Defending Against Adversarial Attacks via Neural Dynamic System (Appendix)

A Proof of Proposition and Theorem

$$
\begin{equation*}
\frac{d \mathbf{z}(t)}{d t}=\mathbf{h}(\mathbf{z}(t), t) \tag{1}
\end{equation*}
$$

Assume x^{*} is an equilibrium of (1). We have the same meaning for x^{*} in our Appendix.

A. 1 Proof of Theorem 1

Theorem 1 Suppose that the perturbed instance $\widetilde{\mathbf{x}}$ is produced by adding perturbations smaller than δ on a clean instance. If all the clean instances $\mathrm{x} \in \mathcal{X}$ are the asymptotically stable equilibrium points of $O D E \sqrt{17}$, there exists $\delta>0$, for each contaminated instance $\hat{\mathbf{x}} \in\{\widetilde{\mathbf{x}}: \widetilde{\mathbf{x}} \in \widetilde{\mathcal{X}}, \widetilde{\mathbf{x}} \notin \mathcal{X}\}$, there exists $\mathbf{x} \in \mathcal{X}$ such that $\lim _{t \rightarrow+\infty}\|\mathbf{s}(\hat{\mathbf{x}}, t)-\mathbf{x}\|=0$.

Proof:

According to the definition of asymptotic stability, A constant vector of (1) is asymptotically stable if it is stable and attractive. Based on the definition of stability of $\mathbb{1}$, for each $\epsilon>0$ and each $t_{0} \in \mathbb{R}^{+}$, there exists $\delta_{1}=\delta(\epsilon, 0)$ such that

$$
\forall \widetilde{\mathbf{x}} \in B_{\delta_{1}}(\mathbf{x}) \Rightarrow\|\mathbf{s}(\widetilde{\mathbf{x}}, t)-\mathbf{x}\|<\epsilon, \forall t \geq t_{0}
$$

Based on the Attractivity Definition 11, there exists $\delta_{2}=\delta(0)>0$ such that

$$
\widetilde{\mathbf{x}} \in B_{\delta_{2}}(\mathbf{x}), \lim _{t \rightarrow+\infty}\|\mathbf{s}(\widetilde{\mathbf{x}} ; t)-\mathbf{x}\|=0
$$

We make $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Because the perturbed instance $\widetilde{\mathbf{x}}$ is produced by adding perturbation smaller than δ on the clean instance, then for each contaminated instance $\hat{\mathbf{x}} \in\{\widetilde{\mathbf{x}}: \widetilde{\mathbf{x}} \in \widetilde{\mathcal{X}}, \widetilde{\mathbf{x}} \notin \mathcal{X}\}$, there exists clean instance $\mathbf{x} \in \mathcal{X}$ such that $\hat{\mathbf{x}} \in B_{\delta}(\mathbf{x})$. Because the clean instance \mathbf{x} is an asymptotically stable equilibrium point of (1), we have

$$
\lim _{t \rightarrow+\infty}\|\mathbf{s}(\hat{\mathbf{x}}, t)-\mathbf{x}\|=0
$$

A. 2 Proof of Theorem 2

21 suppose \mathbf{x}^{*} is an equilibrium point of nonautonomous systems (1),

$$
\begin{equation*}
\mathbf{h}\left(\mathbf{x}^{*}, t\right)=0, \forall t \geq 0 \tag{2}
\end{equation*}
$$

22 and \mathbf{h} is a C^{1} function. Define

$$
\begin{gather*}
\mathbf{A}(t)=\left[\frac{\partial \mathbf{h}(\mathbf{z}, t)}{\partial \mathbf{z}}\right]_{\mathbf{z}=\mathbf{x}^{*}} \tag{3}\\
\mathbf{h}_{\mathbf{r}}(\mathbf{z}, t)=\mathbf{h}(\mathbf{z}, t)-\mathbf{A}(t)\left(\mathbf{z}-\mathbf{x}^{*}\right) \tag{4}
\end{gather*}
$$

${ }_{23}$ Then, by the definition of the Jacobian, it follows that for each fixed $t \geq 0$, it is true that

$$
\begin{equation*}
\lim _{\|\mathbf{z}\| \rightarrow \mathbf{x}^{*}} \frac{\left\|\mathbf{h}_{\mathbf{r}}(\mathbf{z}, t)\right\|}{\left\|\mathbf{z}-\mathbf{x}^{*}\right\|}=0 \tag{5}
\end{equation*}
$$

However, it may not be true that

$$
\begin{equation*}
\lim _{\|\mathbf{z}\| \rightarrow \mathbf{x}^{*}} \sup _{t \geq 0} \frac{\left\|\mathbf{h}_{\mathbf{r}}(\mathbf{z}, t)\right\|}{\left\|\mathbf{z}-\mathbf{x}^{*}\right\|}=0 . \tag{6}
\end{equation*}
$$

In other words, the convergence in (5) may not be uniform in t. Provided (6) holds, the system will

$$
\begin{equation*}
\frac{d \mathbf{z}(t)}{d t}=\mathbf{A}(t)\left(\mathbf{z}-\mathbf{x}^{*}\right) \tag{7}
\end{equation*}
$$

is called the linearization of (1) around the equilibrium x^{*}.
Lemma 1 ([1]) Suppose $Q: \mathbb{R}^{+} \rightarrow \mathbb{R}^{d \times d}$ is continuous and bounded, and that the equilibrium x^{*} of (7) is uniformly asymptotically stable. Then, for each $t \geq 0$, the matrix is as follows:

$$
\mathbf{P}(t)=\int_{t}^{+\infty} \Phi^{\top}(\tau, t) Q(\tau) \Phi(\tau, t) d \tau
$$

is well defined and $\mathbf{P}(t)$ is bounded as a function of t. Here, $\Phi(\cdot, \cdot)$ is the state transition matrix of system (7) defined in [7].

Lemma 2 ([2]) Suppose that $Q: \mathbb{R}^{+} \rightarrow \mathbb{R}^{d \times d}$ is continuous and bounded and that the equilibrium x^{*} of (7) is uniformly asymptotically stable. Moreover, if the following conditions also hold:
(i) $\mathbf{Q}(t)$ is symmetric and positive definite for each $t \geq 0$ and there exists a constant $\alpha>0$ such that

$$
\alpha\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top}\left(\mathbf{z}-\mathbf{x}^{*}\right) \leq\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top} \mathbf{Q}(t)\left(\mathbf{z}-\mathbf{x}^{*}\right), \forall \mathbf{z} \in \mathbb{R}^{d}, \forall t \geq 0
$$

(ii) The matrix $\mathbf{A}(t)$ in $\sqrt{7}$ is bounded; i,e,

$$
m_{0}:=\sup _{t \geq 0}\|\mathbf{A}(t)\|<+\infty
$$

under these conditions, the matrix $\mathbf{P}(t)$ defined in Lemma 1 is positive definite for each $t \geq 0$; moreover, there exists a constant $\beta>0$ such that

$$
\beta\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top}\left(\mathbf{z}-\mathbf{x}^{*}\right) \leq\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top} \mathbf{P}(t)\left(\mathbf{z}-\mathbf{x}^{*}\right), \forall \mathbf{z} \in \mathbb{R}^{d}, \forall t \geq 0 .
$$

Lemma 3 ([3]) Suppose there exist constants $a, b, c, r>0, p \geq 1$, and a C^{1} function $V: \mathbb{R}^{d} \times$ $\mathbb{R}^{+} \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& a\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p} \leq V\left(\mathbf{z}-\mathbf{x}^{*}, t\right) \leq b\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p}, \mathbf{z} \in \forall \mathbf{B}_{r}\left(\mathbf{x}^{*}\right), \forall t \geq 0 \\
& \dot{V}\left(\mathbf{z}-\mathbf{x}^{*}, t\right) \leq-c\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p}, \forall \mathbf{z} \in \mathbf{B}_{r}\left(\mathbf{x}^{*}\right), \forall t \geq 0
\end{aligned}
$$

Then the equilibrium \mathbf{x}^{*} is exponentially stable.
Theorem 2 Suppose that (2) holds and $\mathbf{h}(\mathbf{z}, t)$ is continuously differentiable. Define $\mathbf{A}(t), h_{r}(\mathbf{z}, t)$ as in (3), (4), respectively, and assume that (6) holds and $\mathbf{A}(t)$ is bounded. If \mathbf{x}^{*} is an exponentially stable equilibrium of the linear system (7), then it is also an exponentially stable equilibrium of the system (1).

Proof: Since $\mathbf{A}(t)$ is bounded and the equilibrium \mathbf{x}^{*} is uniformly asymptotically stable, from Lemma 2, that the matrix

$$
\begin{equation*}
\mathbf{P}(t)=\int_{t}^{+\infty} \Phi^{\top}(\tau, t) \Phi(\tau, t) d \tau \tag{8}
\end{equation*}
$$

is well-defined for $t \geq 0$; moreover, there exist constants $\alpha, \beta>0$ such that

$$
\begin{equation*}
\alpha\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top}\left(\mathbf{z}-\mathbf{x}^{*}\right) \leq\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top} \mathbf{P}(t)\left(\mathbf{z}-\mathbf{x}^{*}\right) \leq \beta\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top}\left(\mathbf{z}-\mathbf{x}^{*}\right), \forall \mathbf{z} \in \mathbb{R}^{d}, \forall t \geq 0 \tag{9}
\end{equation*}
$$

.

Hence the function

$$
V\left(\mathbf{z}-\mathbf{x}^{*}, t\right)=\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top} \mathbf{P}(t)\left(\mathbf{z}-\mathbf{x}^{*}\right)
$$

is a decrescent positive definite function. Calculating \dot{V} for the system gives

$$
\begin{aligned}
\dot{V}\left(\mathbf{z}-\mathbf{x}^{*}, t\right) & =\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top} \dot{\mathbf{P}}(t)\left(\mathbf{z}-\mathbf{x}^{*}\right)+\mathbf{h}\left(\mathbf{z}-\mathbf{x}^{*}, t\right) \mathbf{P}(t)\left(\mathbf{z}-\mathbf{x}^{*}\right) \\
& +\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top} \mathbf{P}(t) \mathbf{h}\left(\left(\mathbf{z}-\mathbf{x}^{*}\right), t\right) \\
& =\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top}\left[\dot{\mathbf{P}}(t)+\mathbf{A}^{\top}(t) \mathbf{P}(t)+\mathbf{P}(t) \mathbf{A}(t)\right]\left(\mathbf{z}-\mathbf{x}^{*}\right) \\
& +2\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top} \mathbf{P}(t) \frac{\partial \mathbf{h}\left(\mathbf{z}-\mathbf{x}^{*}, t\right)}{\partial t}
\end{aligned}
$$

However, from (8) it can be easily shown that

$$
\dot{\mathbf{P}}(t)+\mathbf{A}^{\top}(t) \mathbf{P}(t)+\mathbf{P}(t) \mathbf{A}(t)=-\mathbf{I}
$$

where \mathbf{I} is the identity matrix. Therefore,

$$
\dot{V}\left(\mathbf{z}-\mathbf{x}^{*}, t\right)=-\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top}\left(\mathbf{z}-\mathbf{x}^{*}\right)+2\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top} \dot{\mathbf{P}}(t) \frac{\partial \mathbf{h}\left(\mathbf{z}-\mathbf{x}^{*}, t\right)}{\partial t}
$$

In the view of 6, one can pick a number $r>0$ and a $\rho<0.5$ such that

$$
\begin{equation*}
\left\|\frac{\partial \mathbf{h}\left(\mathbf{z}-\mathbf{x}^{*}, t\right)}{\partial t}\right\| \leq \frac{\rho}{\beta}\left\|\mathbf{z}-\mathbf{x}^{*}\right\|, \forall \mathbf{z} \in \mathbf{B}_{r}\left(\mathbf{x}^{*}\right), \forall t \geq 0 \tag{10}
\end{equation*}
$$

Then (10) and (9) together imply that

$$
\left|2\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top} \mathbf{P}(t) \frac{\partial \mathbf{h}\left(\mathbf{z}-\mathbf{x}^{*}, t\right)}{\partial t}\right| \leq \frac{2 \rho}{\beta}\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top}\left(\mathbf{z}-\mathbf{x}^{*}\right), \forall \mathbf{z} \in \mathbf{B}_{r}\left(\mathbf{x}^{*}\right), \forall t \geq 0
$$

therefore,

$$
\dot{V}\left(\mathbf{z}-\mathbf{x}^{*}, t\right) \leq-(1-2 \rho)\left(\mathbf{z}-\mathbf{x}^{*}\right)^{\top}\left(\mathbf{z}-\mathbf{x}^{*}\right), \mathbf{z} \in \mathbf{B}_{r}\left(\mathbf{x}^{*}\right), \forall t \geq 0
$$

this shows that $-\dot{V}$ is an locally positive definite function. Based on Lemma 3, we conclude that \mathbf{x}^{*} is an exponentially stable equilibrium.

A. 3 Proof of Theorem 3

Lemma 4 (Gronwall [4]) Suppose $a(t): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a continuous function and $b, c \geq 0$ are given constants. Under these conditions, if

$$
a(t) \leq b+\int_{0}^{t} c a(\tau) d \tau, \forall t \geq 0
$$

then

$$
a(t) \leq b \exp (c t), \forall t \geq 0
$$

Lemma 5 ([2]) Consider the system (1]), and suppose \mathbf{h} is C^{k}, and that $\mathbf{h}\left(\mathbf{x}^{*}, t\right)=0, \forall t \geq 0$. Suppose that there exist constants $\mu, \delta, r>0$ such that

$$
\left\|\mathbf{s}\left(\mathbf{z}-\mathbf{x}^{*}, t, \tau\right)\right\| \leq \mu\left\|\mathbf{z}-\mathbf{x}^{*}\right\| \exp (-\delta(\tau-t)), \forall \tau \geq t \geq 0, \mathbf{z} \in \mathbf{B}_{r}\left(\mathbf{x}^{*}\right)
$$

Finally, suppose that, for some finite constant η,

$$
\left\|\nabla \mathbf{h}\left(\mathbf{z}-\mathbf{x}^{*}, t\right)\right\| \leq \eta, \forall t \geq 0, \mathbf{z} \in \mathbf{B}_{\mu r}\left(\mathbf{x}^{*}\right)
$$

Under these conditions, there exist a C^{k} function $V: \mathbb{R}^{d} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ and constants $a, b, c, m>$ $0, p>1$, such that
$a\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p} \leq V\left(\mathbf{z}-\mathbf{x}^{*}, t\right) \leq b\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p}, \dot{V}\left(\mathbf{z}-\mathbf{x}^{*}, t\right) \leq-c\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p}, \forall \mathbf{z} \in \mathbf{B}_{r}\left(\mathbf{x}^{*}\right), \forall t \geq 0$,

$$
\left\|\frac{\partial V\left(\mathbf{z}-\mathbf{x}^{*}, t\right)}{\partial \mathbf{z}}\right\| \leq m \| \mathbf{z}-\left.\mathbf{x}^{*}\right|^{p-1}, \forall \mathbf{z} \in \mathbf{B}_{r}\left(\mathbf{x}^{*}\right), \forall t \geq 0
$$

We first prove the general case of the Theorem 3 in our main paper. We introduce the frozen system.

$$
\begin{equation*}
\frac{d \mathbf{z}(t)}{d t}=\mathbf{h}(\mathbf{z}(t), r) \tag{11}
\end{equation*}
$$

68 we use $\mathbf{s}_{r}(\mathbf{z}, \tau, t)$ to denote the frozen system solution, starting at time τ and state \mathbf{z}, and
69

70
Theorem 3 (general) Consider the system (17. Suppose (i) \mathbf{h} is C^{1} and (ii)

$$
\begin{equation*}
\sup _{\mathbf{z} \in \mathbb{R}^{n}} \sup _{t \geq 0}\left\|\nabla \mathbf{h}\left(\mathbf{z}-\mathbf{x}^{*}, t\right)\right\|=\eta<\infty \tag{12}
\end{equation*}
$$

1 (iii) there exist constants μ, δ such that

$$
\begin{equation*}
\left\|\mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, \tau, t\right)\right\| \leq \mu\left\|\mathbf{z}-\mathbf{x}^{*}\right\| \exp \left(-\delta(t-\tau), \forall t \geq \tau \geq 0, \forall \mathbf{z} \in \mathbb{R}^{n}, r \in \mathbb{R}^{+}\right. \tag{13}
\end{equation*}
$$

72 (iv), suppose that there is a constant $\epsilon>0$ such that

$$
\begin{equation*}
\left\|\frac{\partial \mathbf{h}\left(\mathbf{z}-\mathbf{x}^{*}, t\right)}{\partial t}\right\| \leq \epsilon\left\|\mathbf{z}-\mathbf{x}^{*}\right\|, \forall t \geq 0, \forall \mathbf{z} \in \mathbb{R}^{n} \tag{14}
\end{equation*}
$$

73 Then the nonautonomous system (7) is exponentially stable, provided that

$$
\begin{equation*}
\epsilon<\frac{\delta[(p-1) \delta-\eta]}{p \mu^{p}}, \tag{15}
\end{equation*}
$$

74 where $p>1$ is any number such that $(p-1) \delta-\eta>0$.
75

76

Proof:

77 We begin by estimating the rate of variation of the function $\mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)$ with respect to r. From 78 (11), it follows that

$$
\mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)=\mathbf{z}-\mathbf{x}^{*}+\int_{0}^{t} \mathbf{h}\left(\mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, 0, \sigma\right), r\right) d \sigma
$$

79 Differentiating with respect r gives

$$
\begin{equation*}
\frac{\partial \mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)}{\partial r}=\int_{0}^{t}\left(\frac{\partial \mathbf{h}\left(\mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, 0, \sigma\right), r\right)}{\partial r}+\frac{\partial \mathbf{h}\left(\mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, 0, \sigma\right), r\right)}{\partial \mathbf{s}_{r}} \frac{\partial \mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, 0, \sigma\right)}{\partial r}\right) d \sigma \tag{16}
\end{equation*}
$$

80 For conciseness, define

$$
g(t)=\left\|\frac{\partial \mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)}{\partial r}\right\|
$$

81 and note from (14) that

$$
\begin{equation*}
\left\|\frac{\partial \mathbf{h}\left(\mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, 0, \sigma\right), r\right)}{\partial t}\right\| \leq \epsilon\left\|\mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, 0, \sigma\right)\right\| \leq \epsilon \mu\left\|\mathbf{z}-\mathbf{x}^{*}\right\| \exp (-\delta \sigma) \tag{17}
\end{equation*}
$$

82 Using (12), 17) in 16, we have

$$
\begin{align*}
g(t) & \leq \int_{0}^{t} \epsilon \mu\left\|\mathbf{z}-\mathbf{x}^{*}\right\| \exp (-\delta \sigma) d \sigma+\int_{0}^{t} \eta g(\sigma) d \sigma \tag{18}\\
& \leq \frac{\epsilon \mu\left\|\mathbf{z}-\mathbf{x}^{*}\right\|}{\delta}+\int_{0}^{t} \eta g(\sigma) d \sigma
\end{align*}
$$

83 Applying Lemma4 to 18) gives

$$
\begin{equation*}
\left\|\frac{\partial \mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)}{\partial r}\right\|=g(t) \leq \frac{\epsilon \mu\left\|\mathbf{z}-\mathbf{x}^{*}\right\|}{\delta} \exp (\eta t), \forall t \geq 0 \tag{19}
\end{equation*}
$$

For each $r \geq 0$, define a Lyapunov function $V_{r}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ for the system 11 . Select $p>1+\frac{\eta}{\delta}$, and define

$$
V_{r}(\mathbf{z})=\int_{0}^{+\infty}\left\|\mathbf{s}_{r}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)\right\|^{p} d t
$$

Since the system 11 is autonomous. we replace r by τ, and define $V: \mathbb{R}^{d} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
V(\mathbf{z}, \tau)=\int_{0}^{+\infty}\left\|\mathbf{s}_{\tau}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)\right\|^{p} d t \tag{20}
\end{equation*}
$$

then, as shown in the lemma 5

$$
\begin{equation*}
\frac{1}{2^{(p+1)} \eta \mu}\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p} \leq V\left(\mathbf{z}-\mathbf{x}^{*}, \tau\right) \leq \frac{\mu^{p}}{p \delta}\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p} \tag{21}
\end{equation*}
$$

$$
\frac{\partial V\left(\mathbf{z}-\mathbf{x}^{*}, \tau\right)}{\partial \mathbf{z}} \mathbf{h}\left(\mathbf{z}-\mathbf{x}^{*}, \tau\right)=-\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p}
$$

Let us compute the derivative $\dot{V}\left(\mathbf{z}-\mathbf{x}^{*}, \tau\right)$ along the trajectories of 1 . By definition

$$
\begin{equation*}
\dot{V}\left(\mathbf{z}-\mathbf{x}^{*}, \tau\right)=\frac{\partial V\left(\mathbf{z}-\mathbf{x}^{*}, \tau\right)}{\partial \mathbf{z}} \mathbf{h}\left(\mathbf{z}-\mathbf{x}^{*}, \tau\right)+\frac{\partial V\left(\mathbf{z}-\mathbf{x}^{*}, \tau\right)}{\partial \tau}=\frac{\partial V\left(\mathbf{z}-\mathbf{x}^{*}, \tau\right)}{\partial \tau}-\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p} \tag{22}
\end{equation*}
$$

It only remains to estimate $\frac{\partial V(\mathbf{z}, \tau)}{\partial \tau}$, let $\gamma:=\frac{p}{2}$, then, from 20,

$$
\begin{aligned}
\frac{\partial V\left(\mathbf{z}-\mathbf{x}^{*}, \tau\right)}{\partial \tau}= & \int_{0}^{+\infty} \frac{\partial\left[\mathbf{s}_{\tau}^{\top}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right) \mathbf{s}_{\tau}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)\right]^{\gamma}}{\partial \tau} d t \\
= & \int_{0}^{+\infty} 2 \gamma\left[\mathbf{s}_{\tau}^{\top}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right) \mathbf{s}_{\tau}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)\right]^{\gamma-1} \mathbf{s}_{\tau}^{\top}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right) \frac{\partial \mathbf{s}_{\tau}(\mathbf{z}, 0, t)}{\partial \tau} d t \\
& \left|\frac{\partial V\left(\mathbf{z}-\mathbf{x}^{*}, \tau\right)}{\partial \tau}\right| \leq \int_{0}^{+\infty} 2 \gamma\left\|\mathbf{s}_{\tau}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)\right\|^{\gamma-1}\left\|\frac{\partial \mathbf{s}_{\tau}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)}{\partial \tau}\right\| d t
\end{aligned}
$$

Now use the bound in 13 for $\left\|\mathbf{s}_{\tau}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)\right\|$ and 19 for $\frac{\partial \mathbf{s}_{\tau}\left(\mathbf{z}-\mathbf{x}^{*}, 0, t\right)}{\partial \tau}$, and note that $2 \gamma=p$. This gives

$$
\begin{aligned}
\left|\frac{\partial V\left(\mathbf{z}-\mathbf{x}^{*}, \tau\right)}{\partial \tau}\right| & \leq \int_{0}^{+\infty} p \mu^{p-1} \| \mathbf{z}-\mathbf{x}^{*}| |^{p-1} \frac{\epsilon \mu\left\|\mathbf{z}-\mathbf{x}^{*}\right\|}{\delta} \exp [-(p-1) \delta t+\eta t] d t \\
& =\frac{p \epsilon \mu^{p}}{\delta[(p-1) \delta-\eta]}\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p}
\end{aligned}
$$

Let m denote the constant multiplying $\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p}$ on the right side, and note that $m<1$ by 15 . Finally, from 22)

$$
\begin{equation*}
\dot{V}\left(\mathbf{z}-\mathbf{x}^{*}, t\right) \leq-(1-m)\left\|\mathbf{z}-\mathbf{x}^{*}\right\|^{p} \tag{23}
\end{equation*}
$$

Now (21) and (23) show that V is a suitable Lyapunov function for applying the Lemma 5 to conclude the exponential stability. And we get Theorem 3 in the main paper when we set the initial time $\tau=0$.

B ASODE algorithm

The architecture of our ASODE is presented in Figure 4 in our main paper and the process of ASODE is illustrated in Section 5.3. We transform them into ASODE algorithm 1 .

```
Algorithm 1 ASODE algorithm
    Input: Training data \(S:=\left\{\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{N}, \mathbf{y}_{N}\right)\right\}\); parameters: \(\alpha_{1}, \alpha_{2}\); evolution time: \(T\);
    the number of samples drawn from the neighbor of \(\mathbf{x}_{n}: K\); the radius of neighbourhood of \(\mathbf{x}_{n}\) :
    \(\delta\); batch size \(m\); number of batches \(M\); number of epochs \(T_{1}, T_{2}\); the loss \(L_{O D E}\) and \(L_{\text {model }}\);
    stepsize: \(\eta_{1}, \eta_{2}\); an algorithm for generating adversarial samples: \(A S(L, \mathbf{x})\).
    Initialization: \(\theta, \widetilde{\theta}\).
    for epoch \(=1\) to \(T_{1}\) do
        for mini-batch \(=1\) to \(M\) do
            Sample a mini-batch \(\left\{\left(\mathbf{x}_{n}, y_{n}\right)\right\}_{n=1}^{m}\) from \(S\)
            for \(i=1\) to \(m\) do
                sample \(\mathbf{x}_{i}^{(1)}, \ldots, \mathbf{x}_{i}^{(K)}\) from \(B_{\delta}\left(\mathbf{x}_{i}\right)\);
            end for
            Update \(\theta=\theta-\eta_{1} \frac{\partial L_{O D E}}{\partial \theta}\);
        end for
    end for
    for epoch \(=1\) to \(T_{2}\) do
        for mini-batch \(=1\) to \(M\) do
            Sample a mini-batch \(\left\{\left(\mathbf{x}_{n}, y_{n}\right)\right\}_{n=1}^{m}\) from \(S\)
            Update \(\widetilde{\theta}=\widetilde{\theta}-\eta_{2} \frac{\partial L_{\text {model }}}{\partial \widetilde{\theta}}\);
        end for
    end for
    Output: \(\theta, \tilde{\theta}\).
```


References

[1] Chi-Tsong Chen. Linear system theory and design. 1999.
[2] Mathukumalli Vidyasagar. Nonlinear systems analysis. 2002.
[3] Aleksandr Mikhailovich Lyapunov. The general problem of the stability of motion. International journal of control, 55(3):531-534, 1992.
[4] Richard Bellman. Stability theory of differential equations. 2008.

