
Appendix
Meta-Learning with Self-Improving Momentum Target

A Overview of terminologies used in the paper

• Meta-model ✓. The meta-learner network, i.e., learns to generalize on new tasks.

• Adaptation subroutine Adapt(·, ·). Algorithm for adapting the meta-model into a task expert
by using a given task dataset.

• Support set S . A dataset sampled from a given task distribution that is used for the adaptation.

• Query set Q. A dataset sampled from a given task distribution (that is disjoint with the support
set) to evaluate the adaptation performance of the algorithm.

• Task-specific solver �. Network adapted from the meta-model using the support set by using the
adaptation subroutine, i.e., Adapt(✓,S)

• Momentum network ✓moment. Temporal ensemble of the meta-model where we use the exponen-
tial moving average of the meta-model parameter to compute the momentum.

• Momentum target �moment. Network adapted from the momentum network using the support set
by using the adaptation subroutine, i.e., Adapt(✓moment,S)

B Overview of adaptation subroutine algorithms

MAML [10] and extensions. MAML uses the adaptation subroutine of taking a fixed number of
SGD on the support set S , starting from the meta-model parameter ✓. Formally, for a given S , MAML
with one step SGD obtains the task-specific solver � by minimizing the empirical loss L, as

� ✓ � ↵r✓L(✓,S), (7)
where ↵ denotes the step size. Here, we assume the empirical loss L is averaged over the given set
S. One can easily extend Eq. (7) to obtain � with more than one SGD step from the meta-model ✓.
For the extension, MetaSGD [31] learns the step size ↵ along with the meta-model parameter ✓, and
ANIL [36] only adapts the last linear layer of the meta-model ✓ to obtain �.

ProtoNet [45]. The aim of metric-based meta-learning is to perform a non-parametric classifier
on top of the meta-model’s embedding space f✓. Specifically, ProtoNet learns a metric space in
which classification can be performed by computing distances to prototype vectors of each class, i.e.,
ci :=

1
|Si|

P
(x,y)2Si

f✓(x) where Si contains the samples with class i in the support set S . Formally,
for a given distance function d(·, ·), e.g., l2 distance, the task-specific solver � of the ProtoNet is as

p�(y = i|x) = exp(�d(f✓(x), ci))P
i0 exp(�d(f✓(x), ci0))

. (8)

C Application to reinforcement learning

We consider a reinforcement learning (RL) framework where an agent interacts with an environment
in discrete time [48]. At each timestep t, the agent receives a state st from the environment and
chooses an action at based on its policy ⇡(at|st). Then the environment gives a reward r(st,at) and
the agent transitions to the next state st+1. The return R =

P1
t=0 �

t
r(st,at) is defined as discounted

cumulative sum of the reward with discount factor � 2 [0, 1). As the goal of RL is to train a policy
that maximizes the expected return, the loss is defined as a negative expected return as

L(✓) = � E
st,at⇠⇡✓

" 1X

t=0

�
t
r(st,at)

#
, (9)

where ✓ denotes the parameters of the policy. During meta-learning, the empirical version of this loss
can be obtained using either the support set S⌧i = {st,at ⇠ ⇡✓} in the adaptation subroutine, or the
query set Q⌧i = {st,at ⇠ ⇡�⌧i } in the meta-update.

16

Algorithm 2 Self-Improving Momentum Target for Reinforcement Learning
Require: Distribution over tasks p(⌧), adaptation subroutine Adapt(·), momentum coefficient ⌘,

weight hyperparameter �, task batch size N , number of rollouts per task K, learning rate �.
1: Initialize ✓ using the standard initialization scheme.
2: Initialize the momentum network with the meta-model parameter, ✓moment ✓.
3: while not done do
4: Sample N tasks {⌧i}Ni=1 from p(⌧)

5: for i = 1 to N do
6: Sample K trajectories S⌧i using ⇡✓ from ⌧i
7: �⌧i

moment = Adapt(✓moment,S⌧i). . Generate a momentum target.
8: �⌧i = Adapt(✓,S⌧i). . Adapt a task-specific solver.
9: Sample trajectories Q⌧i using ⇡�⌧i from ⌧i

10: L⌧i
total

(✓) = (1� �) · L⌧i
TRPO

+ � · Lteach(�
⌧i ,�⌧i

moment,Q⌧i) . Compute loss.
11: end for
12: ✓ ✓ � �

N ·r✓
PN

i=1 L
⌧i
total

(✓). . Train the meta-model.
13: ✓moment ⌘ · ✓moment + (1� ⌘) · ✓. . Update the momentum network.
14: end while

In meta-RL setup, each task ⌧i contains an initial state distribution qi(s0) and a transition distribution
qi(st+1|st,at). The goal of meta-RL is to optimize a policy ⇡✓ that minimizes L(✓) for unseen tasks
⌧i ⇠ p(⌧) using only a limited number (K) of sampled trajectories. In Algorithm 2, we describe
the meta-RL algorithm with our proposed method, SiMT. We note that SiMT can be combined with
any (gradient-based) meta-learning approaches and policy gradient methods. In our experiments,
we built SiMT upon MAML with vanilla policy gradient [59] and trust-region policy optimization
(TRPO; [39]) for the task-specific solver and meta-model, respectively, as we described in Section
5.3.

Here, we describe the detailed objective of the meta-RL used in the experiments. To this end, we use
the following standard definitions of the state-action value function Q

⇡, the value function V
⇡, and

the advantage function A
⇡ .

Q
⇡(st,at) = E

st+1,at+1,...

" 1X

k=0

�
k
r(st+k)

#
, V

⇡(st) = E
at,st+1,...

" 1X

k=0

�
k
r(st+k)

#
,

A
⇡(st,at) = Q

⇡(st,at)� V
⇡(st), where at ⇠ ⇡(at|st), st+1 ⇠ q(st+1|st,at). (10)

For better clarity, we will omit the notation t if there is no confusion. The gradient of L(✓,S) obtained
by the vanilla policy gradient method is

r✓L(✓,S) = �
1

|S|
X

s,a2S
r✓ log ⇡✓(a|s)A⇡✓ (s,a), (11)

where S is a set of trajectories sampled using the policy ⇡✓. Then the adaptation subroutine of the
parameters ✓ is performed as follows: � = Adapt(✓,S) := ✓� ↵ ·r✓L(✓,S). For SiMT, we update
the momentum network ✓moment by using the trajectories S from the policy ⇡� (line 7 in Algorithm 2),
since it performs better and efficient than using additional trajectories from ⇡�moment

.

In the meta-update procedure, we use the surrogate objective of TRPO to update the parameters
✓. Let ✓old and ✓ denote parameters of current and new policies (for every meta-update iteration of
Algorithm 2), respectively. Then the theoretical TRPO update is

✓ argmin
✓

1

N

NX

i=1

L⌧i
TRPO

(✓old, ✓) subject to KL(✓old||✓) �, (12)

where LTRPO(✓old, ✓) is the (negative) surrogate advantage from adapted parameters � and �old, a
measure of how the policy ⇡� performs relative to the old policy ⇡�old , using trajectories Q which is

17

sampled from the old policy:

LTRPO(✓old, ✓) = �
1

|Q|
X

s,a2Q

⇡�(a|s)
⇡�old(a|s)

A
⇡�old (s,a), (13)

and KL(✓||✓old) is an average KL divergence between policies across states visited by the old policy

KL(✓old||✓) =
1

N

NX

i=1

1

|Q⌧i |
X

s,a2Q⌧i

h
KL

⇣
⇡�

⌧i
old
(·|s)||⇡�⌧i (·|s)

⌘i
. (14)

To utilize SiMT in meta-RL tasks, we define the knowledge distillation loss by using the task-specific
policies ⇡� and ⇡�moment

, which are parameterized by � and the momentum target �moment, respectively.
For a given trajectories Q sampled using ⇡�, the knowledge distillation loss is as

Lteach(�,�moment,Q) :=
1

|Q|
X

s,a2Q
KL

�
⇡�(s) k ⇡�moment

(s)
�
. (15)

For meta-learning with SiMT, the objective L⌧i
TRPO

in (12) is replaced with L⌧i
total

in Algorithm 2.

D Experimental details

In this section, we provide the experimental details, including experimental setups and loss landscape
visualization. The implementation of all experiments is given in the supplementary material.

D.1 Experimental setup details

Network architecture details. For all few-shot classification experiments, we mainly follow the
setups from MAML [10] and also consider the setups from recent papers [33, 56]. The Conv4
classifier consists of four convolutional layers, each with 64 filters, followed by a batch normalization
(BN) layer [22] as well as a max-pooling layer with kernel size and stride of 2. The network then
projects to its output through a linear layer. We choose to use the 64 channels for each layer by
following the recent papers, e.g., ANIL, BOIL [33], and sparse-MAML [56]. For the ResNet-12,
we use the residual blocks with channel sizes of 64, 128, 256, and 512, where the architecture is
identical to the one used in previous meta-learning studies [34, 33]. For SiMT, we apply dropout
before the max-pooling layer. We also observed that the Dropblock regularization [15] (commonly
used in ResNet architectures in few-shot classification) shows a similar performance gain as the
dropout in ResNet-12. We use additional three convolutional layers with 64 channels in front of
Conv4 architecture for all few-shot regression tasks by following the prior works [63, 13].

In the meta-RL setup, the policy is a conditional probability distribution ⇡✓(a|s) parameterized
by a neural network ✓. For a given state vector s, this neural network specifies a distribution over
action space. Then one can compute the likelihood q(a|s) and sample the action a ⇠ q(·|s). For our
experiments with continuous action spaces, we use a Gaussian distribution, where the covariance
matrix is diagonal and independent of the state. Specifically, the policy has a multi-layer perceptron
(MLP) which computes the mean and a learnable vector for log standard deviation with the same
dimension as a. We use a 2-layer MLP with hidden dimensions of 100 and ReLU activation for the
policy, as we described in Section 5.3.

Training details. For gradient-based few-shot classification experiments, we mainly follow MAML
[10] and partially follow Von Oswald et al. [56] (e.g., ResNet-12 training setups). For ProtoNet,
we follow a recent paper by Yao et al. [61] on Conv4 and extend the setup into ResNet-12 by only
changing the training iterations. We follow a recent paper by Gao et al. [13] for few-shot regression
tasks. We use Adam optimizer [25] for optimizing the meta-model ✓ and train 60,000 iterations for
Conv4 (including regression models), and 30,000 iterations for ResNet-12. When training, we use
the learning rate of � = 1e�3 for classification and � = 5e�4 for regression. As for the details of
MAML and ANIL, we use 5 step SGD with a fixed step size ↵ = 1e�2 for the classification and
↵ = 2e�3 for the regression. For all few-shot learning, we use 1 step SGD on MetaSGD. For the
classification, we use a task batch size of 4 and 2 tasks for 1-shot and 5-shot gradient-based methods,
respectively, and use 1 for the rest. For the regression, we use a task batch size of 10. Note that all
adaptation hyperparameters for the task-specific solver � and momentum target �moment are the same.

18

Moreover, we handle BN parameters following the transductive learning setting for gradient-based
approaches and use inductive BN parameters for ProtoNet.

For meta-RL experiments, we mainly follow the setups from MAML [10] and use the open-source
PyTorch implementation [1] of MAML for RL. To optimize the objective of TRPO (and SiMT), we
compute the Hessian-vector products to avoid computing third derivatives and use a line search to
ensure improvement of the surrogate objective with the satisfaction of the KL divergence constraint.
For both learning and meta-learning updates, we use the standard linear feature baseline proposed
by Duan et al. [8]. To estimate the advantage function, we use a generalized advantage estimator
(GAE; [40]) with a discount factor of 0.95 and a bias-variance tradeoff of 1.0. In all meta-RL
experiments, the policy is trained using a single gradient step with ↵ = 0.1, with rollouts K = 20
per gradient step. We use a meta batch size N of 20 and 40 for the 2D navigation and the locomotion
tasks, respectively. For TRPO, we use � = 0.01 for all experiments. The agent is meta-updated for
500 iterations, and the model with the best average return during training is used for the evaluation.

Hyperparameter details for SiMT. SiMT requires hyperparameters, including weight hyper-
parameter �, momentum coefficient ⌘, and the dropout probability p.

We first provide the hyperparameter details of few-shot learning. For the momentum coefficient ⌘,
we use 0.995 except for the 5-shot classification, where 0.999 shows slightly better performance.
For the weight hyper-parameter �, we use 0.5 for MAML and ANIL, 0.1 for MetaSGD, and 5e� 3
for ProtoNet, respectively. Finally, for the dropout probability p, we use 0.2 for MAML and ANIL,
and 0.1 for the rest. Also, we find that the temperature value of T = 4 works the best as in the prior
knowledge distillation works [65, 32].

For meta-RL experiments, we use the momentum coefficient of 0.995 for 2D navigation and 0.99
for locomotion tasks, respectively. For the weight hyperparameter �, we use 0.1 for 2D navigation
and 0.02 for locomotion tasks, respectively. We linearly ramp up � for locomotion tasks, as the
momentum target might poorly perform at the beginning of the training.

Dataset and environment details. For the few-shot regression task, we use Pascal [63], which
contains 65 objects from 10 categories. We sample 50 objects for training and the other 15 objects for
testing. 128 ⇥ 128 gray-scale images are rendered for each object with a random rotation in azimuth
angle normalized between [0, 10]. We also use ShapeNet [13], which includes 30 categories. 27 of
these are used during training and the other three categories are used for the evaluation.

For few-shot classification, we use four image datasets, including mini-ImageNet [55, 37], tiered-
ImageNet [38], CUB [57], and Cars [26]. We consider a 5-way classification for all tasks by following
the prior works [10, 33]. The mini-ImageNet consists of training, validation, and test sets with 64,
16, and 20 classes in each, respectively. The tiered-ImageNet consists of datasets with 351 training,
97 validation, and 160 test classes. By following Hilliard et al. [20], we split CUB dataset into 100
training, 50 validation, and 50 test classes. Cars are split into training, validation, and test sets with
98, 49, and 49 classes in each, respectively, by following Tseng et al. [54].

For meta-RL experiments, we consider 2D navigation and Half-cheetah locomotion tasks, which
were considered in previous works [10, 36]. In 2D navigation tasks, the observation is the current
position in a 2D unit square, and the action is a velocity command which clipped in the range of
[�0.1, 0.1]. The reward is the negative squared distance to the goal, and episodes terminate when the
agent is within 0.01 of the goal or arrives at the horizon. In Half-cheetah goal direction tasks, the
reward is the magnitude of the velocity in either the forward or backward direction, randomly chosen
for each task. The horizon H is 100 and 200, for 2D navigation and locomotion tasks, respectively.

Evaluation details. All our few-shot learning results are reported for models that are early-stopped
by measuring the average validation set accuracy (across 2,000 validation set tasks for classification
and 100 validation set tasks for regression). For the test accuracy, we report the mean accuracy of
2,000 test tasks and 100 test tasks for classification and regression, respectively. By following the
original papers, we use 10 SGD steps for the adaptation on MAML and ANIL, and use 1 SGD step
on MetaSGD. For meta-RL experiments, the step size during adaptation was set to ↵ = 0.1 for the
first step, and ↵ = 0.05 for all future steps, following the evaluation setup of MAML. We report the
truncated mean and standard deviation of the performance using five random seeds, i.e., the statistics
after discarding the best and worst seeds, for meta-RL experiments.

19

Table 7: Few-shot image classification accuracy (%) on ResNet-10 trained with mini-ImageNet. We
consider in-domain and cross-domain scenarios where CUB, Cars, Places, and Plantae are used as
cross-domain datasets. SiMT utilizes the momentum network for the adaptation. The reported results
are 95% confidence intervals averaged over 1,000 meta-test tasks, subscripts denote the standard
deviation, and bold denotes the best result of each group. ⇤ indicates the values from the reference.

mini-ImageNet!
Problem Method mini-ImageNet CUB Cars Places Plantae

1-shot

GNN [14]⇤ 60.77±0.75 45.69±0.68 31.79±0.51 53.10±0.80 35.60±0.56
GNN [14] + FT [54]⇤ 66.32±0.80 47.47±0.75 31.61±0.53 55.77±0.79 35.95±0.58
GNN [14] + SiMT 67.22±0.79 48.19±0.71 32.47±0.57 57.41±0.81 38.13±0.61
GNN [14] + FT [54] + SiMT 68.02±0.80 48.75±0.76 32.89±0.69 58.23±0.86 38.07±0.60

5-shot

GNN [14]⇤ 80.87±0.56 62.25±0.65 44.28±0.63 70.84±0.65 52.53±0.59
GNN [14] + FT [54]⇤ 81.98±0.55 66.98±0.68 44.90±0.64 73.94±0.67 53.85±0.62
GNN [14] + SiMT 84.37±0.56 68.78±0.69 45.61±0.67 76.73±0.66 55.72±0.63
GNN [14] + FT [54] + SiMT 85.13±0.55 70.09±0.67 46.90±0.65 78.15±0.64 56.60±0.64

Resource details. For estimating the training time of our method (in Section 2, Section 5.5, and
Appendix E.3), we use the same machine and stop other processes: Intel(R) Xeon(R) Silver 4214
CPU @ 2.20GHz and a single RTX 2080 Ti GPU for the measurement. For the main development,
we mainly use Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz and a single RTX 3090 GPU.

D.2 Loss landscape visualization

In this subsection, we provide the loss landscape visualization details of Figure 4. For the experiment,
we consider vanilla MAML ✓ and its momentum network ✓moment without distillation loss and dropout
regularization. We change the parameter by adding two direction vectors d1, d2 and visualize the
resulting loss value. Specifically, for a given task distribution of training set p(⌧), a training loss
Ltrain(✓) := E⌧⇠p(⌧)

⇥
L(Adapt(✓,S⌧),Q⌧)

⇤
, and the center point ✓ (or ✓moment), we visualize

Ltrain(✓ + i · d1 + j · d2), (16)

where i, j are the step size of the visualization axis. For choosing visualization directions, we sample
two random vectors from a unit Gaussian distribution and normalize each filter in the vector to have
the same norm of the corresponding filter in ✓ by following the prior work [29].

E More experimental results

E.1 Comparison with another meta-learning regularization method

We also compare SiMT with a recent regularization method, feature-wise transformation (FT) [54],
a regularization method for metric-based meta-learning schemes. FT augments the image features
by utilizing the affine transformation in the feature layer to capture the data distribution. While FT
shows strong benefits in improving the base meta-learner, it focuses on cross-domain generalization
and requires multiple datasets to learn the hyperparameters. In this regard, we consider a more
generic scenario and compare SiMT with FT on a standard few-shot classification setup in [54]3.
Here, we train ResNet-10 on the mini-ImageNet dataset and use GNN [14] as a base meta-learning
scheme, which shows the best performance when used with FT. Then, we evaluate both methods on
few-shot in-domain and cross-domain adaptation scenarios. As shown in Table 7, SiMT consistently
outperforms FT in all cases. More importantly, we observed that SiMT and FT have an orthogonal
benefit where joint usage further improves the performance.

E.2 Momentum targets for a small proportion of tasks

To further investigate the efficacy of the target model, we consider generating target models for a
small proportion of tasks when training SiMT. To this end, we train Conv4 on a mini-ImageNet
dataset and control the ratio of tasks with the target model. As shown in Table 8, SiMT shows

3We use the official implementation from https://github.com/hytseng0509/CrossDomainFewShot

20

https://github.com/hytseng0509/CrossDomainFewShot

Table 8: Few-show in-domain adaptation accuracy (%) of SiMT under different proportion of tasks
with momentum targets. We train Conv4 under 5-way mini-ImageNet dataset. Note that all model
utilizes the momentum network for the adaptation. The reported results are averaged over three trials,
subscripts denote the standard deviation, and bold indicates the best result of each group. p indicates
the proportion of tasks with momentum targets.

p 0% 5% 10% 25% 50% 100%

1-shot 48.98±0.32 49.83±0.12 49.92±0.23 50.42±0.67 50.55±0.41 51.49±0.18
5-shot 66.12±0.21 66.81±0.26 66.99±0.24 67.15±0.18 67.49±0.39 68.74±0.12

ANIL
ANIL + SiMT

Va
lid

at
io

n
ac

cu
ra

cy
 (%

)

55

60

65

70

Training time (min)
0 10 20 30 40 50 60 70 80

(a) ANIL [36]

MetaSGD
MetaSGD + SiMT

Va
lid

at
io

n
ac

cu
ra

cy
 (%

)
55

60

65

70

Training time (min)
0 10 20 30 40 50 60 70 80

(b) MetaSGD [31]

ProtoNet
ProtoNet + SiMT

Va
lid

at
io

n
ac

cu
ra

cy
 (%

)

55

60

65

70

Training time (min)
0 10 20 30 40 50 60 70 80

(c) ProtoNet [45]

Figure 5: Comparison of the computational efficiency between the base adaptation subroutine
algorithm and SiMT: we compare the accuracy of mini-ImageNet 5-shot classification (on Conv4)
under the same training wall-clock time. The solid line and shaded regions represent the mean and
standard deviation, respectively, across three runs.

Table 9: Few-shot in-domain adaptation accuracy (%) on additional adaptation subroutine algorithms.
We train Conv4 under 5-way mini- and tiered-ImageNet. SiMT utilizes the momentum network for
the adaptation. The reported results are averaged over three trials, subscripts denote the standard
deviation, and bold denotes the best result of each group.

mini-ImageNet tiered-ImageNet

Method 1-shot 5-shot 1-shot 5-shot

FOMAML [10] 45.96±0.61 62.58±0.54 47.85±0.46 64.21±0.50
FOMAML [10] + SiMT 47.78±0.57 65.79±0.03 48.55±0.08 65.79±0.52

BOIL [33] 49.78±0.65 66.98±0.41 52.19±0.46 68.88±0.43
BOIL [33] + SiMT 50.83±0.09 67.77±0.24 52.44±0.28 69.05±0.27

consistent improvement even with a small portion of task models, e.g., 5% of target models show 1%
improvement in 1-shot adaptation. However, remark that one can easily generate target models for all
tasks with SiMT, hence, one does not need to use few targets in practice.

E.3 Computation efficiency of SiMT

To further analyze the computational efficiency of SiMT, we consider additional comparisons on
meta-learning methods, including ANIL [36], MetaSGD [31], and ProtoNet [45] (we train Conv4 on
the mini-ImageNet dataset under a 5-shot classification scenario). Here, we also observed consistent
efficiency gain on these setups, e.g., 30% of training time reduced to achieve the peak accuracy of
ProtoNet when using SiMT. Although SiMT is slower than the base algorithms when comparing the
number of optimization steps (due to the momentum target generation), we want to note that SiMT
can be more efficient in terms of time to reach the same performance.

E.4 Additional adaptation subroutine algorithms

We consider more adaptation subroutine algorithms to verify the effectiveness of SiMT: first-order
approximation of MAML (FOMAML) [10] and BOIL [33]. FOMAML removes the second deriva-
tives of MAML, and BOIL does not adapt the last linear layer of the meta-model ✓ under MAML. As
shown in Table 9, SiMT consistently improves both meta-learning schemes in all tested cases.

21

	Introduction
	Related work
	Problem setup and evaluation protocols
	Meta-learning with self-improving momentum target
	Meta-model update with a S/Q-S/T hybrid loss
	SiMT: Self-improving momentum target

	Experiments
	Few-shot regression
	Few-shot classification
	Reinforcement learning
	Comparison with other target models
	Ablation study

	Discussion and conclusion
	Overview of terminologies used in the paper
	Overview of adaptation subroutine algorithms
	Application to reinforcement learning
	Experimental details
	Experimental setup details
	Loss landscape visualization

	More experimental results
	Comparison with another meta-learning regularization method
	Momentum targets for a small proportion of tasks
	Computation efficiency of SiMT
	Additional adaptation subroutine algorithms

