y

(b) CUB

10 1 101 103

Noise std

0.6

0.8

A
cc

ur
ac

y

(c) PIE

10 1 101 103

Noise std

0.7

0.8

0.9

A
cc

ur
ac

y

(d) Caltech101

10 1 101 103

Noise std

0.2

0.4

0.6

A
cc

ur
ac

y

(e) Scene15

10 1 101 103

Noise std

0.4

0.6

A
cc

ur
ac

y

(f) HMDB

Figure 4: Domain-shift test accuracy where Gaussian noise is added to half of the views.

• DE (EF): We used a fully connected layer for each model. In total, 5 models were trained
individually, and their predictions were averaged.

For evaluation, we estimated expected calibration error (ECE) [3] to measure the difference of
model’s accuracy and confidence by:

ECE =

K∑
k=1

|Bk|
N

|acc(Bk)− conf(Bk)|

where K is the number of bins, and Bk is partitioned predictions of the bins. In our experiments, we
set K = 15.

Normalization of Input In our experiment, we normalized the datasets first and added noise to
half of the views to maintain the same impact of noise on all the views. However, TMC added the
noise first and normalized the noisy inputs. The experimental results with this setting are plotted in
Figure 4 and Table 1. For each noise level, the average result of all combinations of selecting noisy
views (i.e.,

(
V

V/2

)
configurations) is reported.

Table 1: Average test accuracy with Gaussian noise (std from 0.01 to 10,000) added to half of the
views.

Dataset

Method Handwritten CUB PIE Caltech101 Scene15 HMDB

MC Dropout 91.69±0.36 67.85±0.65 58.23±0.40 87.73±0.35 51.91±0.39 46.96±0.52
DE (EF) 91.50±0.25 68.93±0.57 59.49±0.52 88.13±0.10 52.70±0.29 44.63±0.68
SNGP 85.78±1.32 64.40±1.34 62.45±1.45 79.65±0.59 37.10±2.49 37.10±0.33

DE (LF) 97.69±0.06 70.99±0.71 68.04±0.62 92.14±0.18 58.90±0.76 57.10±0.64
TMC 96.30±0.50 79.01±0.85 80.30±2.05 87.74±0.27 61.92±0.42 47.68±0.84

MGP (Ours) 97.19±0.14 82.85±0.96 90.15±0.33 92.65±0.23 64.29±0.72 51.11±0.74

B.3 OOD Samples Detection Experiment

Implementation Details For in-domain tests, the original train and test splits of CIFAR10 [7]
with corruptions [5] were used. Two OOD testing sets were generated by randomly selecting 5,000
samples (half of the testing set) from CIFAR10-C and 5,000 samples from SVHN or CIFAR100.
Predictive uncertainty was used to detect OOD samples with the performance measured by the area
under the receiver operating characteristic (AUROC). We used the Inception v3 [10] pre-trained with

6

ImageNet as a feature extractor without fine-tuning it. To save computational resources, we stored its
features first and used them without further processing them.

C Parameter Sensitivity of MGP

There are two model parameters introduced in our framework, namely αϵ for the label transformation
and the number of inducing points M for each GP expert. In this section, we provide empirical
studies of how these parameters affect the model’s performance.

C.1 Label Transformation on In-domain Accuracy

10 8 10 6 10 4
0.982

0.984

0.986

A
cc

ur
ac

y

(a) Handwritten

10 8 10 6 10 4

0.910

0.915

0.920

0.925

A
cc

ur
ac

y

(b) CUB

10 8 10 6 10 4
0.910

0.915

0.920

0.925

A
cc

ur
ac

y

(c) PIE

10 8 10 6 10 4
0.920

0.925

0.930

0.935

A
cc

ur
ac

y

(d) Caltech101

10 8 10 6 10 4

0.68

0.70

0.72

A
cc

ur
ac

y

(e) Scene15

10 8 10 6 10 4

0.720

0.725

0.730

A
cc

ur
ac

y

(f) HMDB

10 8 10 6 10 4

0.733

0.734

0.735

0.736

A
cc

ur
ac

y

(g) CIFAR10-C

Figure 5: In-domain test accuracy with respect to αϵ.

7

C.2 Label Transformation on In-domain ECE

10 8 10 6 10 4

0.01

0.02

0.03

EC
E

(a) Handwritten

10 8 10 6 10 4

0.025

0.050

0.075

0.100

EC
E

(b) CUB

10 8 10 6 10 4

0.1

0.2

0.3

0.4

EC
E

(c) PIE

10 8 10 6 10 4

0.025

0.050

0.075

0.100

EC
E

(d) Caltech101

10 8 10 6 10 40.02

0.04

0.06

0.08

0.10

EC
E

(e) Scene15

10 8 10 6 10 4

0.05

0.10

0.15

EC
E

(f) HMDB

10 8 10 6 10 4

0.025

0.050

0.075

0.100

0.125

EC
E

(g) CIFAR10-C

Figure 6: In-domain test ECE with respect to αϵ.

C.3 Label Transformation on OOD AUROC

10 8 10 6 10 40.77

0.78

0.79

0.80

0.81

A
U

R
O

C

(a) CIFAR10-C vs. SVHN

10 8 10 6 10 4

0.72

0.74

A
U

R
O

C

(b) CIFAR10-C vs. CIFAR100

Figure 7: OOD AUROC with respect to αϵ.

8

C.4 Number of Inducing Points on Training Time

100 200 300 400
Number of inducing points

500

1000

Tr
ai

ni
ng

 ti
m

e
(m

s/
ep

oc
h)

(a) Handwritten

100 200 300 400
Number of inducing points

50

100

Tr
ai

ni
ng

 ti
m

e
(m

s/
ep

oc
h)

(b) CUB

100 200 300 400
Number of inducing points

200

400

600

Tr
ai

ni
ng

 ti
m

e
(m

s/
ep

oc
h)

(c) PIE

100 200 300 400
Number of inducing points

2500

5000

7500

10000

12500

Tr
ai

ni
ng

 ti
m

e
(m

s/
ep

oc
h)

(d) Caltech101

100 200 300 400
Number of inducing points

500

1000

1500

2000

Tr
ai

ni
ng

 ti
m

e
(m

s/
ep

oc
h)

(e) Scene15

100 200 300 400
Number of inducing points

2000

4000
Tr

ai
ni

ng
 ti

m
e

(m
s/

ep
oc

h)

(f) HMDB

100 200 300 400
Number of inducing points

10000

20000

30000

Tr
ai

ni
ng

 ti
m

e
(m

s/
ep

oc
h)

(g) CIFAR10-C

Figure 8: Training time with respect to the number of inducing points.

9

C.5 Number of Inducing Points on Testing Time

100 200 300 400
Number of inducing points

50

75

100

125

In
fe

re
nc

e
tim

e
(m

s/
ep

oc
h)

(a) Handwritten

100 200 300 400
Number of inducing points

10

15

20

25

In
fe

re
nc

e
tim

e
(m

s/
ep

oc
h)

(b) CUB

100 200 300 400
Number of inducing points

25

50

75

100

In
fe

re
nc

e
tim

e
(m

s/
ep

oc
h)

(c) PIE

100 200 300 400
Number of inducing points

200

400

600

800

1000

In
fe

re
nc

e
tim

e
(m

s/
ep

oc
h)

(d) Caltech101

100 200 300 400
Number of inducing points

50

100

150

In
fe

re
nc

e
tim

e
(m

s/
ep

oc
h)

(e) Scene15

100 200 300 400
Number of inducing points

100

200

300

400

In
fe

re
nc

e
tim

e
(m

s/
ep

oc
h)

(f) HMDB

100 200 300 400
Number of inducing points

1000

1500

2000

2500

In
fe

re
nc

e
tim

e
(m

s/
ep

oc
h)

(g) CIFAR10-C

Figure 9: Testing time with respect to the number of inducing points.

10

C.6 Number of Inducing Points on In-domain Accuracy

100 200 300 400
Number of inducing points

0.984

0.986

A
cc

ur
ac

y

(a) Handwritten

100 200 300 400
Number of inducing points

0.90

0.91

0.92

A
cc

ur
ac

y

(b) CUB

100 200 300 400
Number of inducing points

0.91

0.92

0.93

A
cc

ur
ac

y

(c) PIE

100 200 300 400
Number of inducing points

0.925

0.930

0.935

A
cc

ur
ac

y

(d) Caltech101

100 200 300 400
Number of inducing points

0.70

0.71

0.72

A
cc

ur
ac

y

(e) Scene15

100 200 300 400
Number of inducing points

0.720

0.722

0.724

0.726

A
cc

ur
ac

y

(f) HMDB

100 200 300 400
Number of inducing points

0.730

0.732

0.734

0.736

A
cc

ur
ac

y

(g) CIFAR10-C

Figure 10: In-domain test accuracy with respect to the number of inducing points.

11

C.7 Number of Inducing Points on In-domain ECE

100 200 300 400
Number of inducing points

0.004

0.006

0.008

0.010

EC
E

(a) Handwritten

100 200 300 400
Number of inducing points

0.02

0.03

0.04

EC
E

(b) CUB

100 200 300 400
Number of inducing points

0.08

0.09

EC
E

(c) PIE

100 200 300 400
Number of inducing points

0.006

0.008

0.010

EC
E

(d) Caltech101

100 200 300 400
Number of inducing points

0.04

0.05

0.06

0.07

0.08

EC
E

(e) Scene15

100 200 300 400
Number of inducing points

0.032

0.034

0.036

0.038

0.040

EC
E

(f) HMDB

100 200 300 400
Number of inducing points

0.018

0.020

EC
E

(g) CIFAR10-C

Figure 11: In-domain test ECE with respect to the number of inducing points.

C.8 Number of Inducing Points on OOD AUROC

100 200 300 400
Number of inducing points

0.79

0.80

0.81

0.82

A
U

R
O

C

(a) CIFAR10-C vs. SVHN

100 200 300 400
Number of inducing points

0.740

0.745

0.750

0.755

0.760

A
U

R
O

C

(b) CIFAR10-C vs. CIFAR100

Figure 12: OOD AUROC with respect to the number of inducing points.

12

D Integral Approximation

In order to compute the posterior of Dirichlet distribution with E [πi,c] and V [πi,c], we approximate
the integration with the Monte Carlo method. We provide the effect of number of Monte Carlo
samples on the in-domain test accuracy in Table 2 and the average inference time in Table 3.

Table 2: The impact of the number of Monte Carlo samples on the in-domain test accuracy.
Monte Carlo Samples Handwritten CUB PIE Caltech101 Scene15 HMDB CIFAR10-C

1 98.25±0.40 85.50±2.09 83.38±2.47 91.16±0.40 65.55±1.10 66.38±0.86 70.86±0.36
10 98.50±0.25 91.33±2.09 90.29±1.90 92.86±0.47 69.95±1.50 71.88±0.72 73.01±0.14
25 98.45±0.11 92.50±1.02 91.62±1.12 93.00±0.25 69.75±1.16 71.95±0.43 73.15±0.12
50 98.60±0.14 92.33±0.37 91.91±0.52 93.06±0.33 69.80±0.73 72.37±0.30 73.27±0.12
75 98.50±0.18 92.33±1.37 91.91±0.52 93.08±0.20 70.42±0.37 72.48±0.07 73.20±0.19

100 98.60±0.14 92.33±0.70 92.06±0.96 93.00±0.33 70.00±0.53 72.30±0.19 73.30±0.05
125 98.60±0.14 92.50±1.18 91.62±0.40 93.06±0.31 70.18±0.53 72.50±0.33 73.28±0.04

Table 3: The impact of the number of Monte Carlo samples on the average inference time (ms/epoch).
Monte Carlo Samples Handwritten CUB PIE Caltech101 Scene15 HMDB CIFAR10-C

1 57.35±2.80 7.55±2.69 34.87±3.72 312.94±8.08 66.75±3.20 130.67±3.85 1049.73±23.77
10 57.60±4.87 7.74±6.72 35.07±3.82 313.34±6.77 66.88±3.36 130.36±3.70 1063.48±26.49
25 58.15±4.81 7.70±5.79 35.30±3.56 324.21±10.58 67.51±3.35 132.05±3.68 1057.31±17.51
50 59.05±6.67 7.75±7.04 36.31±4.38 330.36±11.75 68.10±4.97 134.06±3.60 1059.33±17.86
75 58.96±2.95 7.60±2.84 36.35±1.24 333.41±10.59 68.68±5.51 136.58±4.56 1079.50±24.29

100 58.93±2.70 7.71±5.96 36.41±3.09 333.01±10.34 68.84±3.26 138.05±4.73 1097.04±1.49
125 59.32±2.81 7.81±3.11 36.99±1.40 334.87±7.05 69.54±4.90 139.99±3.44 1111.70±27.36

Although we can see improvements in accuracy as the number of Monte Carlo samples increases
from 1 to 10 across all the datasets, there is no significant difference when the number of samples
becomes large, like 75 vs 100 vs 125. Unsurprisingly, the increase in inference time is observed as
the number of Monte Carlo samples increases. However, given the random deviations across epochs,
the increasing trend is relatively gradual. In our experiments, we fixed it to 100 samples.

E Potential Societal Impacts

As our method is not limited to a specific type of data or model’s architecture, it could be applied
to various multi-class applications that leverage multi-view data such as vision-language learning,
multi-sensor learning, diagnostic classification, scene recognition, and many more. Our method’s
capability of providing uncertainty estimation may gain trust of multi-view/modal deep learning
classifiers from experts in other domains. This would eventually make deep learning models more
reliable and trustworthy in real-world settings. As a long-term impact, this work would also raise
awareness of transparency of deep learning models.

An unintentional risk of our work is undue trust of the estimated uncertainty. Our uncertainty
estimation still has limitations which should be comprehensively studied. Without fully understanding
the source of uncertainty, deploying the model to safety-critical applications may result in subsequent
risks. We encourage researchers to beware of the model’s behaviors in different settings.

References
[1] A. Dempster. Upper and lower probabilities induced by a multi- valued mapping. Annals of

Mathematical Statistics, 38:325–339, 1967.

[2] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel,
P. Jung, R. Roscher, et al. A survey of uncertainty in deep neural networks. arXiv preprint
arXiv:2107.03342, 2021.

[3] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks. In
D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 1321–1330. PMLR,
06–11 Aug 2017.

13

[4] Z. Han, C. Zhang, H. Fu, and J. T. Zhou. Trusted multi-view classification. In International
Conference on Learning Representations, 2021.

[5] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Representa-
tions, 2019.

[6] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and
Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[7] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

[8] J. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax Weiss, and B. Lakshminarayanan. Simple and
principled uncertainty estimation with deterministic deep learning via distance awareness. In
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 7498–7512. Curran Associates, Inc., 2020.

[9] A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá,
Z. Ghahramani, and J. Hensman. GPflow: A Gaussian process library using TensorFlow.
Journal of Machine Learning Research, 18(40):1–6, apr 2017.

[10] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

14

	Proofs and Derivations
	Detailed Experimental Settings and Results
	Synthetic Dataset Experiment
	Robustness to Noise Experiment
	OOD Samples Detection Experiment

	Parameter Sensitivity of MGP
	Label Transformation on In-domain Accuracy
	Label Transformation on In-domain ECE
	Label Transformation on OOD AUROC
	Number of Inducing Points on Training Time
	Number of Inducing Points on Testing Time
	Number of Inducing Points on In-domain Accuracy
	Number of Inducing Points on In-domain ECE
	Number of Inducing Points on OOD AUROC

	Integral Approximation
	Potential Societal Impacts

