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Abstract

Although deep neural networks (DNN) have achieved great success, their applica-
tions in safety-critical areas are hindered due to their vulnerability to adversarial
attacks. Some recent works have accordingly proposed to enhance the robust-
ness of DNN from a dynamic system perspective. Following this line of inquiry,
and inspired by the asymptotic stability of the general nonautonomous dynami-
cal system, we propose to make each clean instance be the asymptotically stable
equilibrium points of a slowly time-varying system in order to defend against
adversarial attacks. We present a theoretical guarantee that if a clean instance is
an asymptotically stable equilibrium point and the adversarial instance is in the
neighborhood of this point, the asymptotic stability will reduce the adversarial
noise to bring the adversarial instance close to the clean instance. Motivated by
our theoretical results, we go on to propose a nonautonomous neural ordinary
differential equation (ASODE) and place constraints on its corresponding linear
time-variant system to make all clean instances act as its asymptotically stable
equilibrium points. Our analysis suggests that the constraints can be converted
to regularizers in implementation. The experimental results show that ASODE
improves robustness against adversarial attacks and outperforms the state-of-the-art
methods.

1 Introduction

Deep neural networks (DNNs) have achieved great success in a range of tasks, including image
recognition [1, 2], scene segmentation [3, 4, 5] and action recognition [6, 7]. However, their
performance can be significantly affected by human-imperceptible perturbations that can drastically
change the network’s output [8, 9]. This phenomenon seriously restricts the application of DNN in
safety-critical fields such as automatic driving.

Recently, some methods have been proposed to defend against adversarial attacks from the perspective
of dynamic systems. The paper [10] proposes a time-invariant steady neural ODE (TisODE) to limit
the evolution of the curves by forcing the integrand to be close to zero. However, this approach does
not guarantee that small perturbations of the initial point will lead to small perturbations in the output
at time T . To reduce perturbations on the initial point, SODEF [11] causes the extracted features to
be located within a neighborhood of the Lyapunov-stable equilibrium points of the autonomous ODE.
However, there are still some drawbacks of SODEF: 1. In the papers [1, 12, 13], the general dynamical
system explicitly depends on the argument t and is referred to as a nonautonomous dynamical system.
However, SODEF only considers the autonomous case, which is simply a special class of ODE.
2. As shown in Figure 1 (a), Lyapunov stability only controls the perturbations of the input rather
than eliminating the effects of perturbations; simply maintaining the perturbations may still lead
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(a) Lyapunov stability for ż(t) = 0
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(b) Asymptotic stability for ż(t) = 0.1z(t)(1− z(t))

Figure 1: Comparison of Lyapunov stability and asymptotic stability at equilibrium point z = 1.

to the misclassification of SODEF. 3. SODEF ensures that the output of the extractor is located
in the neighborhood of the Lyapunov-stable equilibrium points; thus, the performance of SODEF
depends on the extractor. Specifically, if the extracted features deviate from real features, SODEF
would regard the false features as the Lyapunov-stable equilibrium points; accordingly, the perturbed
input of neural ODE will converge to the incorrect features, which would lead to misclassification of
SODEF. These are also the major difference between SODEF and our method.

To solve the problems, in this paper, we first divide the instances into clean instance x, perturbed
instance x̃, and contaminated instance x̂, which are shown in Figure 2. Instances in the yellow
and blue region of the same ball naturally have the same label y. Then, the vulnerability of DNN
to perturbation can be illustrated as following: The function f is constructed by DNN. f makes
correct prediction when the input instance is clean, but makes wrong prediction when the input is
contaminated. In other words, we have f(x) = y and f(x̂) ̸= y. Therefore, we make x̂ converge
to x by dynamic system to improve the robustness of DNN. Compared with SODEF, we consider a
more general nonautonomous case:

dz(t)

dt
= h(z(t), t). (1)

As shown in Figure 1 (b), asymptotic stability helps to reduce the perturbation as t increases.
Therefore, we make each clean instance into an asymptotically stable equilibrium point and locate
the perturbed instance in its neighborhood. In order to do this, we transform the nonautonomous

Figure 2: The set including all yellow balls in the coordinate space is the clean instance domain X .
For convenience, we magnify a yellow ball on the right. The point in the yellow ball corresponds
to clean instance x. We place perturbations on the instance in the yellow ball to form a perturbed
instance x̃ that is still recognizable. The perturbed instance x̃ corresponds to the blue and yellow
regions. The instance in the blue region is referred to as the contaminated instance x̂. Instances in the
yellow and blue region of the same ball naturally have the same label y. The red spiral line is the
trajectory along which the contaminated instance x̂ converges to clean instance x.

2



ODE (1) into a time-variant linear state-space equation, as follows:

dz(t)

dt
= A(t)(z(t)− x). (2)

According to nonlinear dynamic system theory [14], (2) is exponentially stable if the nonautonomous
ODE (1) is a slowly varying system and the Jacobian matrix A to which each frozen system
ż(t) = h(z(t), τ) corresponds is exponentially stable. This holds because if all eigenvalues of A
have negative real parts, A is exponentially stable. We use the Levy-Desplanques theorem [15] to add
constraints to the elements of Jacobian matrix A to ensure that all eigenvalues of A have negative real
parts. We solve the stability of (1) by imposing constraints on its linearization. Additionally, rather
than applying neural ODE to the output of the extractor, we instead apply neural ODE directly on the
instance x ∈ X to eliminate the effects of perturbations. The process is also illustrated in Figure 2,
where the perturbed instance x+ δ converges to the clean instance x along the red trajectory. Based
on the theoretical analysis above, we propose a stable neural ODE (ASODE) with asymptotic stable
equilibrium points for defending against adversarial attacks, and further construct an optimization
formulation to make it satisfy the asymptotic stability. Moreover, we conduct experiments to compare
the robustness of ASODE with ODE-Net [12], TisODE-Net [10] and SODEF [11] under different
adversaril attacks on the CIFAR-10 [16] and MNIST [17] datasets. The results shows that ASODE
outperforms the state-of-the-art SODEF. Moreover, both ASODE and SODEF are far more robust
than ODE-Net and TisODE-Net. For example, compared with the state-of-the-art neural ODE
network SODEF under PGD attack on the MNIST and CIFAR-10 datasets, our ASODE improves
the classification accuracy of adversarial examples by 1.60% and 1.76%, respectively. Furthermore,
compared with the TisODE-Net on the same datasets under PGD attack, ASODE improves the
classification accuracy of adversarial examples by 45.07% and 53.53%, respectively.

2 Related Work

Neural ODEs The relationship between the ODEs and neural networks has been illustrated by
[12, 18]. The papers [19, 20, 21] regard residual networks as a form of explicit Euler discretization
with a unit step size. Based on this, various perspectives and methods from numerical analysis have
been employed to improve the network architecture [18, 22], minimize memory overload [12], reduce
training time [23], and facilitate adaptivity to other models (e.g., transformers [24]).

Adversarial Defense Many methods have been proposed to improve the robustness of neural
networks via training using different strategies, including Bayesian adversarial learning [25], various
regularization [26, 27], adversarial training and its variants [28, 29, 30, 31]. Moreover, some works
explore adversarial robustness from the perspective of the stability of the numerical ODE or dynamic
system. For example, [32] reduces feature noise using ODE to develop a robust architecture. [13]
proposes a new robust architecture, improving the robustness of the original residual network family
via the implicit Euler method of ODE.

Among the works, [33] is the first work to use control theory and dynamic systems to improve
robustness, which is different from our work in the types of nonlinear system and the inputs. [34] uses
the property of radial basis function (RBF) to improve the robust, not ODE. In the work most closely
related to ours, [11] designs a stable neural autonomous ODE with Lyapunov-stable equilibrium
points for defending against adversarial attacks. The Lyapunov-stability of the autonomous ODE
ensures that the input features from the extractor with a small perturbation converge to the unperturbed
input features. We study a more general case called a nonautonomous system. Based on this, we
directly reduce the adversarial noise on the instance by ensuring that the perturbed instances are in
the neighborhood of asymptotically stable equilibrium points of nonautonomous ODE. Therefore, we
purify the sample and improve the network robustness.

3 Preliminaries

Let D be a probability distribution over X × Y , where X is the instance domain set and Y is the
set of labels. (xn,yn) is sampled from D, where xn ∈ Rd, yn ∈ Rm and n = 1, 2, · · · , N . Dx

is the marginal distribution of x over y. h(z(t), t) is a continuous function of Rd × R+ into Rd;
here, t ∈ R+, R+ = {t ∈ R : t ≥ 0}, z ∈ Rd, z(t) : R+ → Rd. Moreover, we use ∇h(z, t)
to denote its Jacobian at z. C1 represents the function with first-order derivative; || · || denotes
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the Euclidean norm; I is a d-dimensional vector in which each element is equal to 1. Finally,
Bδ(x

∗) = {x ∈ Rd : ||x− x∗|| < δ}.

The d-dimensional instance x ∈ X can be seen as a point in the space Rd. However, as shown
in Figure 3 (c), not every point of Rd has the label y. Figure 3 (b) is the perturbed Figure 3 (a),
in which the perturbation can be arbitrarily small. Figure 3 (b) naturally has the label "6" and is
in the instance domain. For each x ∈ X , there exists a continuous bounded neighborhood Bδ(x)
such that Bδ(x) ⊂ X and the instances in Bδ(x) have the same label y. Thus, the instance domain
X corresponds to the bounded ball cloud in Rd, which is represented by the yellow balls in the
coordinate space of Figure 2. In addition, if we apply perturbation to each x ∈ X to form a new
instance domain X̃ the elements of which are denoted by x̃, then we can determine that X̃ includes
the adversarial samples and X ⊂ X̃ . We make Dx̃ the marginal distribution of x̃ over y. These
conclusions are directly demonstrated in the magnified ball of Figure 2. Based on the analysis of this
magnified ball, we define a clean instance for x ∈ X , perturbed instance for x̃ ∈ X̃ , and contaminated
instance for x̂ ∈ {x̃ : x̃ ∈ X̃ , x̃ /∈ X}.

(a) Clean instance (b) Perturbed instance (c) No label instance

Figure 3: Instances sampled from R28×28. The perturbed instance is in the neighborhood of the clean
instance, but no label instance is far away from any clean instance.

Consider a nonautonomous initial value ODE problem,
dz(t)

dt
= h(z(t), t), t ≥ t0,

z(t0) = z0

(3)

Suppose the function h satisfies a global Lipschitz condition [14, section 2.4.2], then, the solution of
(3) is exist and unique over t ∈ [0,∞). The solution of (1) is denoted as z(t) with input z(0) and
output z(T ). In (3), z0 is the initial value of z(t) at t = t0. If t = t0 = 0, we have z(0) = z0 = x.
Meanwhile, let s(z0, t0, t) denote the solution of (3) corresponding to the initial input z0 at t0. For
simplicity, we use s(x, t) to denote s(z0, 0, t). Obviously, if the initial value for ODE (1) is given by
z(0) = x, the two representations are equivalent, and we have z(t) = s(x, t), z(0) = s(x, 0) = x,
z(T ) = s(x, T ).

Definition 1 (Equilibrium [14]) A vector x∗ is said to be an equilibrium of (1) if, h(x∗, t) = 0,
∀t ≥ 0.

According to Definition 1, for any given x ∈ X , if the solution of (3) is z(t) = x, t ≥ 0, then
h(x, t) = dx

dt = 0, and x is an equilibrium of (1). On the other hand, if x is an equilibrium, (1) has
the unique solution z(t) = x, t ≥ 0 for the initial value z(0) = x. In other words, if a system starts
in an equilibrium, it remains in that state thereafter.

Definition 2 (Stability [35]) A constant vector x∗ ∈ Rd is a stable equilibrium point for (1) if, for
each ϵ > 0 and each t0 ∈ R+, there exists δ(ϵ, t0) such that for each z0 ∈ Bδ(x

∗), ||s(z0, t0, t)−
x∗|| < ϵ, ∀t ≥ t0.

As shown in Figure 1 (a), whose ODE is ż(t) = 0 with z(0) = x ∈ X (here, x=1), for each ϵ > 0,
there exists δ < ϵ

dI such that ||s(x+ δ, t)− x|| = ||x+ δ − x|| = ||x+ ϵ
dI− x|| < ϵ. Therefore,

x ∈ X is the stable equilibrium point of ODE (1) and also the Lyapunov-stable equilibrium point.

Definition 3 (Attractivity [35]) A constant vector x∗ ∈ Rd is an attractive equilibrium point for (1)
if for each t0 ∈ R+, there exists δ(t0) > 0 such that for each z0 ∈ Bδ(x

∗), lim
t→+∞

||s(z0, t0, t) −
x∗|| = 0.

4



Definition 4 (Asymptotic stability [35]) A constant vector x∗ ∈ Rd is asymptotically stable if it is
both stable and attractive.

It is worth noting that if an equilibrium is exponentially stable, it is also asymptotically stable with
exponential convergence. As shown in Figure 1, x = 1 in Figure 1 (b) is an attractive equilibrium
point, but x = 1 in Figure 1 (a) is not. Moreover, x = 1 is also asymptotically stable in Figure 1 (b).

Based on the notation above, we aim to make the contaminated instance x̂ converge to the clean
instance x. In order to accomplish this evolution, we impose constraints on the ODE (1) to output
z(T ) = x when the input is z(0) = x̂ ∈ Bδ(x). In order to let lim

t→+∞
||s(x̂, t) − x|| = 0, where

x̂ ∈ Bδ(x), we make all x ∈ X the asymptotically stable equilibrium points.

Theorem 1 Suppose the perturbed instance x̃ is produced by adding perturbation smaller than δ on
the clean instance. If all the clean instances x ∈ X are the asymptotically stable equilibrium points
of ODE (1), there exists δ > 0, for each contaminated instance x̂ ∈ {x̃ : x̃ ∈ X̃ , x̃ /∈ X}, there exists
x ∈ X such that lim

t→+∞
||s(x̂, t)− x|| = 0.

See proof in Appendix A.1.

Theorem 1 guarantees that if we make clean instance x into the asymptotically stable equilibrium
point, nonautonomous ODE can shrink the perturbation and make the perturbed instance approach
to the clean instance, which could help improve the robustness of the DNN and aid the DNN in
defending against adversarial attack. Next, we talk about how to ensure the ODE has asymptotic
stability.

4 Linearization and Stability of ODE

In order to make the nonautonomous ODE (1) have asymptotic stability, we linearize ODE (1) using
Lyapunov’s linearization method. We then impose constraints on the linearization to make ODE (1)
asymptotically stable.

Suppose x∗ is an equilibrium point of nonautonomous systems (1),

h(x∗, t) = 0,∀t ≥ 0, (4)

where h is a C1 function. We define

A(t) =

[
∂h(z, t)

∂z

]
z=x∗

, (5)

hr(z, t) = h(z, t)−A(t)(z− x∗). (6)

Then, by the definition of the Jacobian, it follows that for each fixed t ≥ 0, it is true that

lim
||z||→x∗

||hr(z, t)||
||z− x∗|| = 0. (7)

However, it may not be true that

lim
||z||→x∗

sup
t≥0

||hr(z, t)||
||z− x∗|| = 0. (8)

In other words, the convergence in (7) may not be uniform in t. Provided that (8) holds, the system

dz(t)

dt
= A(t)(z− x∗). (9)

is referred to as the linearization of (1) around the equilibrium x∗.

Theorem 2 Suppose that (4) holds and h(z, t) is continuously differentiable. Define A(t), hr(z, t)
as in (5), (6), respectively, and assume that (8) holds and A(t) is bounded. If x∗ is an exponentially
stable equilibrium of the linear system (9), then it is also an exponentially stable equilibrium of the
system (1).
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See proof in Appendix A.2.

In order to make all the equilibrium points of (9) asymptotically stable, we deduce the stability of the
nonautonomous system (1) by studying only the "frozen" systems; that is, the ODE (1) with time
"frozen" at r. In other words, if r ∈ R+ is any fixed number, we can think of the autonomous system

dz(t)

dt
= h(z(t), r),∀t ≥ 0, (10)

If x∗ is the equilibrium point, then A = [∂h(z,r)∂z ]z=x∗ is a constant matrix and the linearization
(9) becomes ż(t) = A(z− x∗). Moreover, we use sr(x, t) to denote the solution of frozen system
(10), starting at time 0 and state x, and evaluated at time t. Even if each of the frozen systems (10)
is exponentially stable, the overall system can be unstable [14]. Next, we will prove that if each
frozen system is exponentially stable and the system is slowly varying, the overall system is indeed
exponentially stable.

Theorem 3 Suppose (i) h is C1,h(x∗, t) = 0,∀t ≥ 0, and (ii) sup
z∈Rn

sup
t≥0

||∇h(z−x∗, t)|| = η < ∞,

(iii) there exist constants µ, δ such that |sr(z − x∗, t)|| ≤ µ||z − x∗|| exp (−δt),∀t ≥ 0,∀z ∈
Rn,∀r ∈ R+. (iv) suppose there is a constant ϵ > 0 such that

||∂h(z− x∗, t)

∂t
|| ≤ ϵ||z− x∗||,∀t ≥ 0,∀z ∈ Rn. (11)

Then the nonautonomous systems (1) is exponentially stable provided ϵ < δ[(p−1)δ−η]
pµp , where p > 1

is any number such that (p− 1)δ − η > 0.

See proof in Appendix A.3

Based on Theorems 2 and 3, we impose constraints on ODE (1) to be a slowly varying systems and
linearize it to be (9). In order to make (9) stable, we transform the study of nonautonomous system
(1) to the study of autonomous system (10); in other words, we should make ż(t) = A(z − x∗)
asymptotically stable. The following two theorems provide ideas for solving this problem.

Theorem 4 ([14]) The equation ż(t) = Az is asymptotically stable if and only if all eigenvalues of
A have negative real parts.

Theorem 5 (Levy–Desplanques theorem [15]) Let A = [aij ] ∈ Mn, if |aii| ≥
∑
i ̸=j

|aij | and aii ≤
0 for all i = 1, · · · n, then every eigenvalue of A has a negative real part.

According to theorem 4, we need to make all eigenvalues of each Jabobian matrix A of (10) at
equilibrium points have negative real parts. In addition, in the light of the Levy–Desplanques theorem
[15], rather than computing the eigenvalues, we instead add constraints to the elements of Jacobian
matrix A to make all its eigenvalues have negative real parts. Finally, we make all equilibrium points
of the nonautonomous system (1) asymptotically stable by adding constraints on its linearization.

To sum up, we linearize the slowly varying nonautonomous ODE (1) and impose constraints on its
linearization (9) to make all clean instances be the asymptotically stable equilibrium points of (1).

5 ASODE Architecture

This section proposes a stable neural ODE (ASODE) with asymptotically stable equilibrium points
for defending against adversarial attacks. To make all clean instances into the asymptotically stable
equilibrium points of neural ODE, we construct an optimization problem according to the constraints
mentioned in section 4. To solve this optimization problem, we propose an objective with constraints
imposed on its regularizer.
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Figure 4: The architecture of our ASODE.

5.1 Architecture

Most physical systems are nonlinear and time-varying. If we apply DNNs to dynamic systems, some
of them can be described by nonlinear differential equations of the form,

dz(t)

dt
= hθ(z(t), t),∀t ∈ [0, T ], (12)

y =fθ̃(z(T )), z(0) = x,x ∈ X , (13)

where hθ is a neural ODE layer with parameter θ and defined as Rd × R+ → Rd. Similarly, fθ̃ is a
neural network with parameter θ̃ and defined as Rd → Rm. Because the evolutionary time of neural
ODE cannot be infinity, we set the final evolutionary time T and t ∈ [0, T ], where T is a positive
integer. Inspired by the neural dynamical forms, we propose the ASODE architecture and present it
in Figure 4. The ASODE can be simplified as follows: ODE + model. The ODE part can be regarded
as a denoiser, which helps to reduce the noise, including the adversarial noise, to rectify the perturbed
instance xn + δ. The output of ODE is a rectified instance z(T ) = xn when T is sufficiently large.
Subsequently, the rectified instance z(T ) enters the grafted model fθ̃, and the final output label is not
affected.

5.2 Asymptotic Stable Guarantee

As mentioned in section 3, we make all x ∈ X the asymptotically stable equilibrium points of neural
ODE (12). According to the analysis in section 4, we transform the slowly time-varying ODE (12) to
the linear time-varying state equation ż(t) = A(t)(z(t)−x) and simplify the nonautonomous system
(12) to an autonomous system dz(t)

dt = hθ(z(t), r). We then make ż(t) = A(z− x) asymptotically
stable, where A = [∂hθ(z,r)

∂z ]z=x. Next, we apply the Levy–Desplanques theorem to add constraints
on the elements of Jacobian matrix A to make all its eigenvalues have negative real parts. Therefore,
we have the following optimization problem for the ODE part of ASODE:

min
θ

E
x∼Dx

E
x̃∼Dx̃

[IBδ(x)(x̃)Φ(z(T ),x)] (14)

s.t.E[hθ(x, t)] ≤ ϵ1, , (15)

E
[
||∂hθ(z, t)

∂t
||
/
||z||

]
≤ ϵ2 (16)

E[∇hθ(x, t)]ii] < 0, (17)

E
[
|[∇hθ(x, t)]ii| −

∑
j ̸=i

|[∇hθ(x, t)]ij |
]
> 0, (18)

∀t ∈ [0, T ] and i, j = 1, 2, · · · , d,

where Φ is the cross-entropy loss, ϵ1 and ϵ2 are small constants, and IBδ(x)(x̃) =

{
1, x̃ ∈ Bδ(x),

0, x̃ /∈ Bδ(x).

The optimization objective (14) can be illustrated as follows: For any x ∈ X , if the perturbed
instance x̃ ∈ Bδ(x), we want the the neural ODE (12) to make x̃ converge to x. Therefore, our
objective is to minimize the distance between s(x̃, T ) and x. The constraint (15) means that we
set each x ∈ X as the asymptotically stable equilibrium point of neural ODE (12), which requires
hθ(x, t) = 0 according to Definition 1. The constraint (16) implies that we make the neural ODE
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(12) the slowly time varying system, which requires ||∂hθ(z,t)
∂t || ≤ ϵ||z|| according to the formulation

(11) in Theorem 3. The other conditions for Theorem 3 are implicitly satisfied when t is bounded.
Besides, the constraints (17) and (18) follows the Levy–Desplanques Theorem 5 to make neural ODE
(12) asymptotically stable.

5.3 Implementation

Rather than solving the optimization problem (14), we optimize the following empirical Lagrangian
(24) with a training set (xn,yn), n = 1, 2, · · · , N . Moreover, x(1)

n ,x
(2)
n , · · · ,x(K)

n are K samples
from Bδ(xn) used to represent x̃. In addition, τ = 0, 1, · · · , T − 1 are the discrete time points. The
correspondence and transformation between (14) and (24) are following:

1

N

N∑
n=1

Φ(s(xn, T ),xn) +
1

NK

N∑
n=1

K∑
k=1

Φ(s(x(k)
n , T ),xn), (19)

1

NT

N∑
n=1

T−1∑
τ=0

||hθ(xn, τ)||, (20)

1

NT

N∑
n=1

T−1∑
τ=0

||
(∂h(s(xn, t), t)

∂t

)
t=τ

||
/

||s(xn, τ)||, (21)

1

NT

N∑
n=1

T−1∑
τ=0

d∑
i=1

−|∇hθ(xn, τ)]ii|, (22)

1

NT

N∑
n=1

T−1∑
τ=0

d∑
i=1

(
− |∇hθ(xn, τ)]ii|+

d∑
j=1,j ̸=i

|∇hθ(xn, τ)]ij |
)
. (23)

The constraints (15), (16), (17) and (18) correspond to the discretization forms (20), (21), (22) and
(23) respectively. Furthermore, the objective (14) corresponds to (19). Based on the analysis of the
optimization problem (14), we get that the smaller the values (19)- (23) are, the better the neural
ODE is. Therefore, we construct the following empirical loss LODE :

LODE = min
θ

1

N

N∑
n=1

{
Φ(s(xn, T ),xn) +

1

K

K∑
k=1

Φ(s(x(k)
n , T ),xn) +

1

T

T−1∑
τ=0

[
(24)

α1

(
||hθ(xn, τ)||+ ||

(∂h(s(xn, t), t)

∂t

)
t=τ

||
/

||s(xn, τ)||
)
+

α2

(
exp

( d∑
i=1

−|∇hθ(xn, τ)]ii|
)
+ exp

( d∑
i=1

(−|∇hθ(xn, τ)]ii|+
d∑

j=1,j ̸=i

|∇hθ(xn, τ)]ij |)
))]}

.

According to our proposed ASODE, finding the optimal θ is the first phase in making the ODE (12) a
good denoiser that is capable of reducing the adversarial noise. We then fix the neural ODE (12) and
train the grafted model as: min

θ̃
E

(x,y)∼D
[Φ(fθ̃(z(T )),y)]. Its empirical loss is Lmodel:

Lmodel = min
θ̃

1

N

N∑
n=1

Φ(fθ̃(s(xn, T )),yn). (25)

In sum, our ASODE has two parts: the neural part plays the role of denoiser, and the grafted model
has the ability of recognition. In order to obtain the dynamic systems as we expected, we propose
two related optimization problems (24) and (25). Finally, we solve these two optimization problems
(24) and (25) to make all the clean instances be the asymptotically stable equilibrium points of the
neural ODE (12), thereby improving the robustness of our ASODE. The pseudo code of ASODE
algorithm is illustrated in Appendix B, which is from bringing the process above together.

8



6 Experiments

In this section, we conduct experiments on the CIFAR-10 [16] and MNIST [17] datasets to evaluate
the robustness of ASODE under different adversarial attacks. We follow the standard training,
validation, and test splits in our experiments. Moreover, we compare the robustness of ASODE with
ODE-Net [12], TisODE-Net [10], and SODEF [11].

6.1 Setup

We apply different attack methods to attack our model, namely FGSM [29] and PGD [28]. Following
the same experimental settings as for SODEF, we implement the following settings. 1. For the
CIFAR-10 task, we use the model provided in [36]. 2. For the MNIST task, we use the ResNet18
model provided in PyTorch. The baselines are re-implemented according to the original paper. The
neural ODE function hθ is made up of three fully connected layers whose input and output layers
have the same dimension. During the training of ASODE, we first train the neural ODE for 50 epochs,
after which we fix hθ and train fθ̃ for another 100 epochs. We set the parameters α1 = 0.1 and
α2 = 0.05 when training ASODE. In the below, the best results are marked in bold.

6.2 Performance Under PGD and FGSM Attacks

We evaluate the robustness of our ASODE under PGD attack and FGSM attack. Specifically, we
compare the robustness of ASODE with ODE-Net, TisODE-Net and SODEF on the MNIST and
CIFAR-10. To facilitate fair comparison, we set T = 5 based on the original papers of the comparison
models. The results on MNIST and CIFAR-10 are presented in Table 1 and Table 2 respectively. As
the results show, under PGD and FGSM attacks, our model ASODE outperforms the state-of-the-art
SODEF; moreover, ASODE also performs much better than ODE-Net and TisODE-Net. For example,
compared with SODEF under PGD attack on the MNIST and CIFAR-10, our ASODE improves
the classification accuracy of adversarial examples by 1.60% and 1.76% respectively. Furthermore,
compared with TisODE-Net on the same datasets, the classification accuracy obtained by SODEF
are increased by 45.07% and 53.53% respectively. The “NO ODE” in Tables 1 and 2 corresponds to
ASODE without the ODE part. For ablation studies, we find that ASODE is more robust than NO
ODE, which indicates that ODE part (12) helps improve the robustness.

Table 1: Classification accuracy (%) on adversarial MNIST examples with L∞ norm, ϵ = 0.3.
Attack No ODE ODE TisODE SODEF ASODE
None 99.45 99.40 99.41 99.44 99.44

FGSM 9.87 29.51 36.82 63.36 65.13
PGD 0.36 1.68 1.78 45.25 46.85

Table 2: Classification accuracy (%) on adversarial CIFAR-10 examples with L∞ norm, ϵ = 0.031.
Attack No ODE ODE TisODE SODEF ASODE
None 95.20 94.76 95.12 95.00 95.16

FGSM 47.54 45.12 43.37 68.05 69.94
PGD 3.18 3.50 3.82 55.59 57.35

7 Conclusion

In this paper, we develope a novel nonautonomous time-slowing varying neural ODE, ASODE,
that makes all clean instances be its asymptotically stable equilibrium points. ASODE shrinks the
adversarial noise and forces the adversarial instance to be close to the clean instance. The experimental
results show that ASODE improves the robustness against adversarial attacks and outperforms the
state-of-the-art methods.
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