
Supplement

Yang Song∗

Nanyang Technological University
C3 AI

yang.song@c3.ai

Qiyu Kang∗
Nanyang Technological University

kang0080@e.ntu.edu.sg

Sijie Wang∗
Nanyang Technological University

wang1679@e.ntu.edu.sg

Kai Zhao∗

Nanyang Technological University
kai.zhao@ntu.edu.sg

Wee Peng Tay
Nanyang Technological University

wptay@ntu.edu.sg

In Section S1 of this supplementary material, we provide more details about the datasets used in our
main paper. We briefly describe the attack settings in Section S2. More experiments and ablation
studies that are not included in the main paper due to space constraints are now presented in Section S3.
We include supplemental experiments with more datasets in Section S4. Further ablation studies of
our model are also presented in Section S5. In addition, we present an extension of mean curvature
and Beltrami flows in Section S6. Additional implementation details of the models are provided in
Section S7. The proofs for all theoretical results in the main paper are given in Section S8.

S1 Datasets

In our main paper, we conduct experiments using the first three datasets in Table S1: Cora (citation
networks) [1], Citeseer (citation networks) [2] and PubMed (biomedical literature) [3]. In this supple-
mentary material, we conduct further experiments using the other three datasets in Table S1: Flickr
(social networks) [4], Coauthor (academic networks) [5] and Amazon Computer (recommendation
networks) [6]. We use a refined version of these datasets provided by [7], where the main statistics
are summarized in Table S1. The features in these datasets are normalized by an arctan (bijective)
transformation [7], which permits attackers to restore the original features and thus allows real-world
adversarial attacks.

Table S1: Statistic of Datasets

Dataset # Nodes # Edges # Features # Classed Feature Range (norm)

Cora 2,680 5,148 302 7 −0.94 ∼ 0.94

Citeseer 3,191 4,172 768 6 −0.96 ∼ 0.89

PubMed 19,717 44,325 500 3 −0.14 ∼ 0.99

Coauthor 18,333 81,894 6,805 15 −0.04 ∼ 1.00

Flickr 89,250 449,878 500 7 −0.47 ∼ 1.00

Amazon Computer 13,752 245,861 767 10 −0.40 ∼ 0.60

∗Equal contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

S2 Attack Settings

There are three common categories of adversarial attacks studied in the literature [7]:

• Poison (attack occurs in training) or evasion (attack occurs in testing).

• White-box (attackers knows target model/method) or black-box (attackers do not know
target model/method and thus need to attack a surrogate model and then transfer to target
model).

• Injection (attackers inject nodes/edges to the original graph and generate attributes for the
injected nodes) or modification (attackers modify the original graph including its topology
and node features directly).

Our experiments in the main paper mainly focus on the evasion, black-box, and injection attack
setting, which we believe are the most realistic attack settings. The two selected attack methods SPEIT
and TDGIA are tailored for these attack settings. To be more specific, we carry out the following:

• Evasion: SPEIT and TDGIA are performed on a trained model during testing time.

• Black-box: SPEIT and TDGIA are used to attack a trained GCN, i.e., a surrogate model, to
generate graph perturbations, and then the target model is tested on this perturbed graph.

• Injection: when perturbing the graph based on a trained GCN, SPEIT and TDGIA first inject
new nodes into the original graph and then generate the injected nodes’ features.

In this supplementary material, we include more attack settings such as white-box attacks and modifi-
cation attacks. Further experiments to test graph PDE robustness against node attribute perturbation
are also included.

S3 More Experiments and Ablation Studies

We include more experiments and ablation studies that are not included in the main paper due to space
constraints. More specially, in this section, we conduct experiments to study the effect of the Lipschitz
constraint and the number of layers, inference time complexity, more injection attacks including
evasion white-box injection attacks and attacks with various attack strengths, and the modification
attackers which modify the original graph including its topology and node features directly.

Our codes are developed based on the following two repositories:

• https://github.com/twitter-research/graph-neural-pde and

• https://github.com/THUDM/grb,

where the new diffusion schemes and their induced neural PDEs are developed based on the first
repository and we follow the second repository to set up the robustness evaluation benchmark.

S3.1 PDE Solvers

The impact of PDE solvers on the performance can be observed in Table S2. The adaptive step-size
solver Dopri5 performs better than the fixed-step solvers (Implicit/Explicit Adam) at the cost of higher
computational complexity. For fixed-step solvers, increasing the step size τ reduces the variance. For
sufficiently large step sizes, the implicit method converges faster than the explicit method.

S3.2 Lipschitz Constraint and Number of Layers

On one hand, keeping as few layers as possible can mitigate the over-smoothing problem. On the
other hand, too few layers result in the underfitting problem, i.e., the test clean accuracy is low. To
understand this better, we performed experiments using a different number of layers. The results are
summarized in Table S3. The number of layers is a hyperparameter we tune during training.

We have tried using the same number of layers for GRAND/BLEND as in their paper. However,
the test clean accuracy is low. This is mainly due to two reasons: 1) we are using the inductive

2

https://github.com/twitter-research/graph-neural-pde
https://github.com/THUDM/grb

Table S2: Node classification accuracy (%) using graph neural PDEs induced from Beltrami flow,
when different PDE solvers are applied. Experiments are conducted on Citeseer dataset.

PDE solvers Param. Clean SPEIT TDGIA

Implicit Adam τ = 1 70.59 ± 2.26 64.64 ± 2.60 65.62 ± 0.96
τ = 2 70.14 ± 1.80 66.46 ± 1.33 65.77 ± 1.28
τ = 10 70.22 ± 0.70 64.14 ± 1.00 65.75 ± 1.65

Explicit Adam τ = 1 69.72 ± 1.14 62.88 ± 2.70 64.81 ± 1.62
τ = 2 69.59 ± 0.92 65.05 ± 1.39 65.38 ± 1.35
τ = 10 69.91 ± 0.96 64.76 ± 1.34 65.52 ± 3.17

Dopri5 - 70.91 ± 0.98 66.96 ± 1.46 67.01 ± 1.94

Table S3: Node classification accuracy (%) on adversarial examples generated from SPEIT. We apply
graph neural PDEs induced from Beltrami flow with or without the Lipschitz constraint. Experiments
are conducted on Cora dataset.

Clean/Robust acc. # layers used Beltrami Beltrami w/o Lips.

Clean

1 63.96 ± 1.95 63.51 ± 3.18
2 72.46 ± 0.76 69.93 ± 1.48
3 73.51 ± 1.49 72.69 ± 1.89
4 75.93 ± 1.46 75.15 ± 1.41

Robust

1 59.10 ± 3.20 58.06 ± 1.78
2 63.58 ± 1.39 58.96 ± 2.82
3 60.52 ± 1.56 57.46 ± 1.65
4 61.87 ± 0.49 56.79 ± 1.52

setting whereas the paper of GRAND/BLEND uses transductive training; 2) the datasets we are using
have been calibrated for the robustness evaluation, which is different from the original datasets used
by the paper of GRAND/BLEND. For example, grb-cora [7] has node feature size of 302 while
the original Cora dataset has node feature size of 1433. Table S3 provides empirical evidence for
GRAND/BLEND needing more layers in our setting.

S3.3 Time Complexity

We have summarized the time complexity in Table S4. The time is computed by averaging 500
diffusion operations. We can see that Beltrami and GRAND/BLEND have similar time complexity to
the two defenders GNNGuard and GCNSVD small step sizes but incur more computation time than
the other GNNs to complete a diffusion process. Heat, unlike Beltrami and GRAND/BLEND, does
not use attention and has the lowest time complexity among all the neural PDEs.

S3.4 White-Box Attacks

We now include the white-box attacks for our model and the baselines. The results are shown in
Table S5. We observe that our model outperforms the baselines under white-box attacks. The results
further validate that neural PDEs are intrinsically robust to graph topology perturbations, as indicated
by Proposition 1 and Lemma S1.

S3.5 Injection Attacks with Various Attack Strengths

Under injection attacks with a different number of injection nodes and edges, we have performed
more experiments with various attack strengths. Table S6 shows that the robustness is not significantly
affected by the number of nodes and edges injected by attackers as the original is not perturbed in
this setting.

3

Table S4: Top: Average time spent on a Beltrami diffusion process, i.e., time to solve (17) and a
counterpart in GRAND/BLEND, when different PDE solvers are applied and multiple step size
options are tested for each solver. Bottom: Average time spent on an aggregation step using different
GNNs. Experiments are conducted on the Citeseer dataset.

PDE solvers Param. Beltrami GRAND/BLEND Heat

Implicit Adam
τ = 1 9.8ms 6.6ms 3.0ms
τ = 2 17.0ms 11.2ms 4.0ms
τ = 10 48.1ms 46.6ms 9.2ms

Explicit Adam
τ = 1 10.0ms 6.8ms 3.0ms
τ = 2 16.8ms 11.2ms 3.6ms
τ = 10 32.6ms 21.0ms 5.8ms

Dopri5 - 66.0ms 20.0ms 13.0ms

RobustGCN GNNGuard GCNSVD GAT GraphSAGE GIN APPNP

0.6ms 13.2ms 9.0ms 1.8ms 0.8ms 1.0ms 1.6ms

Table S5: Node classification accuracy (%) on adversarial examples generated from white-box attacks.
The best and the second-best result for each criterion are highlighted in red and blue, respectively.

Dataset Attack BeltramiGuard Beltrami RobustGCN GNNGuard GCNSVD GAT GraphSAGE GIN APPNP

Cora
clean 73.01 ± 2.01 75.93 ± 1.46 81.34 ± 0.66 79.44 ± 1.18 69.28 ± 1.37 79.74 ± 1.59 76.75 ± 1.52 76.79 ± 1.35 83.06 ± 1.06

SPEIT 71.94 ± 0.31 48.95 ± 3.32 36.12 ± 0.31 80.22 ± 0.91 33.06 ± 7.86 19.18 ± 9.47 17.16 ± 11.30 21.49 ± 13.08 19.77 ± 10.39
TDGIA 67.39 ± 1.97 52.61 ± 4.20 36.27 ± 0.61 78.43 ± 1.10 11.94 ± 0.0 7.99 ± 4.40 21.57 ± 4.82 38.06 ± 4.69 51.94 ± 5.32

Citeseer
clean 69.90 ± 0.44 70.41 ± 1.38 70.72 ± 1.15 69.69 ± 1.83 66.93 ± 1.07 69.81 ± 1.43 69.78 ± 1.31 68.81 ± 1.58 70.75 ± 0.86

SPEIT 68.78 ± 0.82 55.24 ± 6.90 20.19 ± 2.61 69.22 ± 1.90 19.31 ± 3.55 14.67 ± 5.05 19.81 ± 3.06 12.54 ± 6.33 20.75 ± 2.32
TDGIA 67.96 ± 1.22 53.61 ± 14.01 18.68 ± 4.06 68.40 ± 1.44 16.93 ± 2.41 14.23 ± 5.05 20.69 ± 5.64 18.87 ± 3.61 25.70 ± 6.78

PubMed
clean 87.77 ± 0.14 86.94 ± 0.25 75.55 ± 0.32 84.80 ± 0.51 - 84.91 ± 0.76 89.22 ± 0.25 76.71 ± 0.14 77.50 ± 0.54

SPEIT 85.26 ± 1.42 85.13 ± 0.79 75.07 ± 0.30 84.30 ± 1.34 - 39.22 ± 0.0 40.46 ± 1.69 75.58 ± 1.03 77.62 ± 0.10
TDGIA 81.36 ± 3.09 84.88 ± 0.46 75.78 ± 0.32 83.33 ± 2.91 - 37.96 ± 1.82 44.85 ± 3.06 75.72 ± 0.70 77.32 ± 0.44

Table S6: Node classification accuracy (%) on adversarial examples generated from SPETI and
TDGIA under black-box injection setting where a different number of injected nodes and edges are
applied.

Dataset Attack # nods/edges injected Beltrami RobustGCN GNNGuard GCNSVD GAT GraphSAGE GIN APPNP

Cora

SPEIT 50/50 61.87 ± 0.49 36.16 ± 0.41 78.50 ± 2.27 37.50 ± 0.74 38.10 ± 2.48 35.82 ± 0.01 35.82 ± 0.01 36.79 ± 0.61
SPEIT 100/100 57.18 ± 1.68 35.82 ± 0.00 79.39 ± 1.41 35.82 ± 0.00 37.22 ± 1.87 35.82 ± 0.00 35.82 ± 0.00 35.82 ± 0.00
SPEIT 150/150 55.88 ± 0.56 35.82 ± 0.00 80.78 ± 0.71 35.82 ± 0.00 26.12 ± 16.29 35.82 ± 0.00 35.82 ± 0.00 29.85 ± 11.94
SPEIT 200/200 58.21 ± 2.81 35.82 ± 0.00 79.38 ± 0.64 29.88 ± 11.96 29.85 ± 11.94 35.82 ± 0.00 35.82 ± 0.00 22.30 ± 15.83
TDGIA 50/50 62.84 ± 1.17 53.28 ± 8.61 78.92 ± 1.80 40.77 ± 3.34 35.64 ± 12.91 39.78 ± 6.46 39.63 ± 2.38 60.52 ± 4.43
TDGIA 100/100 62.44 ± 1.56 54.11 ± 3.18 77.99 ± 2.24 42.29 ± 0.43 36.94 ± 16.96 34.24 ± 9.99 37.03 ± 1.59 62.50 ± 3.47
TDGIA 150/150 64.18 ± 0.87 52.43 ± 10.84 79.39 ± 1.74 11.94 ± 0.00 39.74 ± 16.09 38.34 ± 1.48 35.82 ± 0.00 61.37 ± 7.07
TDGIA 200/200 61.48 ± 1.68 48.88 ± 6.60 80.78 ± 1.89 11.94 ± 0.00 46.74 ± 12.70 38.34 ± 2.50 36.19 ± 0.75 61.10 ± 0.98

Citeseer

SPEIT 50/50 65.52 ± 2.26 28.56 ± 7.87 69.72 ± 1.84 21.16 ± 1.32 26.00 ± 11.14 19.75 ± 1.82 23.54 ± 5.30 22.19 ± 0.86
SPEIT 100/100 64.74 ± 1.27 17.01 ± 6.05 69.51 ± 1.61 19.75 ± 2.56 19.12 ± 1.47 18.81 ± 2.74 20.61 ± 2.39 20.53 ± 1.57
SPEIT 150/150 65.13 ± 2.27 20.69 ± 1.49 70.22 ± 1.63 18.18 ± 1.81 18.97 ± 1.57 18.34 ± 1.63 19.75 ± 0.00 19.75 ± 0.00
SPEIT 200/200 64.11 ± 0.83 15.52 ± 7.19 69.36 ± 1.29 18.96 ± 3.00 19.12 ± 1.26 22.10 ± 5.11 21.16 ± 4.97 17.71 ± 1.37
TDGIA 50/50 65.77 ± 1.28 38.81 ± 10.84 69.50 ± 1.86 20.77 ± 2.52 19.63 ± 6.53 28.77 ± 7.73 28.65 ± 5.08 54.48 ± 8.56
TDGIA 100/100 65.60 ± 1.68 45.61 ± 6.75 66.22 ± 5.44 25.39 ± 6.33 25.08 ± 10.21 35.81 ± 11.99 29.94 ± 7.26 52.74 ± 6.48
TDGIA 150/150 66.22 ± 2.31 39.66 ± 15.80 69.36 ± 0.90 24.14 ± 3.21 19.36 ± 2.14 26.57 ± 9.28 27.51 ± 6.69 59.01 ± 3.93
TDGIA 200/200 64.66 ± 2.15 38.48 ± 9.63 69.91 ± 1.54 26.49 ± 4.14 22.33 ± 11.29 26.72 ± 13.41 26.73 ± 7.47 51.72 ± 5.06

PubMed

SPEIT 300/300 86.66 ± 0.68 75.54 ± 0.54 84.36 ± 0.58 - 40.94 ± 2.47 39.22 ± 0.00 76.71 ± 0.14 77.55 ± 0.54
SPEIT 600/600 86.80 ± 0.98 75.71 ± 0.60 86.47 ± 0.58 - 34.8 ± 10.99 41.10 ± 1.63 76.36 ± 0.65 77.22 ± 0.43
SPEIT 900/900 87.10 ± 0.38 76.00 ± 0.35 86.73 ± 0.48 - 39.99 ± 1.55 40.78 ± 1.77 76.73 ± 0.36 77.14 ± 0.70
SPEIT 1200/1200 87.51 ± 0.58 74.75 ± 0.90 86.19 ± 0.40 - 40.82 ± 1.85 40.08 ± 1.63 76.70 ± 0.72 77.17 ± 0.32
TDGIA 300/300 85.56 ± 0.91 75.53 ± 0.36 84.00 ± 1.12 - 39.78 ± 0.29 60.40 ± 11.23 77.58 ± 0.71 77.45 ± 0.68
TDGIA 600/600 86.33 ± 0.84 75.84 ± 0.23 84.21 ± 0.33 - 56.00 ± 9.13 70.24 ± 20.07 76.38 ± 0.75 77.37 ± 0.31
TDGIA 900/900 87.00 ± 1.47 75.91 ± 0.55 83.87 ± 1.01 - 41.44 ± 10.61 52.40 ± 6.03 75.56 ± 0.58 76.88 ± 0.68
TDGIA 1200/1200 86.87 ± 1.41 75.62 ± 0.82 84.35 ± 2.24 - 57.16 ± 10.92 71.72 ± 14.02 76.49 ± 0.80 77.23 ± 0.46

4

S3.6 Modification Attacks

In the modification attack, attackers can directly flip the original graph’s edges and perturb the features
of the nodes. We apply the PGD method to randomly flip edges and then perturb node features. In
Table S7, we observe that

1) the robustness performance starts to break down when the 60% of nodes have their features
perturbed by ϵ = 0.1 (the value of features is in [-1,1]) and 60% of edges are flipped, and

2) as long as feature perturbation is small, the robustness can still be retained even if 80% of
nodes have their features perturbed and 80% of edges are flipped.

In summary, from those extensive experiment results, we observe that our models are more robust
against topology perturbation than feature perturbation.

Table S7: Node classification accuracy (%) on adversarial examples generated from PGD under
black-box modification setting where a different number of modified nodes and edges are applied.
Experiments are conducted on Cora dataset.

Ratio of nodes/edges modified Feature perturbation Beltrami

20%/20% ϵ = 0.01 73.73 ± 0.86
40%/40% ϵ = 0.01 73.28 ± 1.36
60%/60% ϵ = 0.01 72.46 ± 1.48
80%/80% ϵ = 0.01 72.31 ± 2.46
20%/20% ϵ = 0.1 61.56 ± 1.06
40%/40% ϵ = 0.1 52.15 ± 2.31
60%/60% ϵ = 0.1 44.03 ± 0.79
80%/80% ϵ = 0.1 40.30 ± 0.91
80%/80% ϵ = 1 39.55 ± 3.46
80%/80% ϵ = 2 37.09 ± 3.02
80%/80% ϵ = 5 37.16 ± 1.88
80%/80% ϵ = 10 37.16 ± 0.33

S3.7 More Discussion about Neural Heat Diffusion

“Heat” in Table 3 of the main paper serves as a baseline. Recall that both “Heat” and GRAND/BLEND
are derived from heat flow, where GRAND/BLEND uses the attention function to weigh edges while
“Heat” uses the constant function, which is not learned from the data and hence is not expected to
perform well. In a further experiment, we now treat the constant in “Heat” as a trainable variable
that is shared by all edges. We denote this new variant as Heat+ and compare it with GAT and
APPNP (which were more robust than "Heat") under SPEIT attack in Table S8. We now see that
Heat+ is more robust. This constant variable controls the diffusivity on the graph, analogous to the
thermal diffusivity on a manifold. It is interesting to observe such a phenomenon since the experiment
indicates that heat diffusivity also affects robustness. We believe further investigations in this direction
can be performed in future work.

Table S8: Node classification accuracy (%) on adversarial examples generated from SPEIT.

Dataset GNN Clean 10/10 15/15 20/20 25/25 30/30 35/35 40/40 45/45 50/50

Citeseer
Heat+ 69.78 ± 0.95 69.09 ± 1.61 67.77 ± 1.61 66.27 ± 2.41 66.27 ± 2.81 64.26 ± 1.27 61.88 ± 3.01 57.30 ± 4.07 54.61 ± 5.25 54.61 ± 2.92
GAT 69.81 ± 1.43 60.56 ± 4.77 62.01 ± 4.89 45.52 ± 10.44 30.34 ± 5.40 31.16 ± 6.16 31.03 ± 12.60 36.11 ± 13.85 23.13 ± 3.25 26.00 ± 11.14

APPNP 70.75 ± 0.86 68.65 ± 0.91 66.52 ± 2.90 59.87 ± 3.49 56.11 ± 9.70 56.05 ± 2.37 51.22 ± 8.88 38.50 ± 8.75 31.60 ± 9.80 22.19 ± 0.86

S4 Further Experiments

We repeat the experiments in Table 1 in the main paper but using the three new datasets. The inherent
robustness of the proposed graph neural PDEs is again verified by Table S9, especially on the Flickr
and Coauthor datasets.

5

Table S9: Node classification accuracy (%) on adversarial examples generated by the SPEIT method.
We denote those experiments that are computationally too heavy to run by “-”. The best and the
second-best result for each criterion are highlighted in red and blue, respectively.

Dataset Attack Beltrami RobustGCN GNNGuard GCNSVD GAT GraphSAGE GIN APPNP

Flickr clean 49.40 ± 0.12 47.66 ± 0.00 - - 54.45 ± 0.57 53.50 ± 0.02 53.57 ± 0.29 54.08 ± 0.14
SPEIT 49.79 ± 0.68 6.57 ± 0.00 - - 6.57 ± 0.00 49.71 ± 0.00 49.71 ± 0.00 6.57 ± 0.00
TDGIA 49.47 ± 0.50 52.95 ± 1.58 - - 50.38 ± 0.20 50.21 ± 0.11 50.14 ± 0.25 54.28 ± 0.59

Coauthor clean 95.83 ± 0.30 87.75 ± 0.23 92.56 ± 0.16 - 92.75 ± 0.15 94.53 ± 0.21 84.91 ± 0.32 87.67 ± 0.16
SPEIT 94.83 ± 0.12 87.62 ± 0.29 92.56 ± 0.16 - 2.59 ± 1.46 39.44 ± 13.97 39.44 ± 13.97 87.66 ± 0.16
TDGIA 95.06 ± 0.21 87.3 ± 0.29 - - 65.32 ± 13.04 87.97 ± 3.72 85.12 ± 0.33 87.54 ± 0.13

Amazon Computer clean 87.86 ± 0.30 86.22 ± 0.54 88.77 ± 0.05 74.79 ± 0.68 89.21 ± 0.60 89.92 ± 0.33 86.44 ± 0.23 82.66 ± 1.54
SPEIT 84.90 ± 0.61 86.33 ± 0.62 88.62 ± 0.05 26.79 ± 1.25 26.88 ± 16.68 29.19 ± 9.35 86.44 ± 0.23 82.62 ± 1.55
TDGIA 85.50 ± 0.15 86.69 ± 0.51 - - 55.45 ± 23.07 63.14 ± 10.59 86.65 ± 0.57 83.44 ± 1.59

S5 Further Ablation Studies

We repeat the experiments in Table 3 of the main paper but using three new datasets. Similar to what
we have stated in the main paper, we observe the advantage of the proposed mean curvature flow and
Beltrami flow in terms of robustness against adversarial attacks.

Table S10: Node classification accuracy (%) on adversarial examples using graph neural PDEs
induced from different flows, where implicit Adam PDE solver with step size 2 is used.

Dataset Attack Beltrami Mean Curvature GRAND/BLEND Heat

Coauthor
clean 95.81 ± 0.38 95.66 ± 0.18 94.35 ± 0.33 92.87 ± 0.55

SPEIT 95.10 ± 0.35 95.41 ± 0.28 66.63 ± 9.76 34.18 ± 8.85
TDGIA 95.06 ± 0.21 95.41 ± 0.17 85.97 ± 4.50 62.39 ± 15.96

Amazon Computer
clean 87.86 ± 0.30 87.59 ± 0.44 90.59 ± 0.35 90.59 ± 0.57

SPEIT 84.90 ± 0.61 84.55 ± 1.03 75.91 ± 12.22 46.82 ± 14.42
TDGIA 85.50 ± 0.15 85.34 ± 0.78 86.31 ± 2.50 76.60 ± 10.48

Flickr
clean 49.42 ± 0.12 47.66 ± 1.51 48.52 ± 0.19 46.65 ± 1.30

SPEIT 49.76 ± 0.63 49.74 ± 1.18 49.75 ± 0.06 49.70 ± 0.02
TDGIA 49.47 ± 0.50 47.39 ± 1.43 48.63 ± 0.09 47.05 ± 1.20

S6 Extension

The graph Laplacian and curvature can be generalized to an operator that can be thought of as the
discrete analog of the p-Laplacian in the continuous case [8, 9]:

∂φ(u, t)

∂t
=

1

2
div

(
∥∇φ∥p−2∇φ

)
(u, t), (S1)

where p = 1, 2 correspond to the mean curvature and heat (GRAND/BLEND) equations, respectively.
Here, we consider the cases where p > 2. Note that when p > 2, as opposed to the cases where
p ≤ 1, e.g., p = 1 for mean curvature and Beltrami flows, the edges that connect nodes with similar
features are potentially preserved in the diffusion process. Table S11 shows that the PDE’s robustness
decreases as p increases.

Table S11: Node classification accuracy (%) on adversarial examples using graph neural PDEs
induced from p-Laplacian flow where p = 3, 4, where implicit Adam PDE solver with step size 2 is
used. All experiments are done on Citeseer dataset.

Attack p-Laplacian (p = 3) p-Laplacian (p = 4) Mean Curvature Beltrami

clean 69.15 ± 1.37 67.27 ± 1.14 70.50 ± 1.63 70.41 ± 1.38
SPEIT 63.76 ± 0.85 62.44 ± 1.14 65.39 ± 1.62 65.52 ± 2.26
TDGIA 64.89 ± 0.77 63.39 ± 2.00 66.83 ± 1.59 65.77 ± 1.28

6

S7 Implementation Details

By default, all the models are implemented using three layers, with layer normalization, 50% dropout
at the end of each layer, and hidden feature dimensions 64− 64. Here are some notes that should be
taken:

• When dealing with the Cora dataset, PDEs induced by Beltrami and mean curvature flows
tend to underfit. Thus, we implement them using four layers with hidden feature dimensions
128− 128− 128.

• For all neural PDEs, node features are diffused independently over layers, i.e., each layer
solves its own PDE. At each layer, once a diffusion process is over, the parameters in the
associated PDE are reset. This operation is effective to alleviate the overfitting problem.

• By default, the integral period for all PDEs is set to [0, 1].

All experiments are repeated 5 to 10 times with different random seeds.

For all the attacks, the maximum number of nodes and edges that are allowed to be perturbed are
summarized in Table S12.

Table S12: Statistic of attacks’ budgets on each dataset

Dataset max # Nodes max # Edges

Cora 50 50

Citeseer 50 50

PubMed 300 300

Coauthor 150 300

Amazon Computer 100 200

Flickr 1000 5000

GNNGuard implemented in Table 1 of the main paper is based on GCN, where each layer in
GNNGuard contains two operations: 1) adjusting attention coefficients by pruning likely fake edges
and assigning less weight to suspicious edges; and 2) a normal GCN layer. Regarding BeltramiGuard
implemented in Table 2 of the main paper, we replace the second component as mentioned above,
i.e., a GCN layer, with a PDE layer induced by Beltrami flow.

S8 Proofs of Results

In this section, we provide detailed proof of the results stated in the main paper. The time-variant
analogy of [10] as discussed after (5) in the main paper is also presented.

S8.1 Proof of Proposition 1

For the system ∂φ(u,t)
∂t = −∆φ(u, t), the solution is given by φ(u, t) = e−t∆φ(u, 0). We therefore

need to derive a bound for ~e−t∆ − e−t∆̃~. Note for matrix exponent, in general eX+Y ̸= eXeY

unless X and Y commute (i.e. XY = Y X). However, from [11, eq (3.5)], we have
‌

‌

‌
e−t∆ − e−t∆̃

‌

‌

‌
≤ t

‌

‌

‌
∆− ∆̃

‌

‌

‌

‌

‌e−t∆
‌

‌e~t(∆−∆̃)~,

where the positive definiteness of ∆ is used. We further analyze ∆− ∆̃. Since W̃ = W +E with
~E~ = ε, we have ~D− D̃~ = O(ε) because norms for a finite dimensional space are equivalent
[12, Theorem 5.4.4.]. Let E′ = D̃−1/2 −D−1/2. We also have ~E′~ = O(ε).

7

It follows that
‌

‌

‌
∆− ∆̃

‌

‌

‌
=

‌

‌

‌
D−1/2WD−1/2 − D̃−1/2W̃D̃−1/2

‌

‌

‌

=
‌

‌

‌
D−1/2WD−1/2 − (D−1/2 +E′)(W +E)(D−1/2 +E′)

‌

‌

‌

=
‌

‌

‌
E′(W +E′)(D−1/2 +E′) +D−1/2E(D−1/2 +E′) +D−1/2WE′

‌

‌

‌

= O(ε).

We therefore obtain the conclusion that ~e−t∆ − e−t∆̃~ = O(εte−ρt) for some constant ρ > 0
since ~e−t∆~ = O(e−tρ) according to [11] and the fact that ∆ is positive definite according to our
assumption. The conclusion ∥φ(u, t)− φ̃(u, t)∥ = O(εte−ρt) then follows.

S8.2 Proof of Proposition 2

Proof. Since A is right stochastic, all eigenvalues of A − I have non-positive real parts. By the
Lyapunov Stability Theorem [13], the stability of (19) is ensured. Since Ψ−1A⊙B is right stochastic,
all eigenvalues of Ψ−1A⊙B− I have non-positive parts and thus (18) and (17) are stable.

S8.3 The Time-Variant Case

In this section, we provide an analysis of the time-variant system as alluded to before Proposition 1.
In the time-variant system, we have

∂φ(u, t)

∂t
= −∆(t)φ(u, t), (S2)

where ∆(t) is a time-variant Laplacian operator. Let the state transition matrix be Φ∆ (t; 0) so that
the solution of (S2) is given by φ(u, t) = Φ∆ (t; 0)φ(u, 0) [13].

In [14], the authors discuss the stability radius of time-variant systems. The system still preserves
stability if the perturbation of ∆(t) is smaller than a stability radius. In this discussion, we assume the
perturbation is small, i.e., it is inside the stability radius so that both ∆(t) and its perturbed version
∆̃(t) generate exponentially stable solutions. In other words, for a given matrix norm ~·~, there exist
positive constants M , M̃ , ω and ω̃ such that

~Φ∆(t, s)~ ≤ Me−ω(t−s), and ~Φ∆̃(t, s)~ ≤ M̃e−ω̃(t−s), t ≥ s ≥ 0. (S3)

To simplify the analysis, we further assume the perturbation is small enough such that the exponent
difference is also small, i.e.,

|ω − ω̃| < ω. (S4)

We now consider the solution difference after perturbation. Let D(t) and W(t) be the time-variant
version of D and W, respectively. They are assumed to satisfy (S3) and (S4).

Lemma S1. Let ∆(t) = D−1/2(t)(D(t) − W(t))D−1/2(t) and ∆̃(t) = D̃−1/2(t)(D̃(t) −
W̃(t))D̃−1/2(t) with D̃(t) being the diagonal degree matrix for W̃(t) = W(t) + E(t), where
{W̃(t) : t ≥ 0} satisfies (S3) and (S4). Denote ε(t) = ~E(t)~. We have ∥φ(u, t) − φ̃(u, t)∥ =

O
(
e−ρt

∫ t

0
ε(τ) dτ

)
for some constant ρ > 0.

Proof. For the perturbed system, we have

∂φ(u, t)

∂t
= −∆̃(t)φ(u, t)

= −∆(t)φ(u, t) +
(
∆(t)− ∆̃(t)

)
φ(u, t). (S5)

Formally, (S5) can be interpreted as a closed loop system obtained by applying the dynamical
feedback

(
∆(t)− ∆̃(t)

)
φ(u, t). According to [13], the solution of the above system, denoted by

8

φ̃(u, t), satisfies

φ̃(u, t) = Φ∆ (t, 0)φ(u, 0) +

∫ t

0

Φ∆(t, τ)
(
∆(τ)− ∆̃(τ)

)
φ̃(u, τ) dτ

= φ(u, t) +

∫ t

0

Φ∆(t, τ)
(
∆(τ)− ∆̃(τ)

)
φ̃(u, τ) dτ.

Similar to the proof in Section S8.1 for the time-invariant case, we have ~∆(τ)− ∆̃(τ)~ = O(ε(t)).
It follows that

∥φ̃(u, t)− φ(u, t)∥ =

∥∥∥∥∫ t

0

Φ∆(t, τ)
(
∆(τ)− ∆̃(τ)

)
φ̃(u, τ) dτ

∥∥∥∥
=

∥∥∥∥∫ t

0

Φ∆(t, τ)
(
∆(τ)− ∆̃(τ)

)
Φ∆̃(τ, 0)φ(u, 0) dτ

∥∥∥∥
≤

∫ t

0

~Φ∆(t, τ)~
‌

‌

‌
∆(τ)− ∆̃(τ)

‌

‌

‌
~Φ∆̃(τ, 0)~dτ · ∥φ(u, 0)∥

≤
∫ t

0

Me−ω(t−τ)M̃e−ω̃(τ−0)ε(τ) dτ · ∥φ(u, 0)∥

= O

(
e−ρt

∫ t

0

ε(τ) dτ

)
for some constant ρ > 0. In the second equality, we have used the fact that the initial point for both
the unperturbed and perturbed system is φ(u, 0), and the last equality follows from (S3) and (S4).

Remark S8.1. For the sake of simplicity, in this work, we only present theoretical analysis for the
time-invariant or time-variant graph Laplacian in Proposition 1 and Lemma S1 for heat diffusion
(11). The more complicated case where the graph Laplacian ∆ depends on node features u as
implemented in (16) is left for future work. From experiment results, for example, the results shown
in Table 3 in the main paper and Table S10 in this supplementary material, the time-invariant case
already preserve some robustness as compared to non-PDE GNNs in Table 1 and Table S9, which
validates our theoretical analysis. The more robust mean curvature flow and Beltrami flow proposed
in the paper are highly non-linear, making a theoretical analysis difficult. However, our analysis
for the time-variant case provides some insights as to why robustness is present in these cases, as
demonstrated in our experiments.

Broader Impact

Our work develops robust GNNs to mitigate the threat of adversarial attacks, which can lead to reliable
deployment of automation in various applications like sensor networks, transportation networks,
and manufacturing. This may potentially lead to the replacement of repetitive tasks or jobs that are
traditionally performed by humans. However, automation and artificial intelligence (AI) can lead
to better productivity, efficiency, and cost-effectiveness with an overall increase in societal living
standards. By incorporating the ability to defend against adversarial attacks, our research can lead
to more secure and robust adoption of AI technologies. However, potential failures and engineering
issues remain challenging open problems.

References
[S-1] A. McCallum, K. Nigam, J. D. M. Rennie, and K. Seymore, “Automating the construction of

internet portals with machine learning,” Information Retrieval, vol. 3, pp. 127–163, 2004.

[S-2] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective
classification in network data,” AI Magazine, vol. 29, no. 3, p. 93, Sep. 2008.

[S-3] G. M. Namata, B. London, L. Getoor, and B. Huang, “Query-driven active surveying for
collective classification,” in Workshop Mining and Learn. with Graphs, 2012.

9

[S-4] J. McAuley and J. Leskovec, “Image labeling on a network: using social-network metadata
for image classification.” in Proc. European Conf. Comput. Vision, 2012.

[S-5] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph neural network
evaluation,” Relational Representation Learning Workshop, NeurIPS, 2018.

[S-6] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, “Image-based recommendations on
styles and substitutes,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inform. Retrieval, 2015,
p. 43–52.

[S-7] Q. Zheng, X. Zou, Y. Dong, Y. Cen, D. Yin, J. Xu, Y. Yang, and J. Tang, “Graph robustness
benchmark: Benchmarking the adversarial robustness of graph machine learning,” Neural
Information Processing Systems Track on Datasets and Benchmarks 2021, 2021.

[S-8] D. Zhou and B. Schölkopf, “Regularization on discrete spaces,” in Joint Pattern Recognition
Symposium. Springer, 2005, pp. 361–368.

[S-9] E. DiBenedetto, U. P. Gianazza, and V. Vespri, Harnack’s inequality for degenerate and
singular parabolic equations. London: Springer Science & Business Media, 2011.

[S-10] W. Zheng, “Stability of time-dependent diffusion semigroups and kernels,” Acta Math. Sinica,
vol. 15, no. 4, pp. 575–586, 1999.

[S-11] C. Van Loan, “The sensitivity of the matrix exponential,” SIAM Journal on Numerical
Analysis, vol. 14, no. 6, pp. 971–981, 1977.

[S-12] R. A. Horn and C. R. Johnson, Matrix analysis. New York: Cambridge university press,
2012.

[S-13] C.-T. Chen and B. Shafai, Linear system theory and design. New York: Oxford university
press New York, 1999.

[S-14] D. Hinrichsen, A. Ilchmann, and A. J. Pritchard, “Robustness of stability of time-varying
linear systems,” J. Differ. Equ., vol. 82, no. 2, pp. 219–250, 1989.

10

	Datasets
	Attack Settings
	More Experiments and Ablation Studies
	PDE Solvers
	Lipschitz Constraint and Number of Layers
	Time Complexity
	White-Box Attacks
	Injection Attacks with Various Attack Strengths
	Modification Attacks
	More Discussion about Neural Heat Diffusion

	Further Experiments
	Further Ablation Studies
	Extension
	Implementation Details
	Proofs of Results
	Proof of Proposition 1
	Proof of Proposition 2
	The Time-Variant Case

