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Abstract

Contrastive representation learning seeks to acquire useful representations by esti-
mating the shared information between multiple views of data. Here, the choice of
data augmentation is sensitive to the quality of learned representations: as harder
the data augmentations are applied, the views share more task-relevant information,
but also task-irrelevant one that can hinder the generalization capability of repre-
sentation. Motivated by this, we present a new robust contrastive learning scheme,
coined RényiCL, which can effectively manage harder augmentations by utilizing
Rényi divergence. Our method is built upon the variational lower bound of Rényi
divergence, but a naïve usage of a variational method is impractical due to the
large variance. To tackle this challenge, we propose a novel contrastive objective
that conducts variational estimation of a skew Rényi divergence and provide a
theoretical guarantee on how variational estimation of skew divergence leads to
stable training. We show that Rényi contrastive learning objectives perform innate
hard negative sampling and easy positive sampling simultaneously so that it can
selectively learn useful features and ignore nuisance features. Through experiments
on ImageNet, we show that Rényi contrastive learning with stronger augmentations
outperforms other self-supervised methods without extra regularization or compu-
tational overhead. Moreover, we also validate our method on other domains such
as graph and tabular, showing empirical gain over other contrastive methods. The
implementation and pre-trained models are available at 1.

1 Introduction

Recently, many AI studies are enamored by the power of contrastive methods in learning useful
representations without any human supervision, e.g., image [1, 2, 3, 4, 5, 6], text [7, 8], audio [9, 10]
and multimodal video [11, 12, 13]. The key components of contrastive learning can be summarized
into two-fold: data augmentation and contrastive objectives. The data augmentation generates
different views of data where the views share information that is relevant to the downstream tasks.
The contrastive objective then enforces the representation to capture the shared information between
the views by bringing the views from the same data together and pushing the views from different data
away in the representation space. Therefore, the choice of data augmentation is critical in contrastive
learning, cf., see [3, 14, 15]. If the views share insufficient information, the representations cannot
learn sufficient features for downstream tasks. On the other hand, if there is too much information
between the views, the views might share nuisance features that hamper the generalization.

In this paper, we propose a new contrastive learning objective using Rényi divergence [16], coined
RényiCL, which can effectively handle the case when the views share excessive information. The
Rényi divergence is a generalization of KL divergence that is defined with an additional parameter
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called an order. As the order becomes higher, the Rényi divergence penalizes more when two
distributions mismatch. Therefore, since the goal of contrastive representation learning is to train an
encoder to discriminate between positives and negatives, we hypothesize that maximizing the Rényi
divergence between positives and negatives could lead to more discriminative representations when
the data augmentations are aggressive. Furthermore, our theoretical analysis shows that RényiCL
weighs importance on easy positives and hard negatives by using a higher order.

To implement RényiCL, one can consider variational lower bound of Rényi divergence [17]. However,
we show that a variational lower bound of Rényi divergence does not suffice for contrastive learning
due to their large variance. To tackle this challenge, we first made a key observation that the existing
contrastive objectives are a variational form of a skew KL divergence, and show that variational
estimation of skew divergence induces low variance property. Inspired by this, we consider a
variational lower bound of a skew Rényi divergence and use it to implement RényiCL.

Through experiments under ImageNet [18], RényiCL achieves 76.2% linear evaluation accuracy,
outperforming other self-supervised learning methods even using significantly less training epochs.
Moreover, we show that RényiCL representations transfer to various datasets and tasks such as
fine-grained object classification and few-shot classification, outperforming other self-supervised
baselines. Finally, we validate the effectiveness of RényiCL on various domains such as vision, graph,
and tabular datasets by showing empirical gain over conventional contrastive learning methods.

2 Related Works

Since Chen et al. [3] emphasized that the usage of data augmentation is crucial for contrastive
learning, a series of works proposed various contrastive learning frameworks that showed great
empirical success on visual representation learning [2, 3, 4, 5, 6, 19]. Inspired by the empirical
success, recent works focused on optimal view generation for both positive and negatives. Tian et
al. [14] proposed the InfoMin principle for view generation, which states that the views should share
minimal information that is relevant to the downstream tasks. Another line of research focuses on
hard negative samples [20, 21, 22] to enhance the performance of contrastive learning. Especially,
Robinson et al. [20] proposed to use importance sampling to learn with hard negative samples.

Meanwhile, others are interested in searching for different contrastive objectives by modeling
with various probabilistic divergences between positives and negatives. Oord et al. [23] proposed
Contrastive Predictive Coding (CPC) (as known as InfoNCE) that is widely used in various contrastive
learning scheme such as [2, 3, 4]. They theoretically prove that CPC objective is a variational lower
bound to the mutual information, later [24] proposed Multi-Label CPC (MLCPC) which is a tighter
lower bound to the mutual information. Hjelm et al. [25] proposed DeepInfoMax which used Jensen-
Shannon divergence for variational estimation and maximization of mutual information. Zbontar et
al. [26] proposed Barlow-Twins, which is shown to be a Hilbert-Schmidt Independence Criterion that
approximates a Maximum Mean discrepancy measure between positives and negatives [27]. Ozair
et al. [28] proposed Wasserstein Predictive Coding, which is both lower bound to the Wasserstein
distance and mutual information. Similar to our approach, Tsai et al. [29] proposed relative predictive
coding that uses skew �2-divergence for contrastive learning, and empirically and theoretically show
that variational estimation of skew �2-divergence leads to stable contrastive representation learning.
Lastly, our work is similar to [30], which proposed robust contrastive learning objective that uses
symmetric binary classification loss for contrastive learning so that it can deal with noisy views.

3 Preliminaries

3.1 Rényi divergence

We first formally introduce Rényi divergence, which is a family of probability divergences including
the popular Kullback-Leibler (KL) divergence as a special case. Let P , Q be two probability
distributions such that P is absolutely continuous with respect to Q, denoted by P ⌧ Q (i.e.,
the Radon-Nikodym derivative dP/dQ exists). Then, the Rényi divergence [16, 31] of order � 2
(0, 1) [ (1,1) is defined by

R�(P kQ) :=
1

�(� � 1)
logEP

✓
dP

dQ

◆��1�
.
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It is intertwined with various f -divergences, e.g., Rényi divergence with �  1 and � = 2 becomes
KL divergence DKL(P kQ) and a monotonic transformation of �2 divergence, respectively. Remark
that the Rényi divergence with higher order �, penalizes more when the probability mass of P does
not overlap with Q [32]. Rényi divergence has been studied in various machine learning tasks such
as variational inference [33, 34] and training [35, 36] or evaluation of generative models [37].

3.2 Variational lower bounds of mutual information

The estimation and optimization of mutual information is an important topic in various machine
learning tasks including representation learning [38]. The mutual information is defined by the KL
divergence between the joint distribution and the product of marginal distributions. Formally, given
two random variables X ⇠ PX and Y ⇠ PY , let PXY be the joint distribution of X ⇥ Y . Then,
we call the pair of samples (x, y) ⇠ PXY as a positive pair, and (x, y) ⇠ PXPY as a negative pair.
Then, the mutual information is defined by KL divergence between positive pairs and negative pairs:

I(X;Y ) := DKL(PXY kPXPY ).

In general, the mutual information is intractable to compute unless the densities of X and Y are
explicitly known, thus many works resort to optimize its variational lower bounds [38] associated
with neural networks [39]. The Donsker-Varadhan (DV) [40] objective is a variational form of KL
divergence defined as follows:

IDV(f) := EP [f ]� logEQ[e
f ], where DKL(P kQ) = sup

f2F
IDV(f), (1)

where F is a set of bounded measurable functions on the support of P and Q, and the optimum
f⇤ 2 F satisfies f⇤ / log dP

dQ . Then, Belghazi et al. [39] proposed MINE that uses (1) as follows:

IMINE(f) = EPXY [f(x, y)]� logEPXPY [e
f(x,y)].

However, Song et al. [41] showed that estimation with MINE objective might occur large variance
unless one uses large number of samples, and Tsai et al. [29] also empirically evidenced that
contrastive learning with the DV objective suffers from training instability.

To address the issue, the contrastive predictive coding (CPC) objective (also as known as In-
foNCE) [23] is a popular choice for various practices including contrastive representation learn-
ing [2, 4, 3]. Given B batch of samples {xi}Bi=1 from X , assume we have a single positive y+i and
K negatives {y�ij}Kj=1 for each xi. Then, the CPC objective is defined as follows:

ICPC(f) := E(x,y+)⇠PXY ,{y�
j }K

j=1⇠PY


log

(K + 1) · ef(x,y+)

ef(x,y+) +
PK

j=1 e
f(x,y�

j )

�
,

where it is known that ICPC(f)  I(X;Y ) for any bounded measurable function f [23]. However, as
ICPC(f)  log(K + 1) for any f , the CPC objective becomes a high-bias estimator if the true value
I(X;Y ) is larger than log(K +1). To address this, Poole et al. [38] proposed ↵-CPC which controls
the bias by inserting ↵ 2 [0, 1] into CPC as follows:

I(↵)
CPC (f) := E(x,y+)⇠PXY ,{y�

j }K
j=1⇠PY


log

ef(x,y
+)

↵ef(x,y+) + 1�↵
K

PK
j=1 e

f(x,y�
j )

�
, (2)

The ↵-CPC objective also admits a variational lower bound to the mutual information I(X;Y ) for
any ↵ 2 [0, 1] (recovers the original CPC when ↵ = 1

K+1 ), and it achieves smaller bias when using
smaller value of ↵. Furthermore, Song et al. [24] proposed ↵-Multi Label CPC (MLCPC) which
provides even a tighter lower bound to the mutual information. While CPC can be considered as
(K + 1)-way 1-shot classification problem, given B batch of anchors {xi}Bi=1, MLCPC is equivalent
to B(K + 1)-way B-shot multi-label classification problem as follows:2

I(↵)
MLCPC(f) = E{(xi,y

+
i )}B

i=1⇠PXY

{y�
ij}

K
j=1⇠PY


1

B

BX

i=1

log
ef(xi,y

+
i )

↵
B

PB
i=1 e

f(xi,y
+
i ) + 1�↵

BK

PB
i=1

PK
j=1 e

f(xi,y
�
ij)

�
.

(3)
2Remark that we use slightly different form as in [24] to scale ↵ to be reside in [0, 1).
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4 Variational Estimation of Skew Rényi Divergence

Similar to variational estimators of DKL(PXY kPXPY ) in the previous section, we consider a varia-
tional estimator of Rényi divergence R�(PXY kPXPY ), in particular, considering its application to
contrastive representation learning. To that end, we first introduce the following known lemma which
states variational representation of Rényi divergence similar to the DV objective in (1).
Lemma 4.1 ([17]). For distributions P , Q such that P ⌧ Q, let F be a set of bounded measurable
functions. Then Rényi divergence of order � 2 (0, 1) [ (1,1) admits following variational form:

R�(P kQ) = sup
f2F

I(�)
Renyi(f) for I(�)

Renyi(f) :=
1

� � 1
logEP [e

(��1)f ]� 1

�
logEQ[e

�f ], (4)

where the optimum f⇤ 2 F satisfies f⇤ / log dP
dQ . Also, as � ! 1, (4) becomes DV objective in (1).

4.1 Challenges in variational Rényi divergence estimation

To perform contrastive representation learning, one can use the variational estimator (4) for
R�(PXY kPXPY ), similarly as did for KL divergence. However, the contrastive learning with
(4) is impractical due to the large variance. In Appendix C.2, we show that even for a simple synthetic
Gaussian dataset, (4) is not available due to exploding variance when estimating Rényi divergence
between two highly-correlated Gaussian distributions. This exploding-variance issue of (4) resembles
that of the variational mutual information estimator well observed in the literature [29, 38, 41]. In the
following theorem, we provide an analogous result for the Rényi variational objective (4).
Theorem 4.1. Assume P ⌧ Q, and VarQ[dP/dQ] < 1. Let Pm and Qn be the empirical
distributions of m i.i.d samples from P and n i.i.d samples from Q, respectively. Define

Î(�)
Renyi(f) :=

1

� � 1
logEPm [e(��1)f ]� 1

�
logEQn [e

�f ],

and assume we have f⇤ / log(dP/dQ). Then 8� > 1, 8m 2 N, we have

lim
n!1

n · VarP,Q[Î(�)
Renyi(f

⇤)] � e�
2DKL(P kQ) � �2

e2�(��1)R�(P kQ)
.

The proof of Theorem 4.1 is in Appendix A.1. Theorem 4.1 implies that even though one achieves
the optimal function for variational estimation, the variance of (4) could explode exponentially with
respect to the ground-truth mutual information. This result is coherent with [42], which identified the
problems in variational estimation of mutual information.

On the other hand, we recall that CPC and MLCPC are empirically shown to be low variance
estimators [38, 24]. Then, the natural question arises: what makes CPC and MLCPC fundamentally
different from the DV objective? In the following section, we answer to this question by showing that
the CPC and MLCPC objectives are variational lower bounds of a skew KL divergence, and provide
a theoretical evidence that variational estimators of skew divergence can have low variance. This
insight will be used later for designing a low-variance estimator for the desired Rényi divergence.

4.2 Contrastive learning objectives are variational skew-divergence estimators

We first introduce the definition of ↵-skew KL divergence. For distributions P , Q with P ⌧ Q and
for any ↵ 2 [0, 1], the ↵-skew KL divergence between P and Q is defined by the KL divergence
between P and the mixture ↵P + (1� ↵)Q:

D(↵)
KL (P kQ) := DKL(P k↵P + (1� ↵)Q).

One can see that the DV objective (1) for ↵-skew KL divergence can be written as following:

D(↵)
KL (P kQ) = sup

f2F
EP [f ]� log

�
↵EP [e

f ] + (1� ↵)EQ[e
f ]
�
. (5)

Then following theorem reveals that ↵-CPC and ↵-MLCPC are variational lower bounds of ↵-skew
divergence between PXY and PXPY , D(↵)

�
PXY kPXPY

�
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Theorem 4.2. For any ↵ 2 (0, 1/2), the ↵-CPC and ↵-MLCPC are variational lower bound of
↵-skew KL divergence between PXY and PXPY , i.e., the following holds:

sup
f2F

I(↵)
MLCPC(f) = sup

f2F
I(↵)
CPC (f) = D(↵)

KL (PXY kPXPY )

Here we provide a simple proof sketch and the full proof is in Appendix A.2. From the Jensen’s
inequality, one can see that the variational form in (5) is a lower bound to the ↵-MLCPC. Thus, we
have D(↵)

KL (PXY kPXPY )  supf I
(↵)
MLCPC(f). On the other hand, we also show that I(↵)

MLCPC(f) 
D(↵)

KL (PXY kPXPY ) for all f 2 F . Therefore, we show that ↵-MLCPC is a variational lower bound
of D(↵)

KL (PXY kPXPY ). Note that the same argument holds for ↵-CPC. Remark that Theorem 4.2
implies that ↵-CPC and ↵-MLCPC are strictly loose bounds of mutual information. In particular,
from the convexity of KL divergence, the following holds for any ↵ > 0:

D(↵)
KL (PXY kPXPY )  (1� ↵)DKL(PXY kPXPY ) < DKL(PXY kPXPY ).

Also, Theorem 4.2 reveals that ↵-CPC and ↵-MLCPC can be written as following population form:

I(↵)
CPC (f) = EPXY [f(x, y)]� EPX

⇥
log

�
↵EPY |X [ef(x,y)] + (1� ↵)EPY [e

f(x,y)]
�⇤

I(↵)
MLCPC(f) = EPXY [f(x, y)]� log

�
↵EPXY [e

f(x,y)] + (1� ↵)EPXPY [e
f(x,y)]

�
.

Variational lower bounds of skew-divergence have low variance Further, we formally show
that the variational estimation of empirical skew divergence has low variance, explaining why CPC
and MLCPC objectives become low-variance estimators of the mutual information. The following
theorem shows that the variance of the variational estimator can be adjusted with the right choice of
↵.
Theorem 4.3. Assume P ⌧ Q and VarQ[dP/dQ] <1. Let Pm and Qn be empirical distributions
of m i.i.d samples from P and n i.i.d samples from Q. Then define

Î(↵)
KL (f) = EPm [f ]� log

�
↵EPm [ef ] + (1� ↵)EQn [e

f ]
�
,

and assume that there is f̂ 2 F that |I(↵)
KL (f̂)�D(↵)

KL (Pm kQn)| < "f for some "f > 0. Then for
8↵ < 1/8, the variance of estimator satisfies

VarP,Q

⇥
Î(↵)
KL (f̂)

⇤
 c1"f +

c2(↵)

min{n,m} +
c3 log

2(↵m)

m
+

c4 log
2(c5n)

↵2n
,

for some constants c1, c3, c4, c5 > 0 that are independent of n, m, ↵, and DKL(PkQ), and c2(↵)

satisfies c2(↵) = min{ 1
↵ ,

�2(PkQ)
1�↵ }, where �2(PkQ) = EQ[(dP/dQ)2].

The proof is in Appendix A.3. Since we have �2(PkQ) � eDKL(PkQ) � 1, if ↵ is too small,
the bound in Theorem 4.3 is loose as in Theorem 4.1. Therefore, Theorem 4.3 implies that one
should use sufficiently large ↵ to achieve low variance. Theorem. 4.3 demonstrates that if one can
find a sufficiently close critic for empirical skew KL divergence, the variance of the estimator is
asymptotically bounded unless we choose large enough ↵ = ↵n = !(n�1/2).

4.3 Variational estimation of skew Rényi divergence

Inspired by the theoretical guarantee that skew divergence can achieve bounded variance, we now
present a variational estimator of skew Rényi divergence. Remark that the analogous version of
Theorem 4.3 can be achieved for Rényi divergence (see Appendix A.4). For any ↵ 2 [0, 1] and
� 2 (0, 1) [ (1,1), the ↵-skew Rényi divergence of order � is defined as:

R(↵)
� (P kQ) := R�(P k↵P + (1� ↵)Q).

Then, we define (↵, �)-Rényi Multi-Label CPC (RMLCPC) objective by using the variational lower
bound (4) for ↵-skew Rényi divergence between PXY and PXPY :

I(↵,�)
RMLCPC(f) :=

1

� � 1
logEPXY [e

(��1)f(x,y)]� 1

�
log(↵EPXY [e

�f(x,y)] + (1� ↵)EPXPY [e
�f(x,y)]),
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which satisfies supf I
(↵,�)
RMLCPC(f) = R(↵)

� (PXY kPXPY ) for any ↵ 2 [0, 1] and � 2 (0, 1) [ (1,1).

Note that the RMLCPC objective can be used for contrastive learning with multiple positive views.
For example, when using multi-crops data augmentation [43], instead of computing contrastive
objective for each crop, we gather all positive pairs and negative pairs and compute only once for the
final loss. The pseudo-code for the RMLCPC objective is in Appendix Algorithm 1.

5 Rényi Contrastive Representation Learning

In this section, we present Rényi contrastive learning (RényiCL) where we use the RMLCPC objective
for contrastive representation learning. As we discussed earlier, the Rényi divergence penalizes more
when two distributions differ. Thus, when using harder data augmentations in contrastive learning,
one can expect that RényiCL can learn more discriminative representation.

5.1 Rényi contrastive representation learning

We begin with backgrounds for contrastive representation learning. Given a dataset X , the goal of
representation learning is to train an encoder g : X ! Rd that is a useful feature of X . Especially,
contrastive representation learning enforces g to discriminate between positive pairs and negative
pairs [2], where positive pairs are generated by applying data augmentation on the same data and
negative pairs are augmented data from different source data. Formally, let V, V 0 be random variables
for augmented views from dataset X . Then denote PV V 0 be the joint distribution of a positive pair and
PV PV 0 be the distribution of negative pairs. For the sake of brevity, we denote (z, z+) ⇠ PV V 0 be a
positive pair, and (z, z�) ⇠ PV PV 0 be a negative pair. Also, let z = g(v), z0 = g(v0) be features of
the encoder and Z = g(V ), Z 0 = g(V 0) be corresponding random variables of feature distributions.
Then we define (z, z+) ⇠ PZZ0 be features of positive views, and (z, z�) ⇠ PZPZ0 be features of
negative views.

The InfoMax principle [25] for representation learning aims to find g that preserves the maximal
mutual information between V and V 0 by following:

sup
g:X!Rd

DKL(PZZ0 kPZPZ0) = sup
g:X!Rd

I (Z;Z 0)  I(V ;V 0),

i.e., finds a neural encoder g which discriminates between positive and negative pairs as much as
possible. Here, ↵-CPC or ↵-MLCPC are used for plug-in variational estimators of mutual information,
for example contrastive learning with ↵-MLCPC satisfies following:

sup
g:X!Rd

sup
f2F

I(↵)
MLCPC(f, g) = sup

g:X!Rd

D(↵)
KL (PZZ0kPZPZ0),

since I(↵)
MLCPC(f, g) is a variational estimator of D(↵)

KL (PZZ0kPZPZ0).

Now we present Rényi contrastive representation learning, which considers the following optimization
problem by using skew Rényi divergence:

sup
g:X!Rd

sup
f2F

I(↵,�)
RMLCPC(f, g) = sup

g:X!Rd

R(↵)
� (PZZ0kPZPZ0),

since I(↵,�)
RMLCPC(f, g) is a variational estimator of R(↵)

� (PZZ0kPZPZ0).

5.2 Gradient analysis for RényiCL

In this section, we provide an analysis on the effect of � in RényiCL based on the gradient of
contrastive objectives. For simplicity, we consider the case when ↵ = 0, and we provide general
analysis for ↵ > 0 in Appendix B.1. Let f✓ be a neural network parameterized by ✓. By using the
reparametrization trick, the gradient of IMLCPC(f✓) becomes

r✓IMLCPC(f✓) = Ez,z+ [r✓f✓(z, z
+)]�

Ez,z� [ef✓(z,z
�)r✓f✓(z, z�)]

Ez,z� [ef✓(z,z�)]

= Ez,z+ [r✓f✓(z, z
+)]� Esg(q✓(z,z�))[r✓f✓(z, z

�)],

6



Table 1: Linear evaluation on the ImageNet
validation set. We report pre-training epochs
and Top-1 classification accuracies (%).

Method Epochs Top-1

SimCLR [3] 800 70.4
Barlow Twins [26] 800 73.2
BYOL [47] 800 74.3
MoCo v3 [6] 800 74.6
SwAV [43] 800 75.3
DINO [43] 800 75.3
NNCLR [19] 1000 75.6
C-BYOL [48] 1000 75.6

RényiCL 200 75.3
RényiCL 300 76.2

Table 2: Semi-supervised learning results on ImageNet. We report
Top-1 and Top-5 classification accuracies (%) by fine-tuning a
pre-trained ResNet-50 with 1% and 10% ImageNet datasets.

1% ImageNet 10% ImageNet

Method Top-1 Top-5 Top-1 Top-5

Supervised [3] 25.4 48.4 56.4 80.4
SimCLR [3] 48.3 75.5 65.6 87.8
BYOL [47] 53.2 78.4 68.8 89.0
SwAV [43] 53.9 78.5 70.2 89.9
Barlow Twins [26] 55.0 79.2 69.7 89.3
NNCLR [19] 56.4 80.7 69.8 89.3
C-BYOL [48] 60.6 83.4 70.5 90.0

RényiCL 56.4 80.6 71.2 90.3

where q✓(z, z�) / ef✓(z,z
�) is a self-normalized importance weights [44], and sg is a stop-gradient

operator. Thus, the MLCPC objective is equivalent to following in terms of gradient [45]:
IMLCPC(f✓) = Ez,z+ [f✓(z, z

+)]� Esg(q✓(z,z�))[f✓(z, z
�)]. (6)

This shows that the original contrastive objective performs innate hard negative sampling with
importance weight q✓ [20], as the gradient of negative pairs becomes larger as the value of f✓
becomes larger. On the other hand, for RMLCPC objective, by letting ↵ = 0, and taking gradient
with respect to ✓, we have

r✓I(�)
RMLCPC(f✓) =

Ez,z+ [e(��1)f✓(z,z
+)r✓f✓(z, z+)]

Ez,z+ [e(��1)f✓(z,z+)]
�

Ez,z� [e�f✓(z,z
�)r✓f✓(z, z�)]

Ez,z� [e�f✓(z,z�)]

= Esg(q✓(z,z+;��1))[r✓f✓(z, z
+)]� Esg(q✓(z,z�;�))[r✓f✓(z, z

�)],

where sg(q✓(z, z+; ��1)) / e(��1)f✓(z,z
+) and sg(q✓(z, z�; �)) / e�f✓(z,z

�) are self-normalizing
importance weights for each positive and negative term. Hence, the RMLCPC objective is equivalent
to the following in terms of gradient:

I(�)
RMLCPC(f✓) = Esg(q✓(z,z+;��1))[f✓(z, z

+)]� Esg(q✓(z,z�;�))[f✓(z, z
�)]. (7)

Remark that (6) and (7) have common form that f✓ is maximized for positive pairs and minimized for
negative pairs, which is similar to contrastive divergence [46]. On the other hand, (6) and (7) have
two differences:

• Hard negative sampling: the gradient weighs more on harder negatives, i.e., (z, z�) with
high value of f✓(z, z�), as � increases [20].

• Easy positive sampling: the gradient weighs more on easier positives, i.e., (z, z+) with
high value of f✓(z, z+) as � 2 (1,1) increases.

Therefore, when there are positive views that share task-irrelevant information, the RMLCPC objective
resists updating, and it regularizes the model to ignore task-irrelevant information. The hard negative
sampling with importance weight was proposed in [20], but our analysis shows that CPC and MLCPC
conduct intrinsic hard negative sampling. Also, the Rényi contrastive learning can control the
level of hard negative sampling by choosing the appropriate �. Lastly, remark that our analysis
is given for ↵ = 0, but in practice we use nonzero value of ↵. In Appendix B.1, we show that it
requires sufficiently small values of ↵ to have the effect of easy positive sampling for harder data
augmentations.

6 Experiments

6.1 RényiCL for visual representation learning on ImageNet

Setup. For ImageNet [18] experiments, we use ResNet-50 [49] for encoder g. We use MLP projection
head with momentum encoder [4], which is updated by EMA, and we use predictor, following the
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Table 3: Transfer learning performance on object classification datasets. For Aircraft and Flowers, we report mean
per-class accuracy (%), and for VOC2007, we report 11-point mAP. Otherwise, we report Top-1 classification
accuracies (%).

Method CIFAR10 CIFAR100 Food101 Flowers Cars Aircraft DTD SUN397 VOC2007

Supervised [3] 93.6 78.3 72.3 94.7 66.7 61.0 74.9 61.9 82.8
SimCLR [3] 90.6 71.6 68.4 91.2 50.3 50.3 74.5 58.8 81.4
BYOL [47] 91.3 78.4 75.3 96.1 67.8 60.6 75.5 62.2 82.5
NNCLR [19] 93.7 79.0 76.7 95.1 67.1 64.1 75.5 62.5 83.0

RényiCL 94.4 79.0 78.0 96.5 71.5 61.8 77.3 66.1 88.2

Table 4: Comparison on contrastive self-supervised methods with harder augmentations. We compare Top-1
linear evaluation accuracy (%) on ImageNet, Pets, Caltech101 datasets and few-shot classification accuracy (%)
over 2000 episodes on FC100, CUB200, and Plant disease datasets. † denotes trained without multi-crops. Here,
we consider RényiCL without multi-crops as other baselines do, i.e., for fair comparison.

Linear evaluation 5-way 1-shot 5-way 5-shot

Method Epochs ImageNet Pets Caltech101 FC100 CUB200 Plant FC100 CUB200 Plant

InfoMin [14] 800 73.0 86.37 88.48 31.80 53.81 66.11 45.09 72.20 84.12
CLSA [59] 800 72.2 85.18 91.21 34.46 50.83 67.39 49.16 67.93 86.15

RényiCL† 200 72.6 88.43 94.04 36.31 59.73 80.68 53.39 82.12 94.29

practice of [47, 6]. Then the critic f is implemented by the cosine similarity between the output of
momentum encoder and base encoder with predictor, divided by temperature ⌧ = 0.5. We maximize
RMLCPC objective with � = 2.0.

Data augmentation. Given the popular data augmentation baseline [47, 3], we further use RandAug-
ment [50] and multi-crop augmentation [43] to implement harder data augmentation. When using
multi-crop, we gather all positives and negatives, then directly compute the RMLCPC objective,
which differs from the original method in [43] (see 1 in Appendix B.1).

Linear evaluation. We follow the linear evaluation protocol, where we report the Top-1 ImageNet
validation accuracy (%) of a linear classifier trained on the top of frozen features. Table 1 compares
the performance of different self-supervised methods using linear evaluation protocol. First, RényiCL
outperforms other self-supervised methods with a large margin by only training for 300 epochs.
Meanwhile, RényiCL enjoys better computational efficiency in that it does not require a large batch
size [3, 47, 43, 6] or extra memory queue [19].

Semi-supervised learning. We evaluate the usefulness of the learned feature in a semi-supervised
setting with 1% and 10% subsets of ImageNet dataset [3, 43]. The results are in Table 2. We observe
that RényiCL achieves the best performance on fine-tuning with 10% subset, and runner-up on
fine-tuning with 1% subset, showing the generalization capacity in low-shot learning scenarios.

Transfer learning. We evaluate the learned representation through the performance of transfer learn-
ing on fine-grained object classification datasets by using linear evaluation. We use CIFAR10/100 [51],
Food101 [52], Flowers [53], Cars [54], Aircraft [55], DTD [56], SUN397 [57], and VOC2007 [58].
In Table 3, we compare it with other self-supervised methods. Note that RényiCL achieves the best
performance in 8 out of 9 datasets, especially showing superior performance on SUN397 (3.6%) and
VOC2007 (5.2%) datasets.

Comparison among self-supervised methods using hard augmentations. To demonstrate the
effectiveness of RényiCL on learning with harder augmentations, we compare with InfoMin [14] and
CLSA [59] where they also use harder augmentations for contrastive representation learning. Table 4
demonstrates the performance of representations learned with different self-supervised methods
by linear evaulation on ImageNet [18], Pets [60], Caltech101 [61], and few-shot classification on
FC100 [62], Caltech-UCSD Birds (CUB200) [50], and Plant Disease [63] datasets. While RényiCL
achieves slightly lower performance than InfoMin on ImageNet validation accuracy, it outperforms
InfoMin and CLSA on other transfer learning tasks with a large margin, which indicates the superiority
of RényiCL on learning better representations under the hard data augmentations.
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Table 5: Ablation on contrastive objectives for unsupervised representation learning on image (ImageNet-100,
CIFAR-100, CIFAR-10) and tabular (CovType, Higgs-100K) datasets. We report Top-1 accuracy (%) with linear
evaluation. Average over 5 runs.

ImageNet-100 CIFAR-100 CIFAR-10 CovType Higgs-100K

Method Base Hard Base Hard Base Hard Base Hard Base Hard

CPC 79.7 81.1(+1.4) 65.4 67.1(+1.7) 91.7 91.9(+0.2) 71.6 74.3(+2.7) 64.7 71.3(+6.6)
MLCPC 79.5 81.2(+1.7) 65.6 66.6(+1.0) 91.9 92.1(+0.2) 71.7 74.1(+2.4) 64.9 71.5(+6.6)
RMLCPC 78.9 81.6(+2.7) 64.5 68.5(+4.0) 90.7 92.5(+1.8) 72.1 74.9(+2.8) 64.5 72.4(+7.9)

Table 6: Comparison of different contrastive learning methods on graph TUDataset. Average over 5 runs.

Method NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

InfoGraph [72] 76.20 74.44 72.85 89.01 70.65 82.50 53.46 73.03
GraphCL [15] 77.87 74.39 78.62 86.80 71.36 89.53 55.99 71.14
JOAO [73] 78.07 74.55 77.32 87.35 69.50 85.29 55.74 70.21
JOAOv2 [73] 78.36 74.07 77.40 87.67 69.33 86.42 56.03 70.83

RényiCL 78.60 75.11 78.98 90.22 71.88 90.92 56.18 72.38

6.2 RényiCL for representation learning on various domains

Setup. We perform ablation studies of RényiCL on various domains such as images, tabular, and
graph datasets. For images, we consider CIFAR-10/100 [51] and ImageNet-100 [64], which is a 100-
class subset of ImageNet [18]. For the base data augmentation, we use a popular benchmark from [3],
and for the harder augmentation, we further apply RandAugment [50] and RandomErasing [65].
For ImageNet-100, we use the default settings of [6] with ResNet-50 backbone with only change
in learning objective. For CIFAR-10 and CIFAR-100, we follow the settings in [3] with ResNet-18
backbone adjusted for the CIFAR dataset. We use same ↵ for all CPC, MLCPC, RMLCPC, and use
� = 2.0 for RMLCPC.

For tabular experiments, we use Forest Cover Type (CovType) and Higgs Boson (Higgs) [66] dataset
from UCI repository [67]. Due to its massive size, we consider a subset of 100K for the Higgs
experiments. Since the tabular dataset has limited domain knowledge, we do not use any data
augmentation for the baseline and when using data augmentation, we use random masking noise [68]
for the Higgs dataset and random feature corruption [69] for the CovType dataset. We follow the
settings of MoCo v3 [6] except that a 5-layer MLP is used for the backbone. We use � = 1.1 for
CovType and � = 1.2 for Higgs. For evaluation, we use linear evaluation for CovType and we
compute the linear regression layer by pseudo-inverse between the feature matrix and label matrix.

Lastly, we examine RényiCL on graph TUDataset [70], which contains numerous graph machine
learning benchmarks of different domains such as bioinformatics, molecules, and social network. We
follow the experimental setup of [15]: we use graph isomorphism network [71] backbone and use
node dropout, edge perturbation, attribute masking, and subgraph sampling for data augmentations.
For the graph experiments, we do not change the strength of data augmentation nor add new data
augmentation. The detailed hyper-parameters for training and evaluation for the whole dataset can be
found in Appendix B.3.

Results. Table 5 compares the Top-1 linear evaluation accuracy (%) of representations with different
contrastive learning objectives. We observe that RMLCPC obtains the best performance when using
harder data augmentations on all images and tabular datasets. Also, RMLCPC has the largest gain
on using harder augmentation, showing that the effectiveness of RényiCL is amplified when we
use stronger augmentation. Table 6 compare the Top-1 linear evaluation accuracy (%) of graph
RényiCL with other graph contrastive learning methods. Even without harder data augmentation,
RényiCL achieves the best performance in 7 out of 8 benchmarks. Especially, RényiCL outperforms
JOAO [73], where the views are learned to boost the performance of graph contrastive learning.
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6.3 Mutual information estimation and view selection

Remark that CPC and MLCPC are intrinsically high-bias mutual information estimator as ↵-skew
KL divergence is strictly smaller than original KL divergence for 0 < ↵ < 1, i.e.,

D(↵)
KL (PkQ)  (1� ↵)DKL(PkQ) < DKL(PkQ),

from the convexity of KL divergence. Similarly, RMLCPC is also a strictly-biased estimator of
Rényi divergence. However, one can recover the original mutual information by using the optimal
condition of function f from all CPC, MLCPC, and RMLCPC objectives [29]. Here, we describe
the sketch and present detailed method in Appendix C.1. From the optimality condition of (1)
and (4), the optimal critic f⇤ of ↵-CPC, ↵-MLCPC and (↵, �)-RMLCPC of any � satisfies f⇤ /
log dPXY

↵dPXY +(1�↵)dPXdPY
, then we use Monte-Carlo method [44] to approximate log-normalization

constant, and use it to approximate the log-density ratio r̂ = log dPXY
dPXdPY

. Then we estimate the
mutual information by Î(X;Y ) = 1

B

PB
i=1 log r̂(xi, yi), where (xi, yi) ⇠ PXY are positive pairs.

Mutual information estimation of synthetic Gaussian. Following [38, 24], we conduct experi-
ments on estimating the mutual information of multivariate Gaussian distributions. In Appendix C.2,
we show that while ↵-CPC, ↵-MLCPC, and (↵, �)-RMLCPC objectives are high biased objectives,
one can achieve low bias, low variance estimator by using the approximation method above.

7 Conclusion and Discussion

We propose Rényi Contrastive Learning (RényiCL) which utilizes Rényi divergence to deal with
stronger data augmentations. Since the variational lower bound of Rényi divergence is insufficient
for contrastive learning due to large variance, we introduce a variational lower bound of skew Rényi
divergence, namely Rényi-MLCPC. Indeed, we show that CPC and MLCPC are variational forms of
skew KL divergence, and provide theoretical analysis on how they achieve low variance. Through
experiments, we validate the effectiveness of RényiCL by using harder data augmentations.

Limitations and future works. While RényiCL is beneficial when using harder data augmentations,
we did not identified the optimal data augmentation strategy. One can use policy search method on
data augmentation [74] with our RényiCL similar to that of [75]. Also, we think that the proposed
scheme based on Rényi divergence could be useful for other tasks, e.g., information bottleneck [76].
Lastly, many works focused on the diverse perspectives of contrastive learning [45, 77, 78], where
those approaches could be complementary to our work. We leave them for future works.

Negative societal impacts. Since contrastive learning often requires long epochs of training, it raises
environmental concerns, e.g. carbon generation. Nevertheless, RényiCL is shown to be effective even
under a smaller number of epochs, compared to existing schemes.
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