A Additional experiments

Figure 5 and 6 plot the same phenomena as Figure 2 and 3. The only difference is that they strictly
follows the setting described in Section 2 where the training data and test data has been normalized to
||x]| = 1, and there’s no bias term when initializing the neural network linear layer to consist of our
problem setup. For each experimental setting (i.e, for each value of d, Cy, and m), we report results
averaged over 5 independent random runs.
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Figure 5: Normalize data ||x|| = 1. Smallest size of perturbation to switch the prediction (left), norm
of the gradient after training the neural networks (middle), smallest step size (right), as a function of
input dimension d for fix Cy = 10 with different width m.
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Figure 6: Normalize data ||x|| = 1. Smallest size of perturbation to switch the prediction (left), norm
of the gradient after training the neural networks (middle), smallest step size (right), as a function of
input dimension d for fix m = 10° with different Cy.

Figure 7 is the histogram of smallest size of perturbation to switch the prediction, the norm of the
gradient after training the neural networks, and the step size when d = 784, m = 10°,Cy = 10.
The histogram exhibits a Gaussian distribution, and the step size to flip the prediction is small. (5
concentrates around 0.045.)
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Figure 7: Histogram of smallest size of perturbation to switch the prediction, the norm of the gradient
after training the neural networks, and the step size when d = 784, m = 10°, Cy = 10.

In Algorithm 1, we describe our projected adversarial training algorithm in details. For generating
adversarial example with budget R at each round, we choose learning rate « = 2.5 x R/100 with
T5 = 100. This is a common choice, which is first introduced in [Madry et al., 2018]. For updating
the weight matrix, we choose learning rate 8 = 0.01. We stop when the robust training accuracy is
not increasing.
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Algorithm 1 Projected Adversarial Training

1: Training samples (X,y) = {x;, y;}7,. Initialize ws o ~ N(0,14),as ~ unif{£1},Vs € [m]
with fixed a. Epochs 77, T5. Learmng rate «, 3, perturbatlon budget per sample R. Logistic loss
{. Batch size bs. Pa is the projection operator onto the set A.

2: fort=1,...,7T; do

3 for k = 1 , T do

4 X = XJFOéZL 1VX7€(ylf(xi;a,Wt_1))

5: X = Ps, .. (x,r)(X) {generate adversarial examples}

6: end for

7. for | ;- | rounds do

8: Sample a mini-batch of size bs from (X, y) as (X;;, ¥ )?5:1
9: Wi =W, 1 - 8Vw,_, Zs's:l Oy, f(Xi;32,Wi_1))

10:  end for

1: W, = PBQ_QO(WO <o) (W) {Project the weight matrix to satisfy lazy regime. }
12: end for

13: return: Wy

B Proof of theorems

Proof of Theorem 3.1. From Lemma B.5, B.7, B.9, we have that
IV f(x;a, W)[| > C1Vd,
|f(x;a,W)| < Cy,
=)
Vd

We simplify the notation as f(x) = f(x;a, W). Define 7 = n||V f(x)||2. Without loss of generality,
assume f(x) > 0, let

IV f(x:a, W) = V f(x + 832, W)[| < C5/d for ||5]] < o

e 2f(x)
x+38)||— x)|| ?
L= supjsyc o “W(ﬁv}é’x)\\'“ )
we have for the point x + ﬁ%,
. Vi)
f(””uw e
/ fx+tn N7 (( ))|2) dt (Fundamental theorem of calculus)
Vix)" Vf(x)
_ d
f<")+/ s oo
- _VFx)T (Vf(Xthnva(x Hz) Vf(x))
— d
f<")+”+/ MV IV t
1|V el ) — v
< fix +n+ln|/ IV7tx+ nlllé;(X))) fx )”dt (Cauchy—Schwarz)
. [Vf(x+6) = VI
< +7+
Fx)+17 |77|5ew:n:|1\lsp”vﬁ(x>u IV F )]
=—f(x)<0

Note [f]| = ©(1) and thus n < O(3), [V /()| = |77z | < O(L).
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In order to proof the main theorem, we start by giving some standard theorems, which will be used in
later proof.

Theorem B.1 (Berstein’s inequality). Let 21, ..., 2, be independent real-valued random variables.
Assume that there exist positive numbers v and ¢ such that

ZE[zl ] <wvand ZE |2:]7] —ch 2 for all integers ¢ > 3.

If S =3" (2 — Ez), then for all ¢ > 0,
P(S > V2ut +ct) <e?

We will also use repeatly that
|

q:
E..nvonlz?] < (@-DI < X €]
as well as the following concentration of y? random variables: let z1,. .., z,, be ii.d. standard

Gaussians, then with probability at least 1 — -y, one has

m

DE m‘ < 4y/mlog(2/7) )
s=1
Theorem B.2. (Chernoff’s inequality) If 21, 22, . .., 2 are independent Bernoulli random variables

with parameters p;. Let Sy = >, z; and p = ESx = ), u;, then for t > p,

P(Sy > 1) < exp(—p) <ef)t

Theorem B.3. (Theorem 2.26 in Wainwright [2019]) Let z = (21, 22, . . ., 25, ) be a vector of i.i.d
standard Gaussian variables, and let f : R™ — R be L-Lipschitz w.r.t. the Euclidean norm. Then we
have

P(If(z) ~Ef(z)] > t) < 2¢~377 forall ¢ > 0

In Lemma B.4, we let S, denote the set of neurons that change sign between weights w( and w for
the x, S) as the set of neurons that change sign between weights wo and w for the x 4+ 0. We show
that the size of S, and S, is small as long as the weights stay close to initialization.

Lemma B.4. Define the following
Su={s[IW, W € Ba,oc (Wo, V), L[(Ws,x) > 0]#L[{Ws,0,%) > 0]}
Sy:={s|30,|6]| < R < 0.5,3W, W € Bz o (W, V), 1[(ws,x + 8) > 0] #L[(ws0,x + ) > 0]}

Then with probability at least 1 — ~, the following hold:

mlog(1/7)
2

x+5<V}‘ Z]l (W0, X+ 0)| < V] < (Vm+ mlog2(1/7)>(1+R)

Sl < x>|<V}|=Zﬂ[|<ws,o7x>|<v] <Vm+

|5, <

Proof of Lemma B.4. Define vy = wy — W, . Note that s € .S, implies V1 < s < m,

[(Ws0,%)| < sup [([ws = waoll,x)| < sup [[vs]l2f[x[la <V

llvslI<V/ vslI<V

Thus we have

— )

S\H

d

m 2V
D 1[(weo,x)| < V]| = P(|(Ws0,x)| S V) < 15
2 Ix[13
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where the expectation is with respect to the randomness in initialization, and the inequality holds
since (W, o, X) is a Gaussian r.v. with variance 1. By Hoeffding inequality, with probability at least

1—7,
1 i]l“(wg 0, X)| < V]
m s=1 o B
1 & log(1
{ Z (Ws,0,%)| < Vﬂ log(1/7) (Hoeftding inequality)
m “— 2m

<V+ \/Lg?(:n/’y)

As aresult, with probability at least 1 — v, we arrive at the following upperbound on the size of S,:

m

log(1
1S,] < <V =D 1[[(we0,x)| V] < Vm+ %(/7)
s=1
Same way we can bound the size of S). s € S] implies V1 < s < m,
|<w30,x+5>‘ sup ‘(vs,x+5>| sup IVsll2llx + d]l2 < V(1 + R)

lvs[ISViIISII<R vsI<SVilldll<R

Thus we have
1 m
B[ Y 0 [l(ne x4 0 < V4 B = P(waox+ 8] < V4 R) < V4R
s=1

where the expectation is with respect to the randomness in initialization, and the inequality holds
since (W, o, X) is a Gaussian r.v. with variance 1. By Hoeffding inequality, with probability at least
1—7,

%ZWWS,O,XMM <V(1+R)]

s=1

{1 S 1 [[(weo,x +8) < V(L + R)]] 1OgQ(M(l +R)  (Hoeffding inequality)
m m
s=1

<V(+R)+ 71°g2(if”)

(1+R)
As aresult, with probability at least 1 — -, we arrive at the following upperbound on the size of \S,;:

S| <

s||<ws,0,x+(5)|§V}' = §1[|<W570,X+5>|§V] < (Vm+ mlog2(1/'y)>(1 + R)

O

Now we begin our proof. Essentially we want to lower bound ||V f(x;a, W)||, upper bound
|f(x;a, W)| and upper bound ||V f(x;a, W) — Vf(x + §;a,W)||. Lemma B.5 gives the upper
bound of | f(x;a, W)| as O(1).

Lemma B.5. For any x, with probability at least 1 — ~, the following holds for all W &
B2 ,00 (W07 \/*)

xia, W) < V227 + B s ¢

Particularly, there exists C' > 0 such that for m > C'log(2/7), we have

|f(x;a, W)] < 24/log(2/7) + Co
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Proof of Lemma B.5. From Bubeck et al. [2021] we know that |f(x;a, Wo)| < +/2log(2/7) +
%\/%/“’). Now we consider bound | f(x;a, W) — f(x;a, Wo)|,

1 m
|f(x;2,W) = f(x:a, Wo)| < [ —= Y as(o(w]x) = a(wox))|
s=1

1 m
< — lo(w]x) —a(w]x)| (Triangle Inequality)
< Vmlw]x —w/ x| (o(-) is 1-Lipschitz.)
< Vmfws = wiolllIx]| (lws —wsoll < T2
< Co

Thus,
2log(2
i, W] = 1o, Wo) +1xia, W) — flxia Wa) < vZTog2/) + 520 o

O

In Lemma B.6, we want to calculate the upper bound of the probability that the neuron flips sign due
to (1) perturbation J; (2) different perturbation §, ¢’ on the data x at weight w.
Lemma B.6. For any § such that ||6]| < R < 1,
1
P(sign(w;r)ox) # sign(w, o(x + 6))) < R+/2log(d) + 3 3)

P(H(S’, 6" € By(d,¢€), and IW, W € By o (Wo, V), sign(w, (x + §)) # sign(w/ (x + (5’)))
< 25(\/g+2\/dlog(2/5)> +(1+R+e)V 4)

Proof of Lemma B.6. Equation (3) directly follows from Bubeck et al. [2021]. For equation (4), we
have

P(EI(S’, 8" € By(d,¢), and IW, W € By o (Wo, V), sign(w, (x + 8)) # sign(w,] (x + 5’)))
< P(Elél,él € By(6,¢), and IW, W € By oo (W, V), |w] (' — )| > t)
+P <EIW, W € Byoo (Wo, V), W] (x4 6)| < t) (Holds for any threshold ¢.)

< P(HW,W < 62700 (Wo, V) s HWSH > t/E) + P(HW,W S BQ)OO (Wo,V) s ‘WST(X + (S)l < t)

< P(HW,W € By (Wo, V) , HW5,0| > t/E - ||Ws - W8’0|>
; P(aw,w € Bypoo (Wo, V), [Wlg(@ + 8)] < £+ |(Ws — Wao) T (x + 8)]

(Triangle Inequality, pick t = € <\/d + 44/dlog(2/e) + V))
< P(||ws,o| > \/d+4\/d log(Q/S)) +P<|w;fo(x +6)|<ey/d+4 dlog(2/e)+(1+R+5)V>

(W o(x +0) ~ N(0,0?) with 0 > § since ||6]| < 3)

<e+ e\/d +44/dlog(2/e) + (1 + R+¢)V (Using equation (2).)
= 2(Vd +2v/dlog(2/e)) + (1 + R+¢)V
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Lemma B.7 gives lower bound on ||V f(x;a, W)|| > Q(/d).
Lemma B.7. For any x, with probability at least 1 — ~, the following holds for all W &

B2,s0 <W07 %),

5 o 1/2 1/2
||Vf<xaw>||>(1 (/22 1g(“”))) (d—5 dlog@/w)

m

o 1/2
_CO_\/\F 1g4/7 (d—|—4\/dlog8m/v>

Particularly, there exists C' > 0 such that for m > C'log(4/~) and d > C M , we have

IV f(x;2, W) > im

Proof of Lemma B.7. Follow the process of Bubeck et al. [2021],let P = I; — xx " be the projection
on the orthogonal complement of the span of x. We have ||V f(x;a, W)| > |[PV f(x;a, W)||. Thus
we have,

IV f(x;a,W)[| > [PV f(x;a, W)
= [PV f(x;a,Wo) + PV f(x;a, W) — PV f(x;2, Wo)|| (5)
> [PV f(x;a, Wo)|| — [PV f(x;a, W) — PV f(x;a, Wo)||

Since asPwy g is distributed as N(0,I;_1), denote z := asPw, o, we have

1 m
PV f(x;a,Wq) = Za Pw, 00’ (W, oX) @ < mZo”(wlox)?)z where z ~ N(0,1;—1)
s=1

d e
where @ means equal in distribution.

Using (2), we have with probability at least 1 — ~

2]* > d — 1 — 4y/dlog(2/7) > d — 5\/dlog(2/7) d>1,7<2/e)

Apply Bernstein’s inequality with v = m, ¢ = 1, we have with probability at least 1 — ~,

= Zo' 2> Ex~nvo, 1)[|0 (X )|2] - ( 21ogm1/7) T 10g§711/7)>
1 ( [2log(1/y)  log(1/v)
9 ( m * m )

Thus we can get

1/2

o o 1/2
1PV £ (x;2, Wo)|| > (1 (g e | g(2/7))) <d—5\/dlog(4/7)>

2 m m
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Now we start upper bound ||[PV f(x;a, W) — PV f(x;a, Wy)||. Note that

HPVf(X'a W) — PV f(x;a,Wo)
=== \f Z asP(ws0' (W x) = Ws,00" (W, ox))|
=1

T

<||\/lr—n§:lasp(wsa'(ws x) — Ws,00" (W, x)) ||+||\ansPWso (0 (W x) = o' (w] ox))l|

< %)

1 m
< ﬁ ; as(wso' (wg x

— Wa 00" (Wx))]

m

+ sup || ZG’SPWSO WsO + Vs )T )_OJ(WST,OX))”
Vs€[m],vs ER f
llvsll< 52
< Vmllws —ws ol + sup Za Pw, (0 ((Ws0 + vs) ' x) — 0’ (W] ox)) ||
Vse€[m],vs E]Rd
llvsll< 52
SCot s (o= Y aPwao(o! (Wen +va)Tx) — o (W) (6)
Vse[m],vs€RY, \/m s:zl K
lvsll<S2

Now we start bounding the second term of equation (6). We have that with probability at least 1 — -,

sup Z asPws0(0" (Ws0 4+ vs) Tx) — 0 (W] X))
Vs€[m],vs GRd

C,
HVSHSﬁ

1 m
@ aup ( = 370" ((We0 + Vo) Tx) —a’(wlox»?)z (z = a,Pwy0 ~ N(0,14-1))
Vse[m],vs€RY, m s=1

C
vall< e

= ( L Z sup  (0/((Ws,0 +vs) Tx) — U/(WIOX))Q)Z

m s—1 Vs€[m],vs€R?,

=4/ i|S1,| - Z (By the definition of S,, in Lemma B.4 with V' = %)
log(1
\/ =(c 8 /7)) . )

Using equation (2), we see that with probability at least 1 — , one has forall 1 < s < m,

2] = [lasPws,ol| < \/d+4 dlog(2m/~)

Thus follow from equation (6), we have

[PV (x:2, W) — PV f(x:, Wo)| < G + \/ =Gt [ B2 a4 o)
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And as a result, with probability at least 1 — ~y

o o 1/2 1/2
v stxa Wl = (5 21g4/’”+1g<“”)>) (a-5vaTon) )

m m

1 1
—CO—\/\/E(CO—F\/ og(4 \/d+4\/d10g (8m/7v) >Q

O

Now we start bounding ||V f(x;a, W) — V f(x + §;a, W)||. In order to prove Lemma B.9, we will
leverage the fact that for any h € R%, we have ||h|| = sup, cga—1 7 - h. We first start a lemma with
fixed r,  to prove Lemma B.8, then use the ¢-net argument to prove Lemma B.9.

Lemma B.8. Fix 7 € S¢71, and § € R? such that ||§]| < R < <L C’1 is a constant. For any x, with

probability at least 1 — ~, the following holds for all W € B; (Wo, \F)

% 3" au(ws - 1) (o (W x) — o' (w] (x4 9)))

< 2\/log(4/7)((4R\/log(d))1/4 n bg(:/”) Lo

log(4
+3\/f B, o s Jogtam ) +5(Co g - ol

Proof of Lemma B.8. Let Xy = as(wso - 7)(0’(W]ox) — o/ (Wlo(x 4+ 0))), Xs = as(ws -

) (o' (w]x)—o'(w] (x+0))). We have E[X, o] = 0, and equation (1) gives us E[jw, o-r[29] < 22,
Thus, we have

E[| X500 < Elws,o - 7|7]0" (Wi x) — o' (W o(x + )]

< \/IEHWS@ -r[24] - P(sign(w] ox) # sign(w](x +9))) (Using equation (3))

< \/(22q)' : \/R 2log(d) + =
%!2(1-\/2R\/210g(d)

IA

E[|Xs,0/%] \/IE [(Ws,0-7)4] - P(sign(w] ox) # sign(w](x +9)))

< 24/ R+/2log(d) Exnvonl| X4 <31 <4
< 44/ R+/log(d)
Using Theorem B.1 with v = 4m/ Ry/log(d), ¢ = 2, we have
- / 2log(1/7)
Tz:: 0 < \/8 Ry/log(d)log(1/7) + —Jm

log(1/7) ((4R\/10g )1/4 log(l/’y))

m

Now we start bounding \ﬁ > (Xs — Xs,0)|- In fact, here we no longer fix r,§ and directly
bound | SUP,.ega-1 R, 5] < <4 ﬁ S (X = X))l
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1
sup 75 (Xs — Xs0)
‘ rESdil, V1

d <1
5eRY6]|< S

swp =Y a(wro <w?x>a’<w2<x+5>>>wlorw'(w;ox)o'<w2,0<x+6>>>)\

rGSdil, m
d [}
seR? |6 < L

1 Y as(wlr(o'(w]x)— X r(o’(w]x)—o'(w/] (x
<| s g eI (T (T () T ()~ (T (59 )|
seR?, 5] < S
£ > (WL T~ (8T 4 80) ~ Lo (o (L gx) o (w90
rESd E \/>S:1 ’ ’ ’
ser, 6l <L

(Triangle Inequality)

<jﬁénws—wspno’<w2x>—a’<w2<x+6>>|+|] fzaswso (7000

o e Y et T ) - Tt )
SER ||5||< 71 \/7 s=1
(Cauchy-Schwarz, triangle Inequality)
<Co+ H 7 2 Za Ws0(0 (W x) — (WST,OX))H (8)
+ sup \FZaSWS 0 (x+6)) —o’(w;':o(x-q-é)))H 9)

dERY, \|6||<

Define P = I; — xx | as the projection on the orthogonal complement of the span of x. For the second
term of equation (9), we have

Hfzaswso "(wix) =o' (w ;r,ox))H

H\FZaSPWSO (0’ (W) x) — o’ (w] ox) H H\FZasxx wo0(0 (wa)—o(w;rox»H

<

sup Za PW30 WSO+Vs) X) _U/(W;rfox))H
Vse[m],vs€R?,

Co

—Vvm

T §m xx w0l - o' (W x) = o' (W] oX)]
Vm & , : g

<

1
P T\ _ ~/ T S T
Lo fZas w044 X~ T 0) [+ 5.1 e [
llvsll< %= L

NG

(By the definition of S,, in Lemma B.4, Holder’s inequality)

< \/\/1%(00 +1/ M \/d+4 dlog(8m/v) + (Co + /log(4/7)) - /log(4m/7)

(Equation (7), x wso ~ N(0,1))
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where the last line holds because with probability at least 1 — 7, one has for all 1 < s < m,
xTws 0] < /log(m/7).

Define P’ = I; — Get8)(xt6) T as the projection on the orthogonal complement of the span of x + J.

x+4112
We bound the third term of equation (9) the same way as follows.
1 m
Y awaale/ (0] (x+ 6) = o'W y(x + )
sera 5=y VM 5
1 m
< sup —ZQSP’W&O(U’(W:(Xer)) a'(wgo(xw)))H
ser, 18] < TL
- (x+8)x+0)T
o s Z DD oo ] (x+6) = o (Tl 6)|
SER, \|5||<71, = [[x + 4]
1 % / / T / T
< sup —— 3 @ Pwa (0 (Weo 4 v) T (x 4+ 8)) — o' (wo(x +8))
sextoj<Ss VS
Vse[m],vs R, [lv, | < 52
1 & (x+8)(x+0)T
+ osup = o' (W] (x+8)) — o' (W] o(x + 8))| || e We,0
BER‘Z,\MHS% \/E ; 0 HX+5”2
1 m
< sup —» (0/((Weo+ Vo) T(x+8) =o' (Wo(x+6)  sup [z()]
vselml,v.er?, M 5 serd, 3]|< 4
H‘@HS%
(Define z(8) := asP'ws o ~ N(0,I5-1))
1 ) 57T
+ sup —S WW&O (By definition of .S, in Lemma B.4)
seR4,||5) <L vm [[x + ol
1 !
<y ISl suwp lz(9)]
SR, 5] < TE
1 ! T T
+ T'S ol -2 max |xTwso+ 8 wao ()] < llws.oll)
1+ R log(4/7) \/
<4 —=(C — L)\ /d+ 4+/dlog(8
< \/ﬁ(w 5 )V d+4ydlog(8m/v)

d + 4+/dlog(8m
+ (Co + /log(4/))(1 + R) -2< log(4m/~) + \/ W)
(R< & f d > log(m/v)log(1/%))

\/f log 4/7 \/d+4\/m+4 Co+/log(4/7)) (x/log 4m/7) +3)

As aresult, we get

TZ \/fZXsO+|\/fZX X50)|

< 2¢/log(4/7) ((4R\/Iog(d))1/4 4 \/@) LGy
*3Wa<00 B, i eatom )
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5(Co -+ el (Viog(am /7 +3 )
O
Lemma B.9. Let ||§]| < R < &L C max{1,Co},m > d**. Then, for any x, with probability at
least 1 — +, the following holds for all W e B3 o (Wo, \ﬁ)

wT T 2 log(d) e
sup E as(ws - 1) (0’ (wg x) — o' (wg (x+0))) < 9<Cld2 log”(md) )
rest—1 d
56Rdm5HgR
15d 1 _
- 15108 (nd) | o760

vm
provided that d > log(4/)%. Particularly, for any ¢ > 0, there exists C,C’ such that if
1og2(md)\/ logd(d) <C, dlo%d) < C'+/d, then we have,

sup ||V f(x;a, W) — Vf(x +d;a, W)|| < cVd
resi—1,
SeRY|I5|I<R

The above can realize when m < O(exp(d®??))

Proof. Define ®(r,d) = ﬁ Y7 as(ws - r)(o'(wlx) — o'(w] (x + 6))), and N an e-net for
Q = {(r,0),|lr|| = 1,19]] < R}. In Lemma B.8 we bound ®(r, §) for a fixed r and J, here we
bounded it uniformly over 2. We know that |N.| < (10/¢)??. Using Lemma B.8, we obtain with
probability at least 1 — «

sup ®(r,8) < sup &(r,d) + sup |®(r,6) — ®(r', &)
(r,0)€Q (r,6)EN. (r,8),(r",8")eQ:||r—r||+]|6—06"||<e

< 24/2dlog(10/)+log(4/7) ((43\/@)1/4 \/2d10g(10/8)+10g(4/7)>

+Co + 3\/\/1%(00 +1/ W)\/d—&- 44/dlog(8m/~)

+5(CoVogT) (ViogEm /T 43) + sup [00.6)- (")
(r,8),(r",8")€Q:
lr=rll4+]16—6"||<e

(10)
For r, 7/, one has

B (r,8) — (', >|<”7”\;“”2| s||<”7“ 3 j%)

Using (2), we know with probability at least 1 — +, one has for all s € [m],

[wsoll* < d+ 4y/dlog(m/v),

so that in this event we have,

|®(r,8) — (r',8)| < ||r — || <\/md + 4dm+/dlog(m/v) + C0>

On the other hand, for §, §’, we write
|®(r, 5) — &(r,d")]

m

Z]l{mgn (x +0)) > sign(w] (x + &) }asws - 7
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+ % i I{sign(w, (x +0)) < sign(w, (x +0"))}asws -7
sup Z 1{sign((Ws,0 + vs) " (x +8)) > sign((Ws0 + ve) T (x + ) }asw,

vselm],
VseRd*,HVs I<v

1
<
<7

1
+ —

T sup Z 1{sign((Ws0 + vs) (x +6)) < sign((wso + vs) " (x + ) }asws

Vs€lm],
VSE]RJ,HVS (I<V

Letting X5(6) = 1{3¢" : ||6 — &'|| < e and Fvg € RY, ||v,|| < V;sign((wso + vs) " (x + §)) #
sign((ws,0 + vs) T (x + &'))}, we now control with exponentially high probability """ | X(6).
By (4) in Lemma B.6, we know that X,(§) is a Bernoulli of parameter at most p = 2&(v/d +
2y/dlog(2/¢)) + (1 + R + ¢)V. Using Theorem B.2 and apply a union bound, we have

P(H(r, J) € N : iXs(é) > k) < (?)M exp(—pm)(e]?)k =9(p)

s=1

We would like g(p) < 7. Since /£(1 4 2+/log(2/¢)) < 4¢3/% holds for ¢ € (0, 1), we keep upper
bound p < 8v/de™/® + 3V. Note that p < % to make sure g(p) increases as p increases. Choose
e=m ¥4V = % C = max{Cy, 1}, k = 44C\/m, with m > 58, m > d**, we have

3C 10 ) -

1 a5 20 g 2dlog () 4 4G ymlog (P
g g(8VAT 4T = —pm ot 2dlog ( - ) + 44CVimlog { 5 ]
Horep = Va7 + 5 < 58
= _(8\/g€7/8+f/%)ﬂH-Qdlog(10m4/7d4/7)+44c_’\/ﬁ10g(1160\/ﬁ>

44Cv/m
< —8y/m + 2.3d1og(md) (m > 58)
< =8ym+Tvm (m > d** = /m > 0.33dlog(md))
< —vm
< log(7)

The last line holds for m > d*% and d > log(4m/v)? > log(4/7)?.

By the concentration of Lipschitz functions of Gaussians (Theorem B.3) and a union bound, we have

m

1
ﬁ g asWs 0
ses

By setting t = \/886_'\/ﬁlog(m) +2 log(%), we get that with probability at least 1 — ~/8,

<4/ Zf;lﬂg\/880\/Hlog(m)+2 1og(%)+ 4\4/%61

- 1
VS C [m)],|S| < 44Cv/m HWL > aswao
seS
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VS C [m],|S] < 44C/m -

sup o \FZQ W

voeRd v, [|< G2 VT g
1
g asWs,0 sup — g asVs
vim vo€RY v, [|< G VM e

440\/ 8 44Cd  44CCy
<4/ 88C'\/m log(m) + 210g( )+ —— +
A/ m A/ m

_ 2 8
<11 1 — log(—
< 300# o(m) + ——log (")

Note that for all (r,0) € N, ||6 = ¢'|| < e,

sup 1{sign((ws,0 + VS)T(X +0)) < sign((ws 0 + ve) T (x + N} < Xs(0)
VsERd’HVsHS%

sup 1{sign((wso + vs) " (x +8)) > sign((ws o+ vs) T (x + "))} < X(6)

With probability at least 1 —y, we have for all §, ', r, 7/ with |6 —&'|| < m~*7d=*/7 and ||r — /|| <
AT A/

|®(r,0) — ®(r',8)| < m4/7d4/7<\/md+ 4m~/dlog(m/v) + CO)

|®(r,8) — ®(r,d")] < QQGCCO\/log(m) + % log(%)

Combining this with (10) we obtain with probability at least 1 — ~,

sup ®(r,0)
(r,6)eQ

2d1og(10m*/7d4/7) +log (4
<2\/2dlog 10m4/7d4/7) +log(4/7) ((4Rm)1/4 \/ og(10m ) +log( /v))

G +3\/\/1%(co S R W)
5(Co+v/log(4/7)) (x/log Am/7) +3> +m~Td” 4/7<\/md+4m\/m+co)

_ 2 8
226CCy4 /1 — log(—
¥ 0\/og<m> b lox()

< 6\/dlog(md)((4R\/log(d))1/4+ W) +50d0'25—|—227(700\/10g(m)+\/2m log(%)

log(d) 1/4 15dlog(md) ~ 0.95 o
; > + B | 3270 Chd (R < )

= o(Vd) (holds when log?(md) /&) — (1), ‘“L\/%”d) = o(Vd) = m < O(exp(d®?*)))

<9 (Cldz log?(md)

O
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Proof of Corollary 3.2. From Theorem 3.1, we have that for any point x € S¢~!, with probability at
least 1 —, there exists an adversarial example for the neural network, with parameters (W, a), at x for
perturbation size R. Thus, with probability at least 1 — -y, the robust error of W at x with perturbation

Ris one: {r(W;x,y) = 1. This gives us that Ew|

Markov’s inequality,

P inf

LR(W) < 0.9
WGBZ,OO(W(M%)

infweB“Q (Wo,%) lr(W;x,y)] > 1 —~. From

=P|1- inf

LR(W) > 0.1
WeB2, oo (Wm%>

<10Ew |1— inf

Lr(W)
WeB2, oo (Wo,%) "

= 10EsEw |1 — inf

ZR(W7 X, y)
WeB2, oo (W

<10supEw |1 — inf
X

‘€R(W7 X, y)
WeBs, oo (w

o
0V

< 10y

where in the second equality we swap the expectations using Fubini’s theorem. O
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