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Abstract

Novel object captioning (NOC) aims to describe images containing objects with-
out observing their ground truth captions during training. Due to the absence of
caption annotation, captioning models cannot be directly optimized via sequence-
to-sequence training or CIDEr optimization. As a result, we present Paraphrasing-
to-Captioning (P2C), a two-stage learning framework for NOC, which would
heuristically optimize the output captions via paraphrasing. With P2C, the caption-
ing model first learns paraphrasing from a language model pre-trained on text-only
corpus, allowing expansion of the word bank for improving linguistic fluency.
To further enforce the output caption sufficiently describing the visual content
of the input image, we perform self-paraphrasing for the captioning model with
fidelity and adequacy objectives introduced. Since no ground truth captions are
available for novel object images during training, our P2C leverages cross-modality
(image-text) association modules to ensure the above caption characteristics can be
properly preserved. In the experiments, we not only show that our P2C achieves
state-of-the-art performances on nocaps and COCO Caption datasets, we also verify
the effectiveness and flexibility of our learning framework by replacing language
and cross-modality association models for NOC. Implementation details and code
are available in the supplementary materials.

1 Introduction

Novel Object Captioning (NOC) [1] requires one to accurately describe images containing novel
objects unseen during training captions. Despite impressive benchmark performance on COCO
Captions [2] and Flickr30K [3], existing image captioning models [4, 5, 6, 7, 8] or unsupervised
image captioning works [9, 10] cannot generalize well. This is because existing unsupervised
captioning models typically assume that training image and caption data share the same visual content
(i.e., objects) of interest, which might not be held in practice [9, 10].

Without observing captions describing novel objects during training, a number of NOC works choose
to rely on object detection results for filling in the generated slotted sentences [11, 12]. Since the
object words and the template sentences are generated separately, their relationships might not be
well described. Therefore, Hu et al. [13] propose to relate images and the produced captions by
aligning the region features of an object and its associated word embedding, aiming at improved
description of novel objects in scenes which are similar to the training ones. However, if a word is not
presented in the training corpus, it might not be properly presented in the predicted caption. That is,
the word embedding related to novel objects such as verbs and adjectives might not be fully exploited
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during inference, resulting in unsatisfactory linguistic fluency of output captions. On the other hand,
despite the visual feature of a novel object is aligned with textual feature, existing methods generally
are not designed to sufficiently caption images containing such objects of interest. In other words, the
fidelity and adequacy of the output captions cannot be preserved.

In this paper, we uniquely approach the task of NOC by introducing and learning paraphrasing
capabilities into state-of-the-art captioning models. More specifically, we advance pre-trained
language models to expand the word bank of a captioning model for NOC, followed by enforcing
the self-paraphrasing ability of this NOC model. The goal of the former stage is to preserve the
linguistic fluency for NOC models, while that for the latter stage is deployed to exhibit improved
fidelity and adequacy of the learned model. Since no ground truth captions of novel object images
are available during training, we apply cross-modality association model with objectives/critics
particularly designed for NOC.

It is worth noting that, for the evaluation part of this work, we not only show that our method achieves
state-of-the-art performances on the nocaps and COCO Caption datasets, we further assess the metrics
reflecting the fluency, fidelity, and adequacy of output captions. In addition, via ablation studies, we
further confirm the practicality and flexibility of our learning framework, which does not limit to
particular language or cross-modality association modules for paraphrasing and image-text alignment.

2 Related Work

Image captioning. Recent progress of image captioning focuses on different model architectures and
learning methods. Huang et al. [4], Wang et al. [5], Guo et al. [6], Cornia et al. [7] design different
attention mechanisms for image captioning. Rennie et al. [14], Li et al. [15], Yang et al. [16] adopt
reinforcement learning to improve the performance. On the other hand, some researchers consider
more challenging settings, such as partially supervised [17, 18] or unpaired image captioning [9, 10].
However, these methods are restricted to the assumption that the unpaired images and captions share
the same set of object class, and the number of object class is limited as well, which make them
inapplicable to our task.

Novel object captioning. Previously, novel object captioning approaches [19, 20, 21] were only
tested on a restrictive dataset with only eight novel object classes held out from the COCO dataset.
Their extensions to large-scale image data with various novel objects are not sufficiently studied.
Recent studies mainly rely on object detection results to improve the performance on novel object
captioning. Lu et al. [11], Wu et al. [12] generate slotted caption templates, which are later filled
in with visual concepts identified by object detectors. Yao et al. [22] exploit a copying mechanism
to assemble words corresponding to object detector predictions to generate captions. Similarly,
Constrained Beam Search (CBS) [19] is an architecture-agnostic decoding algorithm that can be
exploited during inference to enforce the inclusion of novel object classes in the captions. Instead
of explicitly using detection results, Hu et al. [13] and Vo et al. [23] learn the relationship between
image and text by aligning object detection tags with their corresponding image region features.
Recently, Wang et al. [24] indicate that a desirable caption should comprise properties of fluency,
fidelity, and adequacy. Nevertheless, most existing NOC approaches are not designed to handle
language expression and cross-modal association with the above properties preserved.

Large-scale Vision and Language Pre-training (VLP). Recently, researchers discover that scaling
up the sizes of both captioning model and training dataset would be effective to improve the perfor-
mance on vision and language tasks. Dual-encoder frameworks such as CLIP [25] and ALIGN [26]
scale-up contrastive pre-training [27] using 400M and 1.8B image-text pairs for cross-modal align-
ment. On the other hand, Transformer-based models like [28, 29] not only scale up the training
corpus to 5.65M image and caption pairs, but also increase the transformer layers from 12 to 24.
More recently, SimVLM [30] and LEMON [31] further explore the huge version of Transformer
with a total of 32 layers, and scale up the pre-training corpus with 1.8B and 200M image-text pairs,
respectively. Despite the dataset scale as an important factor in image captioning, we will demonstrate
that our model still performs favorably against current large-scale methods under the same model
size (i.e., Transformer base version, 12 layers) and with a smaller training caption corpus.
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Figure 1: Learning to caption novel objects with linguistic fluency. For caption-labeled image xl,
we impose the sequence-to-sequence objective Ls2s for training. For uncaptioned image xu, we
exploit P to paraphrase the generated caption ŷcu, producing the refined caption ŷpu, followed by a
semantic-preserving gate g to verify whether the paraphrased caption has altered the visual content.

3 Method

We first determine the notations and settings for the sake of completeness. Given a small set of images
Xl with the corresponding captions Yl, as well as a large set of uncaptioned images Xu containing
novel objects, our goal is to generate the captions Ŷu for Xu via a captioning model Cθ (θ describes
the parameters for the captioning model C). To achieve this, we propose Paraphrasing-to-Captioning
(P2C), which allows C to perform paraphrasing to preserve linguistic fluency, and to self-paraphrase
for boosting the associated fidelity and adequacy. The former is regularized by a pre-trained language
model P , while an image-text cross-modality model A is utilized for guiding the unsupervised
learning process. We note that the contribution of our proposed P2C lies in how to leverage the
paraphrasing mechanism, together with the linguistic and visual information from pre-trained models
P and A, for performing NOC with sufficient caption fluency, fidelity and adequacy.

3.1 Describing Novel Objects with Linguistic Fluency

By observing image-caption pairs (xl, yl), the captioning model Cθ in Fig. 1 would learn the visual
grounding (i.e., localization of known objects and referring their expressions) as well the linguistics
information. The training objective of such labelled data is a conventional sequence-to-sequence loss
Ls2s, calculated on ground-truth caption yl. That is, we have Ls2s = CrossEntropy(ŷl, yl).

However, using the image-caption pairs (xl, yl) alone is not sufficient to produce fluent captions for
uncaptioned images Xu. We observe that some commonly-used wording of the associated novel
objects, are not presented in the training corpus. Therefore, we leverage a language model P , to
learn its linguistic knowledge via paraphrasing. That is, for uncaptioned images Xu containing
novel objects, we first generate a caption describing Xu. Then, we leverage pre-trained language
models as the paraphrase model P , which replace the generated captions with the most probable
wording of a given novel object context. A semantic-preserving gate g is deployed to validate the
paraphrased caption. As detailed later, this gate g is realized by a cross-modal association model
A, which assesses the relationship between the paraphrased caption and the input image, ensuring
semantics of the caption is not modified by P .

Learning to paraphrase via language model P . We now present the detailed paraphrasing process-
ing for learning Cθ. As illustrated in Fig. 1, given an uncaptioned image xu, the captioning model
Cθ generates a caption ŷcu = Cθ(xu), ŷcu = {wc

1, w
c
2, ..., w

c
T }, where wc

i denotes the ith word, and
T is the caption length. The superscript c represents it is generated by our captioning model. We
then obtain a masked caption ŷMu = {wc

1, w
c
2, ..., w

M
m , ..., wc

T } with m indicating the mask index, by
randomly masking out the words in the caption. We note that, we do not mask nouns/objects in the
above process, since they are related to objects grounded in the (novel) visual content and thus are not
explicitly associated with caption fluency. As a result, P takes the masked sequence ŷMu as input and
predicts the masked word wp

m with the highest probability conditioned on the context of the entire
sentence, producing the paraphrased caption ŷpu = P (ŷMu ), ŷpu = {wc

1, w
c
2, ..., w

p
m, ..., wc

T }.
Semantic-preserving gate g. In the above paraphrasing process, however, not every word substitution
from P is guaranteed to be semantically correct. We thus require a proper image-text model (i.e.,
association model) A to validate the paraphrasing output. That is, if the paraphrased caption comprises
a more accurate and associated word that human generally uses to describe the scene, then a higher
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Figure 2: Improving caption fidelity and adequacy via self-paraphrasing. For caption-labeled image
xl, we perform CIDEr optimization. The sampled caption ŷsd will be rewarded by A if it has a higher
cross-modal association than the greedy-decoded baseline ŷgd . The superscript d indicates the source
of the image. Additionally, we regularize our model with rrep to avoid repetitive captions.

score would be obtained (than that of the original caption). Thus, we propose the objective function
LP to calculate the loss for the replaced words, gated by the comparison of the association scores of
the corresponding captions. More precisely, LP is derived as:

LP = −g ∗ t log(s), g = max(0, tanh(A(xu, y
p
u)−A(xu, y

c
u)− α)) (1)

where g is the gating function preventing Cθ from learning from low-quality paraphrased captions, t
is the one-hot representation of the paraphrased word, and s is the word distribution predicted by the
captioning model at the masked timestep m, i.e., we have wc

m = argmax(s). We have A(x, y) in g
to calculate the association between an image x and its caption y, indicating how well the captions
match the images, and α serves as the margin of the association scores for distinguishing between the
two captions.

3.2 Improving Caption Fidelity and Adequacy via Self-Paraphrasing

Recall that, as discussed in Sec. 1, caption fidelity verifies whether the details of visual content are
presented in the generated caption, while adequacy assesses whether the visual content is properly
described been expressed in it. While the previous paraphrasing stage increases the linguistic fluency
for captions describing images containing novel objects, the novel object word itself still can be
incorrectly predicted or missing in the output captions. This is because that, the caption corpus
Yl does not contain any novel objects, and thus the novel object words have low probability to be
captioned.

To tackle the above issues, one possible solution is to self-paraphrasing for Cθ with captioning
evaluation metric as a critic to reward the paraphrased captions. For labeled images Xl, we can
exploit the CIDEr score [14], encouraging the generated caption to be consistent with that of the
human annotated ones in the word level. However, while CIDEr can be easily computed for captioning
labeled images Xl, it cannot be explicitly calculated for captioning uncaptioned images Xu due
to the absence of ground-truth captions. To address this problem, we discover that cross-modal
association is an ideal measurement to reflect the fidelity and adequacy for output captions (see
remarks in Appendix A). Specifically, we utilize an association model A to compute the association
score between images and the generated captions, which serves as a label-free critic in our learning
framework. Then, when a paraphrased caption is rewarded by a higher association score, our P2C
would increase the probability of using that word in the sentence to describe the image. This learning
strategy allows producing captions that precisely describe the objects with plentiful visual details.

Rewarding the generated captions. As a potential challenge in NOC, we observe that captioning
models would achieve improved association by simply repeating the same object that occurs in the
image, which undermines the linguistic fluency of the captions. For example, the image caption “a
group of cans of soda and other items on a table" can be replaced by “a pile of cans and bottles of
soda on a counter with cans of cans" with a higher association score.

To tackle this problem, we choose to impose a repetition penalty to avoid such trivial solutions. For
image-caption pairs (xl, yl), we directly calculate the CIDEr reward for the predicted caption ŷl (i.e.,
rCIDEr = CIDEr(ŷl, yl)). To enforce the generated captions for (X,Y ) = (Xl, Yl) ∪ (Xu, Yu) with
sufficient fidelity and adequacy, we exploit A to compute the association reward between X and
Ŷ (i.e., rA = A(x, ŷ)). As for the repetition penalty to preserve linguistic fluency of the generated
captions ŷu = {w1, w2, ..., wT } for xu, we formulate it as a linear assignment problem, where every
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word is assigned to the most similar one in the same sentence except for itself. Then, we calculate
the similarity between such pairs for each sentence. Intuitively, repetitive captions would have high
similarity scores (with repeating words assigned to the exact same word)s. Thus, we define the
assignment α̂ as the one that maximizes the average pairwise similarity of a sentence, i.e.,

α̂ = argmax
α

1

T

T∑
i=1

C(wi, wα(i)), (2)

where α(i) is the index of the word assigned to the i-th word in the caption, and C(wi, wj) is
the cosine similarity between the GloVe [32] word representation of two words. Since a desirable
captioning model would encourage captions with low repetition (i.e., low average pairwise similarity),
the reward for repetition penalty is defined as follows:

rrep = 1− 1

T

T∑
i=1

C(wi, wα̂(i)), (3)

Note that we do not calculate repetition penalty for the labeled data Ŷl since they are regularized by
the aforementioned CIDEr rewards.

With the above discussions, the total reward for caption-labeled data would be r(ŷl) = rCIDEr(ŷl, yl)+
rA(xl, ŷl), and the total reward for uncaptioned data would be r(ŷu) = rA(xu, ŷu) + rrep(ŷu).

Back-propagation via reinforce algorithm. Unfortunately, computation of the aforementioned
rewards is non-differentiable. Thus, we adopt reinforce algorithm [33] to optimize our P2C learning.
As shown in Fig. 2, for an image x we use greedy decoding to obtain the baseline result ŷg, and
the paraphrased captions ŷs are derived from randomly sampling from the word distribution. If
the sampled captions possess higher linguistic fluency or cross-modal association than the baseline
caption, they will be encouraged by positive rewards and vice versa. We follow Rennie et al. [14], Liu
et al. [34, 17] and define the objective function as follows:

∇θLRL(θ) ≈ −(r(ŷsd)− r(ŷgd))∇θ log pθ(ŷ
s
d),

r(ŷd) =

{
rCIDEr(ŷd, yd) + rA(xd, ŷd) if xd ∈ Xl

rA(xd, ŷd) + rrep(ŷd) if xd ∈ Xu
,

(4)

where d indicates the source of the image, θ being the parameters of captioning model, and pθ(ŷ
s)

represents the predicted word logits for the generated captions. With the objective functions defined
in equations (1), and (4), the NOC model Cθ can be trained accordingly.

4 Experiments

Implementation details. Following Hu et al. [13], Li et al. [28], Zhang et al. [29], we consider
a BERT-base [35] architecture for our captioning model Cθ. To demonstrate the flexibility of our
learning framework, we apply two different versions of BERT, base and large, which are pre-
trained on large-scale text-only corpus to model human language as our paraphrase model P . For
the association model A, we have three different cross-modal association models, VIFIDEL [36],
SR-PL [17], and CLIP [25] with its version being ViT/B-32. VIFIDEL associates image-caption
data using word embedding of particular object labels, and SR-PL utilizes the triplet loss to learn
the association of image captions, while CLIP is optimized via the contrastive pre-training. For our
model reported in the following subsections, we use BERT large for P , and CLIP for A. Due to page
limits, hyperparameters and other training details can be found in Appendix B.

Datasets. The training data for the nocaps benchmark comprises the Open Images V4 [37] object
detection training set (1.7M images annotated with bounding boxes for 600 object classes), plus
the image-caption pairs from the COCO Captions 2017 [2] training set (0.5M image-caption pairs
containing 80 object classes). No additional image-caption pairs are provided for training. We
evaluate our model on the validation and test set of nocaps, which comprises 4500 and 10600 images
from the Open Images validation and test sets, respectively. To compare with current large-scale
methods and investigate our model performance when scaling up the training dataset, we jointly
trained our model on the Conceptual Caption dataset [38] and compare our method to other methods
that access additional image-text pairs during their training on the nocaps-XD [1] benchmark (XD

5



Table 1: Quantitative results on nocaps. Note that C and S denote CIDEr and SPICE, respectively.
We highlight the highest score in blue, while the second best scores are marked in bold.

Method in-domain near-domain out-domain overall in-domain near-domain out-domain overall
C S C S C S C S C S C S C S C S

Validation Set Test Set
UpDown 79.3 12.4 73.8 11.4 71.7 9.9 74.3 11.2 76.0 11.8 74.2 11.5 66.7 9.7 73.1 11.2
OscarB 83.4 12.0 81.6 12.0 77.6 10.6 81.1 11.7 81.3 11.9 79.6 11.9 73.6 10.6 78.8 11.7
OscarL 85.4 11.9 84.0 11.7 80.3 10.0 83.4 11.4 84.8 12.1 82.1 11.5 73.8 9.7 80.9 11.3
OscarB
+VIVO 92.2 12.9 87.8 12.6 87.5 11.5 88.3 12.4 89.0 12.9 87.8 12.6 80.1 11.1 86.6 12.4

VinVL 96.8 13.5 90.7 13.1 87.4 11.6 90.9 12.8 93.8 13.3 89.0 12.7 66.1 10.9 85.5 12.5
VinVL
+VIVO 94.8 13.3 91.4 13.0 88.7 11.6 91.4 12.7 94.5 13.1 90.9 12.9 77.9 11.3 88.3 12.6

Human 84.8 14.3 85.0 14.3 95.7 14.0 87.1 14.2 80.6 15.0 84.6 14.7 91.6 14.2 85.3 14.6
Ours 101.4 15.1 96.8 14.5 95.4 12.9 97.2 14.2 101.7 15.0 95.7 14.4 82.5 12.2 93.5 14.1

stands for extra data). In addition, to demonstrate that our method also enhances model performance
on the general image captioning, we evaluate our P2C on the COCO Captions dataset. Due to page
limits, the comparison on COCO Captions can be found in Appendix C.2.

4.1 Evaluation metrics

CIDEr. Like the evaluation metrics [39, 40, 41] in NLP, Consensus-based Image Description
Evaluation (CIDEr) calculates the similarity between the reference and generated caption by n-gram
overlap in a rule-based manner. To capture human consensus in image captioning, it introduces the
tf-idf weight to reduce the matching weight of the n-grams that are common in all image captions.

SPICE. Semantic Propositional Image Caption Evaluation (SPICE) [42] matches the semantics
between sentences, such as objects, relations, and attributes of objects. Specifically, it converts
sentences into semantic scene graphs, which allows evaluation to break grammatical constraints and
focuses on propositional semantic content. It reflects the accuracy of the visual content and considers
less about linguistic properties.

Fluency. To quantitatively evaluate fluency, we remove the effect of the visual information and focus
on the quality of linguistic properties in the conventional caption evaluation metrics. Specifically, we
we disregard the n-grams containing the particular object word of interest during the computation
BLEU@4 [39] and CIDEr scores. Take the sequence “a b c d” for example, when ‘b’ is the object
word, only the unigram “a, c, d” and the bigram “cd” would be taken into account, n-grams such as
“ab” or “abc” would be excluded from computation. Note that the fluency experiment is conducted
on a subset of the nocaps validation set, which contains 1000 images whose caption annotations are
available on the official website of the nocaps dataset.

Fidelity & Adequacy. Fidelity and adequacy evaluate how well the captions are associated with
images. As defined in Sec. 1, fidelity evaluates whether the objects described by the caption are
actually presented in the images, while adequacy assesses how many objects in the images are
described by the captions. These two properties are analogous to the definition of precision and recall,
respectively. Therefore, we extract the objects mentioned in the captions and the ground-truth objects
in the images and calculate the precision (for fidelity), recall (for adequacy), and F1 (for overall
association) scores. The experiment is performed on the validation set of nocaps.

Following Agrawal et al. [1], we split the dataset into three subsets for evaluation: in-domain images
only contain the seen objects that have been described during training, out-of-domain images are the
unseen/uncaptioned (i.e., novel) ones, while near-domain ones contain both seen and unseen objects.

4.2 Quantitative analysis

For performance comparisons, we choose UpDown [1] as baselines, as well as Oscar [28] and
VinVL [29] which achieves SOTA results on the benchmark of nocaps. All methods are trained via
the SCST optimization [14] except for the UpDown baseline, and Constrained Beam Search (CBS) is
exploited during inference. In addition, VIVO [13] is a pre-training technique for captioning models,
allowing them to recognize the novel objects. Since VinVL did not report the numbers with CBS
exploited during inference (CBS is known to improve model performance on out-of-domain data),
we reproduce VinVL following details stated in the original paper. For more details please refer
to Appendix B. For a comprehensive comparison, we conduct experiments on the validation and
test set of nocaps. In addition, we compare our method with VinVL and VIVO in fluency, fidelity,
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Table 2: Quantitative results on the nocaps (XD) benchmark. Note that XD stands for extra data.

Method Pre-training data Validation set Test set
CIDEr SPICE CIDEr SPICE

Encoder-Decoder [43] CC12M [43] 87.4 11.8 85.3 11.8
Encoder-Decoder CC3M+CC12M 90.2 12.1 87.3 12.0
VinVLbase [29] 5.65M Combined 95.5 13.5 - -
SimVLMbase [30] 1.8B - - 94.8 13.1
LEMONbase [31] CC3M [38] 91.6 13.0 - -
LEMONbase CC12M 100.4 13.8 - -
LEMONbase ALT200M [31] 106.8 14.1 - -
Ours COCO Caption 0.5M 97.2 14.2 93.5 14.1
Ours CC3M 104.1 14.6 102.4 14.7

Table 3: Quantitative comparisons on caption fluency, fidelity and adequacy. Note that BLEU@4
(B@4) and CIDEr (C) are utilized for describing fluency, object precision (P) for fidelity, object recall
(R) for adequacy and object F1 scores (F1) for overall cross-modal association.

Method in-domain near-domain out-of-domain
B@4 C P R F1 B@4 C P R F1 B@4 C P R F1

VinVL 21.6 74.8 59.2 40.8 48.3 19.6 73.3 22.8 32.6 26.8 17.9 59.6 48.4 25.6 33.5
VinVL+VIVO 20.6 71.6 56.0 42.2 48.1 19.8 75.4 28.5 36.3 32.0 17.4 59.6 49.0 27.3 35.1
Ours 25.4 87.0 58.2 45.6 51.3 22.1 80.1 39.9 41.0 40.4 19.7 67.7 51.3 30.5 38.3

and adequacy to demonstrate the improvement in terms of these properties. We also evaluate on the
COCO Caption dataset and report in Appendix C.2.

The nocaps datasets. The results on nocaps are shown in Table 1. From this table, we see that
our model performed favorably against baselines and SOTAs across different metrics. We see that
our method substantially improves the CIDEr scores in every domain, which verifies our design to
generate more fluent and natural captions. Also, it is worth noting that our model largely increased
the performance in SPICE score for every data domain, which verifies that our method is able to
generate captions with the improved image-language association.

The nocaps-XD datasets. To compare with large-scale pre-training methods and investigate our
model performance when scaling up training dataset, we evaluate our method on the nocaps-XD
benchmark and show the results in Table 2. Note that both VinVL, SimVLM, LEMON, and our
method adopt BERT-based backbones for captioning. From the above table, we see that our method
still performs favorably against SOTAs on the benchmark even if we have the fewest training caption
samples (3M). Our model performance is only slightly below LEMON on the CIDEr score on
validation set when it uses a larger training corpus (ALT200M), while we surpass LEMON by a
significant margin when the same training corpus (CC3M) is used. Thus, the effectiveness of our
method when we scale up the training data can be verified. For more detailed discussion and the
ablation study on this model, please refer to Appendix C.3.

Fluency, fidelity, and adequacy. As described in Sec. 4.1, we design additional experiments for
evaluating fluency, fidelity, and adequacy and report the results in Table 3. For fluency, we remove
all the objects and nouns in the captions since they relate less to the linguistics of the captions. We
then calculate the BLEU@4 (B@4) and CIDEr (C) scores for the captions after removal. For fidelity
and adequacy, they indicate that captions should accurately (high precision) describe sufficient (high
recall) visual details. Therefore, we report the object precision and recall in this table, and object F1
scores represent the overall association between captions and images. One can see that our method
surpasses previous methods by a visible margin on all tasks except for in-domain object precision,
which further verifies our model improves novel object captioning on fluency, fidelity, and adequacy.

4.3 Ablation studies

Following the same evaluation procedures in Sec. 4.1, we discuss the contributions of the uses of
paraphrasing model P and association model A in terms of linguistic and semantic level metrics, and
present their results in Table 4 and 5. In addition, to verify the flexibility of our proposed P2C, we
replace P and A with different implementations of language models and association models. Then,
we evaluate their performance on the nocaps validation set and report the results in Table 6. Detailed
ablation analysis of every objective can be further found in Appendix C.1.
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Table 4: Analyses on paraphrasing model P , association model A, and repetition penalty for NOC
using nocaps validation set. Note that P mainly benefits the linguistic fluency with improved CIDEr,
and reward from A is desirable for preserving visual semantics with increased SPICE.

Method in-domain near-domain out-domain overall
CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

Ours 102.8 14.8 97.9 14.4 86.3 12.5 96.3 14.1
Ours w/o g 32.8 10.6 21.5 9.5 12.6 8.0 21.3 9.4
Ours w/o LP 99.1 14.4 94.7 14.1 84.5 12.4 93.3 13.8
Ours w/o rA 101.1 13.8 94.1 13.4 80.5 11.9 92.3 13.1
Ours w/o rrep 96.7 14.8 89.6 14.1 81.9 12.4 89.1 13.9

Table 5: Analyses on paraphrase model P and association model A for improving caption fluency,
fidelity and adequacy. Note that P benefits fluency metrics of BLEU@4 and CIDEr, while A focusing
on cross-modal association boosts metrics of object precision, recall, and F1 scores.

Method in-domain near-domain out-of-domain
B@4 C P R F1 B@4 C P R F1 B@4 C P R F1

Ours 25.4 87.0 58.2 45.6 51.3 22.1 80.1 39.9 41.0 40.4 19.7 67.7 51.3 30.5 38.3
Ours w/o LP 21.6 77.1 58.1 40.9 48 19.8 75.5 41 39.0 40.0 19.1 66.1 51.6 19.1 66.1
Ours w/o rA 23.0 79.3 58.8 42.1 49.1 21.2 78.6 35.8 37.7 36.8 18.8 65.7 51.6 27.4 35.8

Paraphrase model P . As shown in Table 4, the captioning model without P would observe a
performance drop in CIDEr for linguistic fluency, but such drops for the metric of SPICE (related to
visual content) would be less significant. Similarly, as observed in Table 5, removing P would result
in the lowest BLEU and CIDEr scores. These results confirm our motivation and model design, since
P is utilized to improve caption quality at the linguistics level.

To further verify the use and flexibility of paraphrase model P , we replace our paraphrase model
P (the large version of BERT) with the base version of BERT. We found out that only a slight
performance drop is produced. We conjecture that this is because the two versions of BERT are
trained on the same text corpus, which means they share the same word bank. As a result, our model
would distill similar linguistic knowledge when using either model to guide the training of our P2C.

Semantic-preserving gate g. From Table 4, we see that captioning model would be misled by the
wrong guidance produced by P , if no validation from g to ensure that the semantics of the original
captions is not modified by P . This results in a significant performance drop on nocaps.

Association model A. As shown in Table 4, the model without the reward calculated by A showed
significant drops in captioning metrics of CIDEr and SPICE. However, the performance decrease in
SPICE is expected, since A is particularly deployed for preserving visual content in captions. As
for CIDEr, its decrease is mainly due to the deterioration of missing visual content in captions. This
is also confirmed by Table 5, in which mainly the metrics reflecting fidelity and adequacy would
observe significant drops for model trained without the association rewards.

To further verify the use and flexibility of the association model A, we replace it with different
models that also produce association scores between images and captions. Specifically, we consider
VIFIDEL [36], SR-PL [17], and CLIP [25]. As the results shown in Table 6, one can see that the use
of CLIP as A would achieve the best performance. This is because that, VIFIDEL only associates
image-caption data using word embedding of particular object labels, while CLIP assesses such
cross-modal data in the instance level, i.e., taking the complete caption of an image into consideration.
As for SR-PL, it utilizes the triplet loss to learn the association of images and captions, while CLIP is
optimized via the contrastive pre-training, which fully exploits the negative samples in a mini-batch
to learn a more compact representation space, allowing it to estimate the association more accurately.

Repetition penalty. Recall that, in Sec. 3.2, this penalty is to alleviate the association between images
and captions with redundant visual information. As seen in Table 4, the model without this penalty
observed a significant performance drop in CIDEr scores. We did not see such trends for SPICE.
This is because that, repetitive words in captions mainly violate linguistic structures rather then
semantic accuracy, and thus the performance related to linguistic fluency would be more sensitive to
the deployment of this penalty.
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Table 6: Uses of different paraphrase models P and association models A for NOC. Results on the
nocaps validation set are presented. Note that Stages 1 and 2 are the paraphrasing schemes presented
in Sec. 3.1 and Sec. 3.2, respectively.

Method Paraphrase Model P Association Model A LP rA rrep
Overall

CIDEr SPICE
Baseline N/A N/A ✗ ✗ ✗ 81.2 12.3
Ours w/ Stage 1 BERTbase CLIP [25] ✓ ✗ ✗ 84.1 12.7
Ours w/ Stage 1 BERTlarge CLIP ✓ ✗ ✗ 84.2 12.7
Ours w/ Stage 2 BERTlarge VIFIDEL [36] ✓ ✓ ✓ 55.3 10.7
Ours w/ Stage 2 BERTlarge SR-PL [17] ✓ ✓ ✓ 84.6 13.2
Ours w/ Stage 2 BERTlarge CLIP ✓ ✓ ✓ 96.3 14.1

a man in a suit and tie standing in a 
room.

Fluency Fidelity Adequacy

VinVL

Ours

VinVL

Ours

Fluency Fidelity Adequacy

a ceiling fan in a room with a 
window

a blue blanket and a glove on a 
blue shirt.

a ceiling fan hanging from the 
ceiling in a room.

two glove hands and a red scarf 
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a man in a suit and tie standing at a 
podium in a room.
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accordion.
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on a blue background.

a couple of people sitting in a 
church playing an accordion.

Figure 3: Example results and comparisons for image captions produced by VinVL and ours in terms
of fluency, fidelity and adequacy. Note that both utilize VIVO for novel object detection.

4.4 Qualitative analysis

For qualitative comparisons, we first conduct human study and ask individuals to evaluate a caption
from three perspectives: fluency, fidelity, and adequacy. Due to page limit, the experiment details and
the corresponding results are presented in Appendix C.4. For qualitative analysis, we empirically
show captions in Fig. 3, which are generated by our model and VinVL, with both pre-trained from
VIVO for novel object detection. In this figure, wordings that are less accurate or incorrectly describe
the associated visual content are marked in bold. And, our wording improvements are highlighted in
red. From this figure, one can see that for fluency, our model generated vivid captions with more
proper wordings. Take the image on the left for example, our model particularly described “posing
for a picture” instead of “standing on a field”. As for fidelity, our model is designed to accurately
capture the visual content in an image. Specifically, take the second image for example, we correctly
described the number of gloves and the novel object red scarf, while VinVL failed to do so. As for
adequacy, take the bottom-right image for example, our model was able to recover visual details in
the image (i.e., “people playing the accordion” and “sitting in a church”). For more qualitative
examples, please refer to Appendix C.5.

5 Conclusion
In this paper, we proposed Paraphrasing-to-Captioning (P2C) for novel object captioning, with
particular goals of improving caption fluency, fidelity, and adequacy. In P2C, we advocate the learning
of two paraphrasing capabilities for captioning models. The first is language-level paraphrasing,
which expands the word bank of a captioning model under the guidance of pre-trained language model,
and thus preserves the linguistic fluency during NOC. Secondly, we introduce the self-paraphrasing
ability for the captioning model to sufficiently describe visual content of the input image, so that both
caption fidelity and adequacy can be achieved. Due to the lack of ground truth captions, image-text
association is uniquely exploited for guiding the training process. Empirically, we not only showed
that our model achieved SOTA results on benchmark datasets, we also assessed the metrics associated
with fluency, fidelity, and adequacy, confirming the effectiveness of our model. Via our ablation
studies, we further verified the flexibility of our learning framework by replacing language and
cross-modality association modules for paraphrasing and image-text alignment. Finally, since we
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apply pre-trained language and association models in P2C, their joint optimization would be among
our future research directions.
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