
A Additional experiments

Figure 5 and 6 plot the same phenomena as Figure 2 and 3. The only difference is that they strictly
follows the setting described in Section 2 where the training data and test data has been normalized to
∥x∥ = 1, and there’s no bias term when initializing the neural network linear layer to consist of our
problem setup. For each experimental setting (i.e, for each value of d, C0, and m), we report results
averaged over 5 independent random runs.

Figure 5: Normalize data ∥x∥ = 1. Smallest size of perturbation to switch the prediction (left), norm
of the gradient after training the neural networks (middle), smallest step size (right), as a function of
input dimension d for fix C0 = 10 with different width m.

Figure 6: Normalize data ∥x∥ = 1. Smallest size of perturbation to switch the prediction (left), norm
of the gradient after training the neural networks (middle), smallest step size (right), as a function of
input dimension d for fix m = 105 with different C0.

Figure 7 is the histogram of smallest size of perturbation to switch the prediction, the norm of the
gradient after training the neural networks, and the step size when d = 784,m = 105, C0 = 10.
The histogram exhibits a Gaussian distribution, and the step size to flip the prediction is small. (η
concentrates around 0.045.)

Figure 7: Histogram of smallest size of perturbation to switch the prediction, the norm of the gradient
after training the neural networks, and the step size when d = 784,m = 105, C0 = 10.

In Algorithm 1, we describe our projected adversarial training algorithm in details. For generating
adversarial example with budget R at each round, we choose learning rate α = 2.5×R/100 with
T2 = 100. This is a common choice, which is first introduced in [Madry et al., 2018]. For updating
the weight matrix, we choose learning rate β = 0.01. We stop when the robust training accuracy is
not increasing.
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Algorithm 1 Projected Adversarial Training
1: Training samples (X, y) = {xi, yi}ni=1. Initialize ws,0 ∼ N(0, Id), as ∼ unif{±1},∀s ∈ [m]

with fixed a. Epochs T1, T2. Learning rate α, β, perturbation budget per sample R. Logistic loss
ℓ. Batch size bs. P∆ is the projection operator onto the set ∆.

2: for t = 1, . . . , T1 do
3: for k = 1, . . . , T2 do
4: X̃ = X + α

∑n
i=1 ∇xiℓ(yif(xi; a,Wt−1))

5: X̃ = PB2,∞(X,R)(X̃) {generate adversarial examples}
6: end for
7: for ⌊ n

bs⌋ rounds do
8: Sample a mini-batch of size bs from (X̃, y) as (x̃ij , yij )

bs
j=1.

9: Wt = Wt−1 − β∇Wt−1

∑bs
j=1 ℓ(yijf(x̃ij ; a,Wt−1))

10: end for
11: Wt = PB2,∞(W0,

C0√
m

)
(Wt) {Project the weight matrix to satisfy lazy regime.}

12: end for
13: return: WT1

B Proof of theorems

Proof of Theorem 3.1. From Lemma B.5, B.7, B.9, we have that

∥∇f(x; a,W)∥ ≥ C ′
1

√
d,

|f(x; a,W)| ≤ C ′
2,

∥∇f(x; a,W)−∇f(x + δ; a,W)∥ ≤ C ′
3

√
d for ∥δ∥ ≤ o(

1√
d
)

We simplify the notation as f(x) = f(x; a,W). Define η̃ = η∥∇f(x)∥2. Without loss of generality,
assume f(x) > 0, let

η̃ = − 2f(x)

1− sup∥δ∥≤ η̃
∥∇f(x)∥

∥∇f(x+δ)∥−∥f(x)∥
∥∇f(x)∥

,

we have for the point x + η̃ ∇f(x)
∥∇f(x)∥2 ,

f(x + η̃
∇f(x)

∥∇f(x)∥2
)

= f(x) +
∫ 1

0

f(x + tη̃
∇f(x)

∥∇f(x)∥2
)′dt (Fundamental theorem of calculus)

= f(x) +
∫ 1

0

η̃
∇f(x)⊤

∥∇f(x)∥2
∇f(x + tη̃

∇f(x)
∥∇f(x)∥2

)dt

= f(x) + η̃ +

∫ 1

0

η̃
∇f(x)⊤

∥∇f(x)∥
(∇f(x + tη̃ ∇f(x)

∥∇f(x)∥2 )−∇f(x))

∥∇f(x)∥
dt

≤ f(x) + η̃ + |η̃|
∫ 1

0

∥∇f(x + tη̃ ∇f(x)
∥∇f(x)∥2 )−∇f(x)∥
∥∇f(x)∥

dt (Cauchy–Schwarz)

≤ f(x) + η̃ + |η̃| sup
δ∈Rd:∥δ∥≤ η̃

∥∇f(x)∥

∥∇f(x + δ)−∇f(x)∥
∥∇f(x)∥

= −f(x) < 0

Note |η̃| = Θ(1) and thus η ≤ O( 1d ), ∥η∇f(x)∥ = ∥η̃ ∇f(x)
∥∇f(x)∥2 ∥ ≤ O( 1√

d
).
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In order to proof the main theorem, we start by giving some standard theorems, which will be used in
later proof.
Theorem B.1 (Berstein’s inequality). Let z1, . . . , zn be independent real-valued random variables.
Assume that there exist positive numbers v and c such that

n∑
i=1

E[z2i ] ≤ v and
n∑

i=1

E[|zi|q] ≤
q!

2
vcq−2 for all integers q ≥ 3.

If S =
∑n

i=1(zi − Ezi), then for all t > 0,

P(S ≥
√
2vt+ ct) ≤ e−t.

We will also use repeatly that

Ez∼N (0,1)[|z|q] ≤ (q − 1)!! ≤ q!

2
, (1)

as well as the following concentration of χ2 random variables: let z1, . . . , zm be i.i.d. standard
Gaussians, then with probability at least 1− γ, one has∣∣∣∣ m∑

s=1

z2s −m

∣∣∣∣ ≤ 4
√

m log(2/γ) (2)

Theorem B.2. (Chernoff’s inequality) If z1, z2, . . . , zN are independent Bernoulli random variables
with parameters µi. Let SN =

∑
i zi and p = ESN =

∑
i µi, then for t > p,

P (SN ≥ t) ≤ exp(−p)

(
ep

t

)t

Theorem B.3. (Theorem 2.26 in Wainwright [2019]) Let z = (z1, z2, . . . , zn) be a vector of i.i.d
standard Gaussian variables, and let f : Rn → R be L-Lipschitz w.r.t. the Euclidean norm. Then we
have

P (|f(z)− Ef(z)| ≥ t) ≤ 2e−
t2

2L2 for all t ≥ 0

In Lemma B.4, we let Sv denote the set of neurons that change sign between weights w0 and w for
the x, S′

v as the set of neurons that change sign between weights w0 and w for the x + δ. We show
that the size of Sv and S′

v is small as long as the weights stay close to initialization.
Lemma B.4. Define the following

Sv :=
{
s
∣∣∃W,W ∈ B2,∞ (W0, V ) ,1[⟨ws, x⟩ > 0] ̸=1[⟨ws,0, x⟩ > 0]

}
S′
v :=

{
s
∣∣∃δ, ∥δ∥ ≤ R ≤ 0.5,∃W,W ∈ B2,∞ (W0, V ) ,1[⟨ws, x + δ⟩ > 0] ̸=1[⟨ws,0, x + δ⟩ > 0]

}
Then with probability at least 1− γ, the following hold:

|Sv| ≤
∣∣∣∣{s∣∣|⟨ws,0, x⟩| ≤ V

}∣∣∣∣ = m∑
s=1

1
[
|⟨ws,0, x⟩| ≤ V

]
≤ V m+

√
m log(1/γ)

2

|S′
v| ≤

∣∣∣∣{s∣∣|⟨ws,0, x + δ⟩|≤V
}∣∣∣∣= m∑

s=1

1
[
|⟨ws,0, x + δ⟩|≤V

]
≤
(
V m+

√
m log(1/γ)

2

)
(1 +R)

Proof of Lemma B.4. Define vs = ws − ws,0. Note that s ∈ Sv implies ∀1 ≤ s ≤ m,∣∣⟨ws,0, x⟩
∣∣ ≤ sup

∥vs∥≤V

∣∣⟨∥ws − ws,0∥, x⟩
∣∣ ≤ sup

∥vs∥≤V

∥vs∥2∥x∥2 ≤ V

Thus we have

E
[
1

m

m∑
s=1

1
[
|⟨ws,0, x⟩| ≤ V

]]
= P

(
|⟨ws,0, x⟩| ≤ V

)
≤ 2V

∥x∥22
√
2π

≤ V,
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where the expectation is with respect to the randomness in initialization, and the inequality holds
since ⟨ws,0, x⟩ is a Gaussian r.v. with variance 1. By Hoeffding inequality, with probability at least
1− γ,

1

m

m∑
s=1

1
[
|⟨ws,0, x⟩| ≤ V

]
≤ E

[
1

m

m∑
s=1

1
[
|⟨ws,0, x⟩| ≤ V

]]
+

√
log(1/γ)

2m
(Hoeffding inequality)

≤ V +

√
log(1/γ)

2m

As a result, with probability at least 1− γ, we arrive at the following upperbound on the size of Sv:

|Sv| ≤
∣∣∣∣{s∣∣|⟨ws,0, x⟩| ≤ V

}∣∣∣∣ = m∑
s=1

1
[
|⟨ws,0, x⟩| ≤ V

]
≤ V m+

√
m log(1/γ)

2

Same way we can bound the size of S′
v . s ∈ S′

v implies ∀1 ≤ s ≤ m,∣∣⟨ws,0, x + δ⟩
∣∣ ≤ sup

∥vs∥≤V,∥δ∥≤R

∣∣⟨vs, x + δ⟩
∣∣ ≤ sup

∥vs∥≤V,∥δ∥≤R

∥vs∥2∥x + δ∥2 ≤ V (1 +R)

Thus we have

E
[
1

m

m∑
s=1

1
[
|⟨ws,0, x + δ⟩| ≤ V (1 +R)

]]
= P

(
|⟨ws,0, x + δ⟩| ≤ V (1 +R)

)
≤ V (1 +R),

where the expectation is with respect to the randomness in initialization, and the inequality holds
since ⟨ws,0, x⟩ is a Gaussian r.v. with variance 1. By Hoeffding inequality, with probability at least
1− γ,

1

m

m∑
s=1

1
[
|⟨ws,0, x + δ⟩| ≤ V (1 +R)

]
≤ E

[
1

m

m∑
s=1

1
[
|⟨ws,0, x + δ⟩| ≤ V (1 +R)

]]
+

√
log(1/γ)

2m
(1 +R) (Hoeffding inequality)

≤ V (1 +R) +

√
log(1/γ)

2m
(1 +R)

As a result, with probability at least 1− γ, we arrive at the following upperbound on the size of Sv:

|Sv|≤
∣∣∣∣{s∣∣|⟨ws,0, x + δ⟩|≤V

}∣∣∣∣ = m∑
s=1

1
[
|⟨ws,0, x + δ⟩|≤V

]
≤
(
V m+

√
m log(1/γ)

2

)
(1 +R)

Now we begin our proof. Essentially we want to lower bound ∥∇f(x; a,W)∥, upper bound
|f(x; a,W)| and upper bound ∥∇f(x; a,W) − ∇f(x + δ; a,W)∥. Lemma B.5 gives the upper
bound of |f(x; a,W)| as O(1).
Lemma B.5. For any x, with probability at least 1 − γ, the following holds for all W ∈
B2,∞

(
W0,

C0√
m

)
,

|f(x; a,W)| ≤
√
2 log(2/γ) +

2 log(2/γ)√
m

+ C0

Particularly, there exists C > 0 such that for m ≥ C log(2/γ), we have

|f(x; a,W)| ≤ 2
√

log(2/γ) + C0
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Proof of Lemma B.5. From Bubeck et al. [2021] we know that |f(x; a,W0)| ≤
√
2 log(2/γ) +

2 log(2/γ)√
m

. Now we consider bound |f(x; a,W)− f(x; a,W0)|,

|f(x; a,W)− f(x; a,W0)| ≤ | 1√
m

m∑
s=1

as(σ(w⊤
s x)− σ(w⊤

s,0x))|

≤ 1√
m

m∑
s=1

|σ(w⊤
s x)− σ(w⊤

s,0x)| (Triangle Inequality)

≤
√
m|w⊤

s x − w⊤
s,0x| (σ(·) is 1-Lipschitz.)

≤
√
m∥ws − ws,0∥∥x∥ (∥ws − ws,0∥ ≤ C0√

m
)

≤ C0

Thus,

|f(x; a,W)| = |f(x; a,W0)|+ |f(x; a,W)− f(x; a,W0)| ≤
√
2 log(2/γ) +

2 log(2/γ)√
m

+ C0

In Lemma B.6, we want to calculate the upper bound of the probability that the neuron flips sign due
to (1) perturbation δ; (2) different perturbation δ, δ′ on the data x at weight ws.
Lemma B.6. For any δ such that ∥δ∥ ≤ R ≤ 1

2 ,

P

(
sign(w⊤

s,0x) ̸= sign(w⊤
s,0(x + δ))

)
≤ R

√
2 log(d) +

1

d
(3)

P

(
∃δ′, δ′ ∈ B2(δ, ε), and ∃W,W ∈ B2,∞ (W0, V ) , sign(w⊤

s (x + δ)) ̸= sign(w⊤
s (x + δ′))

)
≤ 2ε

(√
d+ 2

√
d log(2/ε)

)
+ (1 +R+ ε)V (4)

Proof of Lemma B.6. Equation (3) directly follows from Bubeck et al. [2021]. For equation (4), we
have

P

(
∃δ′, δ′ ∈ B2(δ, ε), and ∃W,W ∈ B2,∞ (W0, V ) , sign(w⊤

s (x + δ)) ̸= sign(w⊤
s (x + δ′))

)
≤ P

(
∃δ′, δ′ ∈ B2(δ, ε), and ∃W,W ∈ B2,∞ (W0, V ) , |w⊤

s (δ
′ − δ)| ≥ t

)
+ P

(
∃W,W ∈ B2,∞ (W0, V ) , |w⊤

s (x + δ)| ≤ t

)
(Holds for any threshold t.)

≤ P

(
∃W,W ∈ B2,∞ (W0, V ) , ∥ws∥ ≥ t/ε

)
+ P

(
∃W,W ∈ B2,∞ (W0, V ) , |w⊤

s (x + δ)| ≤ t

)
≤ P

(
∃W,W ∈ B2,∞ (W0, V ) , ∥ws,0∥ ≥ t/ε− ∥ws − ws,0∥

)
+ P

(
∃W,W ∈ B2,∞ (W0, V ) , |w⊤

s,0(x+ δ)| ≤ t+ |(ws − ws,0)
⊤(x + δ)|

)
(Triangle Inequality, pick t = ε

(√
d+ 4

√
d log(2/ε) + V

)
)

≤ P

(
∥ws,0∥≥

√
d+4

√
d log(2/ε)

)
+P

(
|w⊤

s,0(x + δ)|≤ε

√
d+4

√
d log(2/ε)+(1+R+ε)V

)
(w⊤

s,0(x + δ) ∼ N (0, σ2) with σ2 ≥ 1
2 since ∥δ∥ ≤ 1

2 )

≤ ε+ ε

√
d+ 4

√
d log(2/ε) + (1 +R+ ε)V (Using equation (2).)

= 2ε(
√
d+ 2

√
d log(2/ε)) + (1 +R+ ε)V
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Lemma B.7 gives lower bound on ∥∇f(x; a,W)∥ ≥ Ω(
√
d).

Lemma B.7. For any x, with probability at least 1 − γ, the following holds for all W ∈
B2,∞

(
W0,

C0√
m

)
,

∥∇f(x; a,W)∥ ≥
(
1

2
−
(√2 log(4/γ)

m
+

log(4/γ)

m

))1/2(
d− 5

√
d log(8/γ)

)1/2

− C0 −

√
1√
m
(C0 +

√
log(4/γ)

2
)

(
d+ 4

√
d log(8m/γ)

)1/2

Particularly, there exists C > 0 such that for m ≥ C log(4/γ) and d ≥ C log(8m/γ)
m , we have

∥∇f(x; a,W)∥ ≥ 1

4

√
d

Proof of Lemma B.7. Follow the process of Bubeck et al. [2021], let P = Id − xx⊤ be the projection
on the orthogonal complement of the span of x. We have ∥∇f(x; a,W)∥ ≥ ∥P∇f(x; a,W)∥. Thus
we have,

∥∇f(x; a,W)∥ ≥ ∥P∇f(x; a,W)∥
= ∥P∇f(x; a,W0) + P∇f(x; a,W)− P∇f(x; a,W0)∥
≥ ∥P∇f(x; a,W0)∥ − ∥P∇f(x; a,W)− P∇f(x; a,W0)∥

(5)

Since asPws,0 is distributed as N (0, Id−1), denote z := asPws,0, we have

P∇f(x; a,W0) =
1√
m

m∑
s=1

asPws,0σ
′(w⊤

s,0x)
(d)
=

(√√√√ 1

m

m∑
s=1

σ′(w⊤
s,0x)2

)
z where z ∼ N (0, Id−1)

where
(d)
= means equal in distribution.

Using (2), we have with probability at least 1− γ

∥z∥2 ≥ d− 1− 4
√
d log(2/γ) ≥ d− 5

√
d log(2/γ) (d ≥ 1, γ < 2/e)

Apply Bernstein’s inequality with v = m, c = 1, we have with probability at least 1− γ,

1

m

m∑
s=1

σ′(w⊤
s,0x)2 ≥ EX∼N (0,1)[|σ′(X)|2]−

(√
2 log(1/γ)

m
+

log(1/γ)

m

)

=
1

2
−

(√
2 log(1/γ)

m
+

log(1/γ)

m

)

Thus we can get

∥P∇f(x; a,W0)∥ ≥
(
1

2
−
(√2 log(2/γ)

m
+

log(2/γ)

m

))1/2(
d− 5

√
d log(4/γ)

)1/2
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Now we start upper bound ∥P∇f(x; a,W)− P∇f(x; a,W0)∥. Note that

∥P∇f(x; a,W)− P∇f(x; a,W0)∥

= ∥ 1√
m

m∑
s=1

asP(wsσ
′(w⊤

s x)− ws,0σ
′(w⊤

s,0x))∥

≤ ∥ 1√
m

m∑
s=1

asP(wsσ
′(w⊤

s x)− ws,0σ
′(w⊤

s x))∥+ ∥ 1√
m

m∑
s=1

asPws,0(σ
′(w⊤

s x)− σ′(w⊤
s,0x))∥

≤ ∥ 1√
m

m∑
s=1

as(wsσ
′(w⊤

s x)− ws,0σ
′(w⊤

s x))∥

+ sup
∀s∈[m],vs∈Rd,

∥vs∥≤ C0√
m

∥ 1√
m

m∑
s=1

asPws,0(σ
′((ws,0 + vs)⊤x)−σ′(w⊤

s,0x))∥

≤
√
m∥ws − ws,0∥+ sup

∀s∈[m],vs∈Rd,

∥vs∥≤ C0√
m

∥ 1√
m

m∑
s=1

asPws,0(σ
′((ws,0 + vs)⊤x)− σ′(w⊤

s,0x))∥

≤ C0 + sup
∀s∈[m],vs∈Rd,

∥vs∥≤ C0√
m

∥ 1√
m

m∑
s=1

asPws,0(σ
′((ws,0 + vs)⊤x)− σ′(w⊤

s,0x))∥ (6)

Now we start bounding the second term of equation (6). We have that with probability at least 1− γ,

sup
∀s∈[m],vs∈Rd,

∥vs∥≤ C0√
m

1√
m

m∑
s=1

asPws,0(σ
′((ws,0 + vs)⊤x)− σ′(w⊤

s,0x))

(d)
= sup

∀s∈[m],vs∈Rd,

∥vs∥≤ C0√
m

(√√√√ 1

m

m∑
s=1

(σ′((ws,0 + vs)⊤x)− σ′(w⊤
s,0x))2

)
z (z := asPws,0 ∼ N(0, Id−1))

=

(√√√√√√ 1

m

m∑
s=1

sup
∀s∈[m],vs∈Rd,

∥vs∥≤ C0√
m

(σ′((ws,0 + vs)⊤x)− σ′(w⊤
s,0x))2

)
z

=

√
1

m
|Sv| · z (By the definition of Sv in Lemma B.4 with V = C0√

m
)

≤

√
1√
m
(C0 +

√
log(1/γ)

2
) · z (7)

Using equation (2), we see that with probability at least 1− γ, one has for all 1 ≤ s ≤ m,

∥z∥ = ∥asPws,0∥ ≤
√
d+ 4

√
d log(2m/γ)

Thus follow from equation (6), we have

∥P∇f(x; a,W)− P∇f(x; a,W0)∥ ≤ C0 +

√
1√
m
(C0 +

√
log(2/γ)

2
)

√
d+ 4

√
d log(4m/γ)
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And as a result, with probability at least 1− γ

∥∇f(x; a,W)∥ ≥
(
1

2
−
(√2 log(4/γ)

m
+

log(4/γ)

m

))1/2(
d− 5

√
d log(8/γ)

)1/2

− C0 −

√
1√
m
(C0 +

√
log(4/γ)

2
)

√
d+ 4

√
d log(8m/γ) ≥ Ω(

√
d)

Now we start bounding ∥∇f(x; a,W)−∇f(x + δ; a,W)∥. In order to prove Lemma B.9, we will
leverage the fact that for any h ∈ Rd, we have ∥h∥ = supr∈Sd−1 r · h. We first start a lemma with
fixed r, δ to prove Lemma B.8, then use the ε-net argument to prove Lemma B.9.

Lemma B.8. Fix r ∈ Sd−1, and δ ∈ Rd such that ∥δ∥ ≤ R ≤ C1√
d

, C1 is a constant. For any x, with

probability at least 1− γ, the following holds for all W ∈ B2,∞

(
W0,

C0√
m

)
,

1√
m

m∑
s=1

as(ws · r)(σ′(w⊤
s x)− σ′(w⊤

s (x + δ)))

≤ 2
√

log(4/γ)

((
4R

√
log(d)

)1/4
+

√
log(4/γ)

m

)
+ C0

+ 3

√
1√
m
(C0+

√
log(4/γ)

2
)

√
d+4

√
d log(8m/γ)+5(C0+

√
log(4/γ)) ·

√
log(4m/γ)

Proof of Lemma B.8. Let Xs,0 = as(ws,0 · r)(σ′(w⊤
s,0x) − σ′(w⊤

s,0(x + δ))), Xs = as(ws ·
r)(σ′(w⊤

s x)−σ′(w⊤
s (x+δ))). We have E[Xs,0] = 0, and equation (1) gives us E[|ws,0 ·r|2q] ≤ (2q)!

2 .
Thus, we have

E[|Xs,0|q] ≤ E[|ws,0 · r|q|σ′(w⊤
s,0x)− σ′(w⊤

s,0(x + δ))|q]

≤
√
E[|ws,0 · r|2q] · P (sign(w⊤

s,0x) ̸= sign(w⊤
s,0(x + δ))) (Using equation (3))

≤
√

(2q)!

2
·
√

R
√
2 log(d) +

1

d

≤ q!

2
2q ·

√
2R

√
2 log(d)

E[|Xs,0|2] ≤
√
E[(ws,0 · r)4] · P (sign(w⊤

s,0x) ̸= sign(w⊤
s,0(x + δ)))

≤ 2

√
R
√
2 log(d) (EX∼N (0,1)[|X|4] ≤ 3!! ≤ 4)

≤ 4

√
R
√
log(d)

Using Theorem B.1 with v = 4m
√

R
√

log(d), c = 2, we have

1√
m

m∑
s=1

Xs,0 ≤

√
8

√
R
√

log(d) log(1/γ) +
2 log(1/γ)√

m

= 2
√
log(1/γ)

((
4R

√
log(d)

)1/4
+

√
log(1/γ)

m

)
Now we start bounding | 1√

m

∑m
s=1(Xs − Xs,0)|. In fact, here we no longer fix r, δ and directly

bound | sup
r∈Sd−1,δ∈Rd,∥δ∥≤C1√

d

1√
m

∑m
s=1(Xs −Xs,0)|.
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∣∣∣∣ sup
r∈Sd−1,

δ∈Rd,∥δ∥≤C1√
d

1√
m

m∑
s=1

(Xs −Xs,0)

∣∣∣∣
=

∣∣∣∣ sup
r∈Sd−1,

δ∈Rd,∥δ∥≤C1√
d

1√
m

m∑
s=1

as

(
w⊤

s r(σ
′(w⊤

s x)−σ′(w⊤
s (x+δ)))−w⊤

s,0r(σ
′(w⊤

s,0x)−σ′(w⊤
s,0(x+δ)))

)∣∣∣∣
≤

∣∣∣∣ sup
r∈Sd−1,

δ∈Rd,∥δ∥≤C1√
d

1√
m

m∑
s=1

as

(
w⊤

s r(σ
′(w⊤

s x)−σ′(w⊤
s (x+δ)))−w⊤

s,0r(σ
′(w⊤

s x)−σ′(w⊤
s (x+δ)))

)∣∣∣∣
+

∣∣∣∣ sup
r∈Sd−1,

δ∈Rd,∥δ∥≤C1√
d

1√
m

m∑
s=1

as

(
w⊤

s,0r(σ
′(w⊤

s x)−σ′(w⊤
s (x+δ)))−w⊤

s,0r(σ
′(w⊤

s,0x)−σ′(w⊤
s,0(x+δ)))

)∣∣∣∣
(Triangle Inequality)

≤ 1√
m

m∑
s=1

∥ws−ws,0∥|σ′(w⊤
s x)−σ′(w⊤

s (x+δ))|+
∥∥∥∥ 1√

m

m∑
s=1

asws,0(σ
′(w⊤

s x)−σ′(w⊤
s,0x))

∥∥∥∥
+

∥∥∥∥ sup
δ∈Rd,∥δ∥≤C1√

d

1√
m

m∑
s=1

asws,0(σ
′(w⊤

s (x + δ))− σ′(w⊤
s,0(x + δ)))

∥∥∥∥
(Cauchy-Schwarz, triangle Inequality)

≤ C0 +

∥∥∥∥ 1√
m

m∑
s=1

asws,0(σ
′(w⊤

s x)− σ′(w⊤
s,0x))

∥∥∥∥ (8)

+

∥∥∥∥ sup
δ∈Rd,∥δ∥≤C1√

d

1√
m

m∑
s=1

asws,0(σ
′(w⊤

s (x + δ))− σ′(w⊤
s,0(x + δ)))

∥∥∥∥ (9)

Define P = Id− xx⊤ as the projection on the orthogonal complement of the span of x. For the second
term of equation (9), we have∥∥∥∥ 1√

m

m∑
s=1

asws,0(σ
′(w⊤

s x)− σ′(w⊤
s,0x))

∥∥∥∥
≤

∥∥∥∥ 1√
m

m∑
s=1

asPws,0(σ
′(w⊤

s x)− σ′(w⊤
s,0x))

∥∥∥∥+

∥∥∥∥ 1√
m

m∑
s=1

asxx⊤ws,0(σ
′(w⊤

s x)− σ′(w⊤
s,0x))

∥∥∥∥
≤

∥∥∥∥ sup
∀s∈[m],vs∈Rd,

∥vs∥≤ C0√
m

1√
m

m∑
s=1

asPws,0(σ
′((ws,0 + vs)⊤x)− σ′(w⊤

s,0x))
∥∥∥∥

+
1√
m

m∑
s=1

∥xx⊤ws,0∥ · |σ′(w⊤
s x)− σ′(w⊤

s,0x)|

≤
∥∥∥∥ sup
∀s∈[m],vs∈Rd,

∥vs∥≤ C0√
m

1√
m

m∑
s=1

asPws,0(σ
′((ws,0+vs)⊤x)−σ′(w⊤

s,0x))
∥∥∥∥+ 1√

m
|Sv| max

1≤s≤m
∥xx⊤ws,0∥

(By the definition of Sv in Lemma B.4, Hölder’s inequality)

≤

√
1√
m
(C0 +

√
log(4/γ)

2
)

√
d+ 4

√
d log(8m/γ) + (C0 +

√
log(4/γ)) ·

√
log(4m/γ)

(Equation (7), x⊤ws,0 ∼ N(0, 1))
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where the last line holds because with probability at least 1 − γ, one has for all 1 ≤ s ≤ m,
|x⊤ws,0| ≤

√
log(m/γ).

Define P′ = Id − (x+δ)(x+δ)⊤

∥x+δ∥2 as the projection on the orthogonal complement of the span of x + δ.
We bound the third term of equation (9) the same way as follows.∥∥∥∥ sup

δ∈Rd,∥δ∥≤C1√
d

1√
m

m∑
s=1

asws,0(σ
′(w⊤

s (x + δ))− σ′(w⊤
s,0(x + δ)))

∥∥∥∥
≤

∥∥∥∥ sup
δ∈Rd,∥δ∥≤C1√

d

1√
m

m∑
s=1

asP
′ws,0(σ

′(w⊤
s (x + δ))− σ′(w⊤

s,0(x + δ)))

∥∥∥∥
+

∥∥∥∥ sup
δ∈Rd,∥δ∥≤C1√

d

1√
m

m∑
s=1

as
(x + δ)(x + δ)⊤

∥x + δ∥2
ws,0(σ

′(w⊤
s (x + δ))− σ′(w⊤

s,0(x + δ)))

∥∥∥∥
≤

∥∥∥∥ sup
δ∈Rd,∥δ∥≤C1√

d

∀s∈[m],vs∈Rd,∥vs∥≤ C0√
m

1√
m

m∑
s=1

asP
′ws,0(σ

′((ws,0 + vs)⊤(x + δ))− σ′(w⊤
s,0(x + δ)))

∥∥∥∥
+ sup

δ∈Rd,∥δ∥≤C1√
d

1√
m

m∑
s=1

|σ′(w⊤
s (x + δ))− σ′(w⊤

s,0(x + δ))|
∥∥∥∥ (x + δ)(x + δ)⊤

∥x + δ∥2
ws,0

∥∥∥∥
≤

√√√√√√ sup
∀s∈[m],vs∈Rd,

∥vs∥≤ C0√
m

1

m

m∑
s=1

(σ′((ws,0 + vs)⊤(x + δ))− σ′(w⊤
s,0(x + δ))) sup

δ∈Rd,∥δ∥≤C1√
d

∥z(δ)∥

(Define z(δ) := asP′ws,0 ∼ N(0, Id−1))

+ sup
δ∈Rd,∥δ∥≤C1√

d

1√
m
|S′

v|
∥∥∥∥ (x + δ)(x + δ)⊤

∥x + δ∥2
ws,0

∥∥∥∥ (By definition of S′
v in Lemma B.4)

≤
√

1

m
|S′

v| · sup
δ∈Rd,∥δ∥≤C1√

d

∥z(δ)∥

+
1√
m
|S′

v| · 2 max
1≤s≤m

∣∣∣∣x⊤ws,0 + δ⊤ws,0

∣∣∣∣ (∥z(δ)∥ ≤ ∥ws,0∥)

≤

√
1 +R√

m
(C0 +

√
log(4/γ)

2
)

√
d+ 4

√
d log(8m/γ)

+ (C0 +
√
log(4/γ))(1 +R) · 2

(√
log(4m/γ) +

√
d+ 4

√
d log(8m/γ)
√
d

)
(R ≤ C1√

d
, d > log(m/γ) log(1/γ))

≤

√
2√
m
(C0+

√
log(4/γ)

2
)

√
d+4

√
d log(8m/γ)+4(C0+

√
log(4/γ))

(√
log(4m/γ)+3

)
As a result, we get

1√
m

m∑
s=1

Xs ≤
1√
m

m∑
s=1

Xs,0 + | 1√
m

m∑
s=1

(Xs −Xs,0)|

≤ 2
√
log(4/γ)

((
4R

√
log(d)

)1/4
+

√
log(4/γ)

m

)
+ C0

+ 3

√
1√
m
(C0 +

√
log(4/γ)

2
)

√
d+ 4

√
d log(8m/γ)
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+ 5(C0 +
√
log(4/γ))

(√
log(4m/γ) +3

)

Lemma B.9. Let ∥δ∥ ≤ R ≤ C1√
d
, C̄ = max{1, C0},m ≥ d2.4. Then, for any x, with probability at

least 1− γ, the following holds for all W ∈ B2,∞

(
W0,

C0√
m

)
,

sup
r∈Sd−1,

δ∈Rd:∥δ∥≤R

1√
m

m∑
s=1

as(ws · r)(σ′(w⊤
s x)− σ′(w⊤

s (x + δ))) ≤ 9

(
C1d

2 log2(md)

√
log(d)

d

)1/4

+
15d log(md)√

m
+ 327C̄C0d

0.25

provided that d ≥ log(4/γ)2. Particularly, for any c > 0, there exists C,C ′ such that if

log2(md)
√

log(d)
d ≤ C, d log(md)√

m
≤ C ′

√
d, then we have,

sup
r∈Sd−1,

δ∈Rd,∥δ∥≤R

∥∇f(x; a,W)−∇f(x + δ; a,W)∥ ≤ c
√
d

The above can realize when m ≤ O(exp(d0.24))

Proof. Define Φ(r, δ) = 1√
m

∑m
s=1 as(ws · r)(σ′(w⊤

s x) − σ′(w⊤
s (x + δ))), and Nε an ε-net for

Ω = {(r, δ), ∥r∥ = 1, ∥δ∥ ≤ R}. In Lemma B.8 we bound Φ(r, δ) for a fixed r and δ, here we
bounded it uniformly over Ω. We know that |Nε| ≤ (10/ε)2d. Using Lemma B.8, we obtain with
probability at least 1− γ,

sup
(r,δ)∈Ω

Φ(r, δ) ≤ sup
(r,δ)∈Nε

Φ(r, δ) + sup
(r,δ),(r′,δ′)∈Ω:∥r−r′∥+∥δ−δ′∥≤ε

|Φ(r, δ)− Φ(r′, δ′)|

≤ 2
√
2d log(10/ε)+log(4/γ)

((
4R

√
log(d)

)1/4
+

√
2d log(10/ε)+log(4/γ)

m

)

+ C0 + 3

√
1√
m
(C0 +

√
log(4/γ)

2
)

√
d+ 4

√
d log(8m/γ)

+ 5(C0+
√
log(4/γ))·

(√
log(4m/γ)+3

)
+ sup
(r,δ),(r′,δ′)∈Ω:

∥r−r′∥+∥δ−δ′∥≤ε

|Φ(r, δ)−Φ(r′, δ′)|

(10)
For r, r′, one has

|Φ(r, δ)− Φ(r′, δ)| ≤ ∥r − r′∥√
m

m∑
s=1

∥ws∥ ≤ ∥r − r′∥√
m

m∑
s=1

(∥ws,0∥+
C0√
m
)

Using (2), we know with probability at least 1− γ, one has for all s ∈ [m],

∥ws,0∥2 ≤ d+ 4
√

d log(m/γ),

so that in this event we have,

|Φ(r, δ)− Φ(r′, δ)| ≤ ∥r − r′∥
(√

md+ 4m
√
d log(m/γ) + C0

)
On the other hand, for δ, δ′, we write

|Φ(r, δ)− Φ(r, δ′)|

≤ 1√
m

∣∣∣∣ m∑
s=1

1{sign(w⊤
s (x + δ)) > sign(w⊤

s (x + δ′))}asws · r
∣∣∣∣
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+
1√
m

∣∣∣∣ m∑
s=1

1{sign(w⊤
s (x + δ)) < sign(w⊤

s (x + δ′))}asws · r
∣∣∣∣

≤ 1√
m

∥∥∥∥ sup
∀s∈[m],

vs∈Rd,∥vs∥≤V

m∑
s=1

1{sign((ws,0 + vs)⊤(x + δ)) > sign((ws,0 + vs)⊤(x + δ′))}asws

∥∥∥∥
+

1√
m

∥∥∥∥ sup
∀s∈[m],

vs∈Rd,∥vs∥≤V

m∑
s=1

1{sign((ws,0 + vs)⊤(x + δ)) < sign((ws,0 + vs)
⊤(x + δ′))}asws

∥∥∥∥

Letting Xs(δ) = 1{∃δ′ : ∥δ − δ′∥ ≤ ε and ∃vs ∈ Rd, ∥vs∥ ≤ V, sign((ws,0 + vs)⊤(x + δ)) ̸=
sign((ws,0 + vs)⊤(x + δ′))}, we now control with exponentially high probability

∑m
s=1 Xs(δ).

By (4) in Lemma B.6, we know that Xs(δ) is a Bernoulli of parameter at most p = 2ε(
√
d +

2
√

d log(2/ε)) + (1 +R+ ε)V . Using Theorem B.2 and apply a union bound, we have

P

(
∃(r, δ) ∈ Nε :

m∑
s=1

Xs(δ) ≥ k

)
≤

(
10

ε

)2d

exp(−pm)

(
epm

k

)k

:= g(p)

We would like g(p) ≤ γ. Since
√
ε(1 + 2

√
log(2/ε)) ≤ 4ε3/8 holds for ε ∈ (0, 1), we keep upper

bound p ≤ 8
√
dε7/8 + 3V . Note that p ≤ k

m to make sure g(p) increases as p increases. Choose
ε = m−4/7d−4/7, V = C0√

m
, C̄ = max{C0, 1}, k = 44C̄

√
m, with m ≥ 58,m ≥ d2.4, we have

log g(8
√
dε7/8+

3C0√
m
) = −pm+ 2d log

(
10

ε

)
+ 44C̄

√
m log

(
epm

44C̄
√
m

)
(Here p = 8

√
dε7/8 + 3C0√

m
≤ 11C̄√

m
)

= −(8
√
dε7/8+

3C0√
m
)m+2d log(10m4/7d4/7)+44C̄

√
m log

(
11eC̄

√
m

44C̄
√
m

)
≤ −8

√
m+ 2.3d log(md) (m ≥ 58)

≤ −8
√
m+ 7

√
m (m ≥ d2.4 =⇒

√
m ≥ 0.33d log(md))

≤ −
√
m

≤ log(γ)

The last line holds for m ≥ d2.4 and d ≥ log(4m/γ)2 ≥ log(4/γ)2.

By the concentration of Lipschitz functions of Gaussians (Theorem B.3) and a union bound, we have

P

(
∃S ∈ [m], |S| ≤ 44C̄

√
m,

∥∥∥∥ 1√
m

∑
s∈S

asws,0

∥∥∥∥ ≥
√

|S|
m

(
√
d+ t)

)
≤ m44C̄

√
me−

t2

2

By setting t =
√
88C̄

√
m log(m) + 2 log( 8γ ), we get that with probability at least 1− γ/8,

∀S ⊂ [m], |S| ≤ 44C̄
√
m :

∥∥∥∥ 1√
m

∑
s∈S

asws,0

∥∥∥∥≤
√

44C̄√
m

√
88C̄

√
m log(m)+2 log(

8

γ
)+

√
44C̄d√

m
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∀S ⊂ [m], |S| ≤ 44C̄
√
m :

∥∥∥∥ sup
vs∈Rd,∥vs∥≤ C0√

m

1√
m

∑
i∈S

asws

∥∥∥∥
≤

∥∥∥∥ 1√
m

∑
i∈S

asws,0

∥∥∥∥+

∥∥∥∥ sup
vs∈Rd,∥vs∥≤ C0√

m

1√
m

∑
i∈S

asvs

∥∥∥∥
≤

√
44C̄√
m

√
88C̄

√
m log(m) + 2 log(

8

γ
) +

√
44C̄d√

m
+

44C̄C0√
m

≤ 113C̄C0

√
log(m) +

2√
m

log(
8

γ
)

Note that for all (r, δ) ∈ N , ∥δ − δ′∥ ≤ ε,

sup
vs∈Rd,∥vs∥≤ C0√

m

1{sign((ws,0 + vs)⊤(x + δ)) < sign((ws,0 + vs)⊤(x + δ′))} ≤ Xs(δ)

sup
vs∈Rd,∥vs∥≤ C0√

m

1{sign((ws,0 + vs)⊤(x + δ)) > sign((ws,0 + vs)⊤(x + δ′))} ≤ Xs(δ)

With probability at least 1−γ, we have for all δ, δ′, r, r′ with ∥δ−δ′∥ ≤ m−4/7d−4/7 and ∥r−r′∥ ≤
m−4/7d−4/7,

|Φ(r, δ)− Φ(r′, δ)| ≤ m−4/7d−4/7

(√
md+ 4m

√
d log(m/γ) + C0

)
|Φ(r, δ)− Φ(r, δ′)| ≤ 226C̄C0

√
log(m) +

2√
m

log(
8

γ
)

Combining this with (10) we obtain with probability at least 1− γ,

sup
(r,δ)∈Ω

Φ(r, δ)

≤ 2
√
2d log(10m4/7d4/7)+log(4/γ)

((
4R

√
log(d)

)1/4
+

√
2d log(10m4/7d4/7)+log(4/γ)

m

)

+ C0 + 3

√
1√
m
(C0 +

√
log(4/γ)

2
)

√
d+ 4

√
d log(8m/γ)

+ 5(C0+
√
log(4/γ)) ·

(√
log(4m/γ)+3

)
+m−4/7d−4/7

(√
md+4m

√
d log(m/γ)+C0

)
+ 226C̄C0

√
log(m) +

2√
m

log(
8

γ
)

≤ 6
√
d log(md)

(
(4R

√
log(d))1/4+

√
6d log(md)

m

)
+50d0.25+227C̄C0

√
log(m)+

2√
m

log(
8

γ
)

≤ 9

(
C1d

2 log2(md)

√
log(d)

d

)1/4

+
15d log(md)√

m
+ 327C̄C0d

0.25 (R ≤ C1√
d

)

= o(
√
d) (holds when log2(md)

√
log(d)

d = o(1), d log(md)√
m

= o(
√
d) =⇒ m ≤ O(exp(d0.24)))
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Proof of Corollary 3.2. From Theorem 3.1, we have that for any point x ∈ Sd−1, with probability at
least 1−γ, there exists an adversarial example for the neural network, with parameters (W, a), at x for
perturbation size R. Thus, with probability at least 1− γ, the robust error of W at x with perturbation
R is one: ℓR(W; x, y) = 1. This gives us that EW[inf

W∈B2,∞

(
W0,

C0√
d

) ℓR(W; x, y)] ≥ 1− γ. From

Markov’s inequality,

P

 inf
W∈B2,∞

(
W0,

C0√
d

)LR(W) < 0.9

 = P

1− inf
W∈B2,∞

(
W0,

C0√
d

)LR(W) > 0.1


≤ 10EW

1− inf
W∈B2,∞

(
W0,

C0√
d

)LR(W)


= 10ExEW

1− inf
W∈B2,∞

(
W0,

C0√
d

) ℓR(W; x, y)


≤ 10 sup

x
EW

1− inf
W∈B2,∞

(
W0,

C0√
d

) ℓR(W; x, y)


≤ 10γ

where in the second equality we swap the expectations using Fubini’s theorem.
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