
Defending Against Adversarial Attacks via1

Neural Dynamic System (Appendix)2

A Proof of Proposition and Theorem3

dz(t)

dt
= h(z(t), t). (1)

Assume x∗ is an equilibrium of (1). We have the same meaning for x∗ in our Appendix.4

A.1 Proof of Theorem 15

Theorem 1 Suppose that the perturbed instance x̃ is produced by adding perturbations smaller than6

δ on a clean instance. If all the clean instances x ∈ X are the asymptotically stable equilibrium7

points of ODE (1), there exists δ > 0, for each contaminated instance x̂ ∈ {x̃ : x̃ ∈ X̃ , x̃ /∈ X},8

there exists x ∈ X such that lim
t→+∞

||s(x̂, t)− x|| = 0.9

Proof:10

According to the definition of asymptotic stability, A constant vector of (1) is asymptotically stable if11

it is stable and attractive. Based on the definition of stability of (1), for each ϵ > 0 and each t0 ∈ R+,12

there exists δ1 = δ(ϵ, 0) such that13

∀x̃ ∈ Bδ1(x) ⇒ ||s(x̃, t)− x|| < ϵ,∀t ≥ t0.

Based on the Attractivity Definition (1), there exists δ2 = δ(0) > 0 such that14

x̃ ∈ Bδ2(x), lim
t→+∞

||s(x̃; t)− x|| = 0.

We make δ = min{δ1, δ2}. Because the perturbed instance x̃ is produced by adding perturbation15

smaller than δ on the clean instance, then for each contaminated instance x̂ ∈ {x̃ : x̃ ∈ X̃ , x̃ /∈ X},16

there exists clean instance x ∈ X such that x̂ ∈ Bδ(x). Because the clean instance x is an17

asymptotically stable equilibrium point of (1), we have18

lim
t→+∞

||s(x̂, t)− x|| = 0.

■19

A.2 Proof of Theorem 220

suppose x∗ is an equilibrium point of nonautonomous systems (1),21

h(x∗, t) = 0,∀t ≥ 0, (2)

and h is a C1 function. Define22

A(t) =

[
∂h(z, t)

∂z

]
z=x∗

, (3)

hr(z, t) = h(z, t)−A(t)(z− x∗). (4)

Then, by the definition of the Jacobian, it follows that for each fixed t ≥ 0, it is true that23

lim
||z||→x∗

||hr(z, t)||
||z− x∗||

= 0. (5)
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However, it may not be true that24

lim
||z||→x∗

sup
t≥0

||hr(z, t)||
||z− x∗||

= 0. (6)

In other words, the convergence in (5) may not be uniform in t. Provided (6) holds, the system will25

dz(t)

dt
= A(t)(z− x∗). (7)

is called the linearization of (1) around the equilibrium x∗.26

Lemma 1 ([1]) Suppose Q : R+ → Rd×d is continuous and bounded, and that the equilibrium x∗27

of (7) is uniformly asymptotically stable. Then, for each t ≥ 0, the matrix is as follows:28

P(t) =

∫ +∞

t

Φ⊤(τ, t)Q(τ)Φ(τ, t)dτ

is well defined and P(t) is bounded as a function of t. Here, Φ(·, ·) is the state transition matrix of29

system (7) defined in [1].30

Lemma 2 ([2]) Suppose that Q : R+ → Rd×d is continuous and bounded and that the equilibrium31

x∗ of (7) is uniformly asymptotically stable. Moreover, if the following conditions also hold:32

(i) Q(t) is symmetric and positive definite for each t ≥ 0 and there exists a constant α > 0 such that33

α(z− x∗)⊤(z− x∗) ≤ (z− x∗)⊤Q(t)(z− x∗),∀z ∈ Rd,∀t ≥ 0.

(ii) The matrix A(t) in (7) is bounded; i,e,34

m0 := sup
t≥0

||A(t)|| < +∞,

under these conditions, the matrix P(t) defined in Lemma 1 is positive definite for each t ≥ 0;35

moreover, there exists a constant β > 0 such that36

β(z− x∗)⊤(z− x∗) ≤ (z− x∗)⊤P(t)(z− x∗),∀z ∈ Rd,∀t ≥ 0.

Lemma 3 ([3]) Suppose there exist constants a, b, c, r > 0, p ≥ 1, and a C1 function V : Rd ×37

R+ → R such that38

a||z− x∗||p ≤ V (z− x∗, t) ≤ b||z− x∗||p, z ∈ ∀Br(x
∗),∀t ≥ 0,

V̇ (z− x∗, t) ≤ −c||z− x∗||p,∀z ∈ Br(x
∗),∀t ≥ 0.

Then the equilibrium x∗ is exponentially stable.39

Theorem 2 Suppose that (2) holds and h(z, t) is continuously differentiable. Define A(t), hr(z, t)40

as in (3), (4), respectively, and assume that (6) holds and A(t) is bounded. If x∗ is an exponentially41

stable equilibrium of the linear system (7), then it is also an exponentially stable equilibrium of the42

system (1).43

Proof: Since A(t) is bounded and the equilibrium x∗ is uniformly asymptotically stable, from44

Lemma 2, that the matrix45

P(t) =

∫ +∞

t

Φ⊤(τ, t)Φ(τ, t)dτ (8)

is well-defined for t ≥ 0; moreover, there exist constants α, β > 0 such that46

α(z− x∗)⊤(z− x∗) ≤ (z− x∗)⊤P(t)(z− x∗) ≤ β(z− x∗)⊤(z− x∗),∀z ∈ Rd,∀t ≥ 0. (9)
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Hence the function47

V (z− x∗, t) = (z− x∗)⊤P(t)(z− x∗)

is a decrescent positive definite function. Calculating V̇ for the system (1) gives48

V̇ (z− x∗, t) = (z− x∗)⊤Ṗ(t)(z− x∗) + h(z− x∗, t)P(t)(z− x∗)

+ (z− x∗)⊤P(t)h((z− x∗), t)

= (z− x∗)⊤[Ṗ(t) +A⊤(t)P(t) +P(t)A(t)](z− x∗)

+ 2(z− x∗)⊤P(t)
∂h(z− x∗, t)

∂t
.

However, from (8) it can be easily shown that49

Ṗ(t) +A⊤(t)P(t) +P(t)A(t) = −I.

where I is the identity matrix. Therefore,50

V̇ (z− x∗, t) = −(z− x∗)⊤(z− x∗) + 2(z− x∗)⊤Ṗ(t)
∂h(z− x∗, t)

∂t
.

In the view of (6), one can pick a number r > 0 and a ρ < 0.5 such that51

||∂h(z− x∗, t)

∂t
|| ≤ ρ

β
||z− x∗||,∀z ∈ Br(x

∗),∀t ≥ 0. (10)

Then (10) and (9) together imply that52

|2(z− x∗)⊤P(t)
∂h(z− x∗, t)

∂t
| ≤ 2ρ

β
(z− x∗)⊤(z− x∗),∀z ∈ Br(x

∗),∀t ≥ 0.

therefore,53

V̇ (z− x∗, t) ≤ −(1− 2ρ)(z− x∗)⊤(z− x∗), z ∈ Br(x
∗),∀t ≥ 0.

this shows that −V̇ is an locally positive definite function. Based on Lemma 3, we conclude that x∗54

is an exponentially stable equilibrium.55

■56

A.3 Proof of Theorem 357

Lemma 4 (Gronwall [4]) Suppose a(t): R+ → R+ is a continuous function and b, c ≥ 0 are given58

constants. Under these conditions, if59

a(t) ≤ b+

∫ t

0

ca(τ)dτ,∀t ≥ 0,

then60

a(t) ≤ b exp (ct),∀t ≥ 0.

Lemma 5 ([2]) Consider the system (1), and suppose h is Ck, and that h(x∗, t) = 0, ∀t ≥ 0.61

Suppose that there exist constants µ, δ, r > 0 such that62

||s(z− x∗, t, τ)|| ≤ µ||z− x∗|| exp (−δ(τ − t)),∀τ ≥ t ≥ 0, z ∈ Br(x
∗).

Finally, suppose that, for some finite constant η,63

||∇h(z− x∗, t)|| ≤ η,∀t ≥ 0, z ∈ Bµr(x
∗)

Under these conditions, there exist a Ck function V : Rd × R+ → R and constants a, b, c,m >64

0, p > 1, such that65

a||z− x∗||p ≤ V (z− x∗, t) ≤ b||z− x∗||p, V̇ (z− x∗, t) ≤ −c||z− x∗||p,∀z ∈ Br(x
∗),∀t ≥ 0,

66

||∂V (z− x∗, t)

∂z
|| ≤ m||z− x∗||p−1,∀z ∈ Br(x

∗),∀t ≥ 0.

3



We first prove the general case of the Theorem 3 in our main paper. We introduce the frozen system.67

dz(t)

dt
= h(z(t), r). (11)

we use sr(z, τ, t) to denote the frozen system (11) solution, starting at time τ and state z, and68

evaluated at time t.69

Theorem 3 (general) Consider the system (1). Suppose (i) h is C1 and (ii)70

sup
z∈Rn

sup
t≥0

||∇h(z− x∗, t)|| = η < ∞. (12)

(iii) there exist constants µ, δ such that71

||sr(z− x∗, τ, t)|| ≤ µ||z− x∗|| exp (−δ(t− τ),∀t ≥ τ ≥ 0,∀z ∈ Rn, r ∈ R+. (13)

(iv), suppose that there is a constant ϵ > 0 such that72

||∂h(z− x∗, t)

∂t
|| ≤ ϵ||z− x∗||,∀t ≥ 0,∀z ∈ Rn. (14)

Then the nonautonomous system (1) is exponentially stable, provided that73

ϵ <
δ[(p− 1)δ − η]

pµp
, (15)

where p > 1 is any number such that (p− 1)δ − η > 0.74

75

Proof:76

We begin by estimating the rate of variation of the function sr(z− x∗, 0, t) with respect to r. From77

(11), it follows that78

sr(z− x∗, 0, t) = z− x∗ +

∫ t

0

h(sr(z− x∗, 0, σ), r)dσ.

Differentiating with respect r gives79

∂sr(z− x∗, 0, t)

∂r
=

∫ t

0

(
∂h(sr(z− x∗, 0, σ), r)

∂r
+
∂h(sr(z− x∗, 0, σ), r)

∂sr

∂sr(z− x∗, 0, σ)

∂r
)dσ.

(16)

For conciseness, define80

g(t) = ||∂sr(z− x∗, 0, t)

∂r
||,

and note from (14) that81

||∂h(sr(z− x∗, 0, σ), r)

∂t
|| ≤ ϵ||sr(z− x∗, 0, σ)|| ≤ ϵµ||z− x∗|| exp (−δσ). (17)

Using (12),(17) in (16), we have82

g(t) ≤
∫ t

0

ϵµ||z− x∗|| exp (−δσ)dσ +

∫ t

0

ηg(σ)dσ (18)

≤ ϵµ||z− x∗||
δ

+

∫ t

0

ηg(σ)dσ.

Applying Lemma 4 to (18) gives83

||∂sr(z− x∗, 0, t)

∂r
|| = g(t) ≤ ϵµ||z− x∗||

δ
exp (ηt),∀t ≥ 0. (19)
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For each r ≥ 0 , define a Lyapunov function Vr : Rd → R for the system (11). Select p > 1 + η
δ ,84

and define85

Vr(z) =

∫ +∞

0

||sr(z− x∗, 0, t)||pdt.

Since the system (11) is autonomous. we replace r by τ , and define V : Rd × R+ → R by86

V (z, τ) =

∫ +∞

0

||sτ (z− x∗, 0, t)||pdt, (20)

then, as shown in the lemma 5.87

1

2(p+1)ηµ
||z− x∗||p ≤ V (z− x∗, τ) ≤ µp

pδ
||z− x∗||p. (21)

88

∂V (z− x∗, τ)

∂z
h(z− x∗, τ) = −||z− x∗||p.

Let us compute the derivative V̇ (z− x∗, τ) along the trajectories of (1). By definition89

V̇ (z− x∗, τ) =
∂V (z− x∗, τ)

∂z
h(z− x∗, τ) +

∂V (z− x∗, τ)

∂τ
=

∂V (z− x∗, τ)

∂τ
− ||z− x∗||p.

(22)

It only remains to estimate ∂V (z,τ)
∂τ , let γ := p

2 , then, from (20),90

∂V (z− x∗, τ)

∂τ
=

∫ +∞

0

∂[s⊤τ (z− x∗, 0, t)sτ (z− x∗, 0, t)]γ

∂τ
dt

=

∫ +∞

0

2γ[s⊤τ (z− x∗, 0, t)sτ (z− x∗, 0, t)]γ−1s⊤τ (z− x∗, 0, t)
∂sτ (z, 0, t)

∂τ
dt

|∂V (z− x∗, τ)

∂τ
| ≤

∫ +∞

0

2γ||sτ (z− x∗, 0, t)||γ−1||∂sτ (z− x∗, 0, t)

∂τ
||dt.

Now use the bound in (13) for ||sτ (z− x∗, 0, t)|| and (19) for ∂sτ (z−x∗,0,t)
∂τ , and note that 2γ = p.91

This gives92

|∂V (z− x∗, τ)

∂τ
| ≤

∫ +∞

0

pµp−1||z− x∗||p−1 ϵµ||z− x∗||
δ

exp [−(p− 1)δt+ ηt]dt

=
pϵµp

δ[(p− 1)δ − η]
||z− x∗||p.

Let m denote the constant multiplying ||z − x∗||p on the right side, and note that m < 1 by (15).93

Finally, from (22)94

V̇ (z− x∗, t) ≤ −(1−m)||z− x∗||p. (23)

Now (21) and (23) show that V is a suitable Lyapunov function for applying the Lemma 5 to conclude95

the exponential stability. And we get Theorem 3 in the main paper when we set the initial time τ = 0.96

■97

B ASODE algorithm98

The architecture of our ASODE is presented in Figure 4 in our main paper and the process of ASODE99

is illustrated in Section 5.3. We transform them into ASODE algorithm 1.100
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Algorithm 1 ASODE algorithm

Input: Training data S := {(x1,y1), . . . , (xN ,yN )}; parameters: α1, α2; evolution time: T ;
the number of samples drawn from the neighbor of xn: K; the radius of neighbourhood of xn:
δ; batch size m; number of batches M ; number of epochs T1, T2; the loss LODE and Lmodel;
stepsize: η1, η2; an algorithm for generating adversarial samples: AS(L,x).
Initialization: θ, θ̃.
for epoch = 1 to T1 do

for mini-batch =1 to M do
Sample a mini-batch {(xn, yn)}mn=1 from S
for i = 1 to m do

sample x
(1)
i , . . . ,x

(K)
i from Bδ(xi);

end for
Update θ = θ − η1

∂LODE

∂θ ;
end for

end for
for epoch = 1 to T2 do

for mini-batch =1 to M do
Sample a mini-batch {(xn, yn)}mn=1 from S

Update θ̃ = θ̃ − η2
∂Lmodel

∂θ̃
;

end for
end for
Output: θ, θ̃.
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