
Disentangling Transfer in Continual Reinforcement
Learning

Maciej Wołczyk∗

Faculty of Mathematics and Computer Science
Jagiellonian University

Kraków, Poland
maciej.wolczyk@doctoral.uj.edu.pl

Michał Zając∗
Faculty of Mathematics and Computer Science

Jagiellonian University
Kraków, Poland

emzajac@gmail.com

Razvan Pascanu
DeepMind

London, UK
razp@google.com

Łukasz Kuciński
Polish Academy of Sciences

Warsaw, Poland
lkucinski@impan.pl

Piotr Miłoś
Ideas NCBR,

Polish Academy of Sciences,
deepsense.ai

Warsaw, Poland
pmilos@impan.pl

Abstract

The ability of continual learning systems to transfer knowledge from previously
seen tasks in order to maximize performance on new tasks is a significant challenge
for the field, limiting the applicability of continual learning solutions to realistic
scenarios. Consequently, this study aims to broaden our understanding of transfer
and its driving forces in the specific case of continual reinforcement learning.
We adopt SAC as the underlying RL algorithm and Continual World as a suite
of continuous control tasks. We systematically study how different components
of SAC (the actor and the critic, exploration, and data) affect transfer efficacy,
and we provide recommendations regarding various modeling options. The best
set of choices, dubbed ClonEx-SAC, is evaluated on the recent Continual World
benchmark. ClonEx-SAC achieves 87% final success rate compared to 80% of
PackNet, the best method in the benchmark. Moreover, the transfer grows from
0.18 to 0.54 according to the metric provided by Continual World.

1 Introduction

The ability of continual learning (CL) systems ([17, 22]) to utilize knowledge from previously
seen tasks in order to maximize transfer on the current task is a significant challenge for the field.
Achieving progress in this area would bring benefits both for real-life applications and multiple
machine learning domains [24, 18, 46, 10], including reinforcement learning (RL), as advocated in
[47]. In particular, it would constitute a critical step towards making efficient lifelong learning agents
a reality.

The goal of this paper is to expand our understanding of transfer and its driving factors in continual
reinforcement learning (CRL). As the underlying RL algorithm, we assume soft actor-critic (SAC), see
[16], and use Continual World [47] as the suite of continuous control environments. We systematically
study the critic and actor networks, the key components of SAC, with regard to their influence on
transfer. Similarly, we measure the impact of various choices regarding exploration and buffer data
usage. The low-level mechanisms of transfer are not yet fully understood even in the supervised

∗equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



learning case [28]. To the best of our knowledge, our work is the first one that undertakes a
comprehensive study of this important topic in RL. To this end, we proceed in two stages: exploring
a two-task setting and a full continual learning scenario.

Figure 1: Performance of the ClonEx-SAC method compared
with competitive baselines, on CW10 and CW20 task sequences.
Average performance and forward transfer are shown, together with
90% bootstrap confidence intervals.

We start by investigating a simplified
two-tasks setting in Section 4. This
allows us to leave out the impact of
forgetting, as well as limit the choices
regarding exploration and data han-
dling. We use 100 pairs of robotic
tasks from the Continual World bench-
mark. Here, we render two key ob-
servations: 1) the role of the critic is
the most important for transfer, while
exploration and actor play smaller,
but non-negligible, parts; 2) contri-
butions of the individual components
are mostly independent. Additionally,
we show that the concept of feature
reuse which is often utilized to explain
supervised transfer learning [28, 33]
might not be directly applicable in RL.

In Section 5, we aim to understand
new effects which emerge for the full
continual learning scenario, typically
in longer sequences. In CL context,
we need to take into account forgetting, being mindful of the fact that existing CL methods often favor
mitigating forgetting at the expense of transfer, see [47]. Main results include 1) reusing policies
from previous tasks for exploration considerably improves performance; 2) behavioral cloning to
rehearse past tasks is beneficial for both average performance and forward transfer, outperforming
other considered methods; 3) regularizing the critic typically does not help for the performance of CL
methods.

The result of our comprehensive analysis is a set of general recommendations. We also determine
the combination of design choices that outperforms all other options, dubbed ClonEx-SAC. This
method utilizes behavioral cloning to mitigate catastrophic forgetting for the actor. Moreover, at
the beginning of each task, ClonEx-SAC queries all previous policies, the best of which generates
initial exploration data. ClonEx-SAC achieves 87% final success rate compared to 80% of PackNet,
the best method in the Continual World benchmark, see Figure 1. Importantly, we observe a sharp
transfer increase from 0.18 to 0.54 in the metric provided in the benchmark. Notably, the value of
forward transfer closely matches the reference forward transfer adjusted for exploration, which is a
soft upper bound for transfer, as introduced in [47].

2 Related work

Continual learning algorithms are often categorized into three classes: regularization-based e.g.
[2, 23, 31], parameter isolation e.g. [26] and rehearsal methods e.g. [6, 7]; see also CL survey papers
[8, 17, 32]. [44, 4] advocate the need to develop CL methods suitable for reinforcement learning
training as a necessary step towards learning artificial intelligent agents to operate in open-ended
and changing environments. [22] provides a detailed review of this combination and a taxonomy of
possible setups. [47] proposes a sequence of robotic tasks as a benchmark, comparing popular CL
methods adapted to RL and advocating for putting more emphasis on transfer.

The authors of [20] show how the synaptic Benna-Fusi model can be added on top of value-based
RL methods to mitigate forgetting at both intra- and inter-task scales. A simple approach to cloning
policies from previous tasks is employed in [45], and a similar replay strategy has been used in
[35]. [21] tackles the case when task boundaries are not provided. Although most of the research is
concerned with model-free continual reinforcement learning, an approach to model-based continual
RL was presented in [19].

2



Transfer learning, which focuses on the reuse of machine learning models, has been extremely suc-
cessful recently. In computer vision, convolutional neural networks [24, 18] and vision transformers
[11] pre-trained on large datasets can be repurposed and fine-tuned on the target task. Modern
transformer-based models [46, 10] trained on large natural language corpora turned out to be very
flexible and can be adapted to diverse downstream tasks with surprising efficiency [34, 25]. General
surveys of transfer learning techniques are provided in [52, 41]. Interestingly, recent research [29, 50]
suggests that there are still some gaps in our understanding of transfer learning. [29] analyzes the
low-level reasons for transfer, exhibiting surprising phenomena such as transfer between datasets
with permuted images. [50] performs large-scale experiments investigating representation transfer in
a wide variety of visual tasks.

In reinforcement learning scenarios, the structure of the underlying MDP can be exploited to facilitate
the transfer. [42, 51, 43, 40] present methods on how to find and use mappings between different
domains. [30, 5] apply reward function reshaping. [27, 39] achieve transfer by means of high-level
skills and hierarchical RL. Other lines of work exploit the model structure [36, 13] or enforce
modularity [3, 9]. In this work, we aim to complement these studies, by focusing on the benefits of
reusing neural network parameters, and other choices that exploit the RL structure, like exploration
and data rehearsal.

3 Background

3.1 Continual learning and reinforcement learning

Continual learning tackles the problem of learning in non-stationary settings [8]. Typically, the
solution is expected to perform well on all encountered tasks, although various metrics expressing
different requirements are formulated. The popular CL desiderata include reducing the forgetting on
previous tasks and increasing the forward transfer on the new tasks, i.e. speeding up the learning
by reusing knowledge from previous tasks [12, 47]. Other desiderata focus on limiting resources,
such as the number of samples, computation time, model size, or additional memory size. These
requirements are often conflicting, so usually some trade-offs have to be made [17, 47, 32].

Combining CL with RL adds another layer of complexity. In this work, we focus on the SAC
algorithm [16], which is often considered to be the method of choice for continuous control RL
[49, 48, 38]. As an actor-critic algorithm, it is based on the interplay between its two parts, see
Section 3.2. This is a fairly complicated algorithmic setup, which presents a number of challenges
when used jointly with CL.

In particular, since the optimization of the critic and actor networks is intertwined, it is hard to
understand and decouple the impact of individual components. Additionally, because of this interplay,
training biases get easily exacerbated, often leading to inferior performance or even a collapse.
Another complication is that the training objectives for the actor and the critic are different. The critic
minimizes the Bellman error which is known to be a fragile objective [14] susceptible to training
biases and might correlate poorly with the value error (which we would like to minimize). As the
actor optimizes over predictions of the critic, it might also suffer from these problems, even if less
directly. Finally, since the policy and the data we see change during the training, there is an inherent
distribution shift present, even within a single task.

3.2 SAC

In our study, we focus on soft actor-critic (SAC) [15], an off-policy actor-critic RL algorithm, based on
the maximum entropy principle. The critic strives to approximate the entropy-corrected Q-function
under the current policy, optimizing the Bellman error. The actor tries to find actions that maximize
the Q-function. The replay buffer holds the seen experience and provides data for the actor and
critic updates at each learning step. The exploration policy is used to gather data at the beginning
of each task for a set number of K steps. By default, in most SAC implementations, this means
sampling actions uniformly over the action space.

3



3.3 Continual World

We perform our experiments on the Continual World [47] benchmark. It contains a set of realistic
robotic tasks, where a simulated Sawyer robot manipulates everyday objects. The structure of the
observation and action spaces remains the same between the tasks; an observation is a 12-dimensional
vector describing the coordinates of the robot’s gripper and relevant objects. The 4-dimensional
action space describes the gripper movement. In training, a dense reward function is used to make the
tasks solvable; in evaluation, the binary success metric is used to indicate whether the desired goal has
been reached. The tasks are arranged in sequences and training in each task lasts for 1M steps. CW10
sequence contains 10 different tasks arranged in a fixed order. CW20 consists of CW10 repeated
twice, allowing to measure how much knowledge can be transferred in case of task repetitions. We
use both CW10 and CW20 in our evaluations, as well as shorter sequences containing pairs of tasks
from CW10.

3.4 Metrics

Following standard practice in continual learning literature, we report average performance and
forgetting metrics. We also measure transfer as defined in [47]. Below we briefly recall these three
metrics. Assume pi(t) ∈ [0, 1] to be the performance (success rate) of task i at time t, and that each
of the N tasks is trained for ∆ steps, so the total number of steps is T = N ·∆.

Average performance The average performance at time t is defined as P(t) := 1
N

∑N
i=1 pi(t). Its

final value, P (T ), is a scalar summary of the performance and is presented in the result tables.

Forward transfer The forward transfer is computed as a normalized area between the training
curve of the measured run and the training curve of a reference curve from training from scratch.
Let us denote by pbi ∈ [0, 1] the reference performance. Then the forward transfer on task i, FTi, is
defined as

FTi :=
AUCi − AUCb

i

1− AUCb
i

, AUCi :=
1

∆

∫ i·∆

(i−1)·∆
pi(t)dt, AUCb

i :=
1

∆

∫ ∆

0

pbi (t)dt.

The average forward transfer for all tasks, FT, is defined as FT = 1
N

∑N
i=1 FTi.

Forgetting For the task i, one can measure a drop in performance after the end of learning on this
task as Fi = pi(i ·∆)− pi(T ). Forgetting metric is defined as F = 1

N

∑N
i=1 Fi.

3.5 Experimental setup

We follow the experimental setup from [47]. The actor and the critic are implemented as two separate
MLP networks, each with 4 hidden layers of 256 neurons. We refer to the 4 hidden layers as the
backbone and the last output layer as the head. By default, we assume the multi-head (MH) setting,
where each task has its separate output head, but we also consider the single-head (SH) setting,
where only a single head is used for all tasks. The SAC exploration phase takes K = 10k steps.
All experiments in this paper were performed with 10 different seeds unless noted otherwise. We
compute 90% confidence intervals through bootstrapping. More details on the experimental setup
can be found in Appendix A.

4 Transfer in isolation

In this section, we study what enables transfer between RL tasks. We assume a two-task setting,
where we measure the forward transfer from the first to the second task, disregarding issues specific
to continual learning (e.g. forgetting), which we defer to the next section. We utilize all 100 pairs of
CW10 tasks, see Section 3.3, to evaluate the impact of critic, actor, and exploration given by SAC.

We will say that the actor or the critic are carried over (from the previous tasks) if their parameters
are reused as the initialization in the next task; otherwise, the parameters are re-initialized. We also
refer to the exploration policy as being carried over, if we use the policy from the previous task (or
tasks) to gather the data during the first 10k steps of the SAC exploration phase (see Section 3.2);

4



(a) Actor carried over (b) Critic carried over (c) Exploration carried over

Figure 2: The effect of carrying over different components on the performance on pairs of tasks from CW10.
We shade an entry if the 90% confidence interval contains 0, indicating that we cannot be sure whether the
component which was carried over makes a difference.

otherwise, a uniform random exploration policy is being used. We use both multi-head (MH) and
single-head (SH) settings, with the former being default.

Figure 2 illustrates the impact of the individual components on transfer for each pair. The (i, j)-th
entry in the matrix contains the forward transfer value when carrying over components from task i to
task j. Table 1 presents the aggregated statistics from the matrices given in Figure 2: the average FT
(including and excluding the diagonal), and the number of pairs with positive, negative, and neutral
FT2. Table 2 reports the transfer properties for all possible combinations of components present in
Table 1, omitting single-head critic (since it performs worse in Table 1).

4.1 Carrying over SAC components

From the results presented above, we draw two key observations. First, the role of the critic is the
most important for FT, while exploration and actor play smaller, but non-negligible, parts. Second,
the components are "transfer independent", in the sense that the transfer of the combination of the
components is close to the sum of transfers yielded by each component alone.

The evidence for the first finding is presented in detail for each pair in Figure 2 and summarized in
Table 1. More precisely, the average forward transfer across all pairs attributed to carrying over of the
critic equals 0.2 (resp. 0.15) for MH (resp. SH) setup. This separates the critic from the actor and
exploration, which yield (for the default MH setup) 0.06 and 0.09, respectively.

The importance of the critic is further emphasized by showing that restraining its learning capabilities,
even when the weights are initialized to the parameters learned in the previous task, negatively
impacts FT. This is shown in the last row of Table 1, where only the critic’s head is allowed to train,
while the body of the network is kept frozen and carried over from the previous task. This result
goes against our understanding of transfer in supervised learning, where feature reuse is a common
technique (e.g. in vision [28, 33]). However, the deterioration in FT can be explained by RL-specific
factors. Namely, freezing the backbone can hinder both the policy training (since the mechanics of
SAC intertwines actor and critic) and the critic training (due to inflated Bellman errors).

As to the second finding, i.e. the "transfer independence" of the components, the results of the
underlying analysis are presented in Table 2. We observe that the reported FT for the combination
of components follows closely the sum of FTs for individual components (reported in Table 1).
Furthermore, we observe that including all the components results in the highest transfer of 0.35.

There is a couple of remaining interesting observations. First, Figure 2 exhibits several vertical
patterns, meaning that transfer depends more on the second task. Second, the effect on transfer
increases on the diagonal, when the exploration is carried over. This seems reasonable since the

2We say that a pair has positive (resp. negative) FT if the corresponding confidence interval is above (resp.
below) 0. Otherwise, we mark it as neutral.

5



Table 1: Summary of the transfer statistics from the transfer matrices when transferring only a single component.
FT and FT (no diag) represent average forward transfer across all pairs with and without considering the diagonal
(transfer from a task to the same task), respectively. Subsequent columns denote the number of pairs with the
positive, negative, and neutral transfer.

name FT FT (no diag) # pos. # neg. # neutral

Actor (MH) 0.06 [0.03, 0.10] 0.05 [0.01, 0.09] 30 5 65
Critic (MH) 0.20 [0.17, 0.23] 0.19 [0.16, 0.23] 54 5 41
Exploration 0.09 [0.06, 0.13] 0.06 [0.03, 0.10] 28 9 63

Actor (SH) 0.12 [0.09, 0.15] 0.12 [0.09, 0.15] 37 1 62
Critic (SH) 0.15 [0.12, 0.18] 0.13 [0.10, 0.16] 41 19 40

Critic (train only head) -1.29 [-1.33, -1.25] -1.30 [-1.35, -1.26] 0 100 0

Table 2: Summary of transfer statistics when multiple components are carried over. We observe that impact
of each component is largely independent of other components. That is, FT when carrying over multiple
components is close to the sum of FT when carrying over each of them separately.

name FT FT (no diag) # pos. # neg. # neutral

Actor (MH) + Critic (MH) 0.27 [0.24, 0.30] 0.25 [0.22, 0.29] 58 4 38
Actor (SH) + Critic (MH) 0.29 [0.26, 0.32] 0.28 [0.25, 0.31] 59 2 39
Actor (MH) + Exp. 0.16 [0.12, 0.20] 0.14 [0.10, 0.18] 39 3 58
Actor (SH) + Exp. 0.21 [0.17, 0.24] 0.18 [0.15, 0.22] 53 0 47
Critic (MH) + Exp. 0.30 [0.27, 0.33] 0.28 [0.25, 0.31] 64 2 34

Actor (SH) + Critic (MH) + Exp. 0.36 [0.33, 0.38 0.33 [0.29, 0.36] 68 0 32
Actor (MH) + Critic (MH) + Exp. 0.35 [0.31, 0.38] 0.32 [0.29, 0.36] 70 1 29

policy in the new task is initialized to the already learned policy on the same task. Finally, resetting
the head (MH setup) is beneficial in the case of the critic, while it hurts the actor.

5 Transfer in continual learning

In Section 4.1, we focused on direct transfer in the two-task setting. Now, we move to the full
continual learning scenario, which brings two main differences: 1) we measure the performance of
all tasks in the sequence, so forgetting now plays a significant role; 2) typically, we consider longer
sequences of tasks of length 10 and 20 (CW10 and CW20, respectively). For longer sequences,
forgetting and transfer may have complex mutual interactions. To reduce forgetting, CL methods
usually apply some kind of regularization to the model, which in turn may be harmful to transfer. On
the other hand, transfer benefits from accumulated knowledge – if forgetting is not mitigated, there
might be nothing to transfer from.

We will investigate three main themes. The first one is reusing previous policies for exploration.
For long sequences, there are multiple design choices available compared to the two-task scenarios.
Secondly, we investigate CL with data reuse, an approach successful in supervised learning. We show
that the CRL setup is more complex and requires careful investigation. Finally, given the importance
of the critic for transfer (see Section 4), we study whether the critic should be regularized or not, and
conclude that typically, the answer is negative.

We study these issues in conjunction with various CL methods: Fine-tuning, Perfect memory, EWC,
PackNet, L2, A-GEM, MAS, and VCL. These are standard CL approaches adopted and tested in the
RL setting [47], see details in Appendix B. We note that CL methods used here are mostly successful
in mitigating forgetting; in this section, we report average performance and forward transfer, deferring
forgetting to the Appendices C and E.

5.1 Exploration

When using the SAC algorithm, at the beginning of each task, there is a short period of exploration
with a random policy, see Section 3.2. The experiments in Section 4.1 showed that the transfer

6



increases if the policy from the previous task is used instead. Now, we pass from two-task scenarios
to longer ones, and analyze the following options for choosing exploration policy, which we call:
random, preceding, uniform-previous, and best-return, and define them as follows. In the first task,
we always use a random policy, and assume that the tasks are numbered from 1 to N .

Consider now i ∈ {2, . . . , N}. For the random strategy, we randomly sample from the action space,
which is a default choice for SAC. For the other strategies, at the beginning of each exploration
episode, we choose a previous actor head to generate data instead of the random policy. In the
case of the preceding strategy, we use the (i − 1)-th actor’s head. For uniform-previous policy,
we use the j-th actor’s head, where j := RANDOM_UNIFORM({1, . . . , i − 1}). Finally, in best-
return strategy, we first try every possible head, and then act using the jmax-th actor’s head, where
jmax := argmaxj∈{1,...,i−1}R

i
j ; Ri

j is the return of the j-th head policy on the i-th task.

We evaluate how these strategies interact with various CL methods. We pick Fine-tuning, Behavioral
cloning, L2, EWC, and PackNet. The results for two well-performing methods, EWC and PackNet,
are presented in Table 3, with the rest being deferred to Appendix E. For EWC, choosing any
non-random policy significantly improves upon the baseline random strategy. This is particularly
visible in the CW20 sequence, which contains repeated tasks, and arguably can benefit more from an
informed strategy like best-return. Interestingly, the results for the rather simple uniform-previous
approach are quite competitive. We observe increased performance also for other methods except for
PackNet, for which effects are negligible.

Table 3: Average performance and forward transfer for different exploration strategies on CW10 and
CW20 sequences. Strategies are added on top of EWC and PackNet methods.

Method, exploration CW10 perf. CW10 f. transfer CW20 perf. CW20 f. transfer

EWC, random 0.63 [0.60, 0.66] 0.03 [-0.04, 0.09] 0.60 [0.59, 0.62] -0.14 [-0.19, -0.09]

EWC, preceding 0.70 [0.67, 0.73] 0.09 [0.03, 0.15] 0.61 [0.59, 0.64] -0.14 [-0.19, -0.09]

EWC, uniform-previous 0.72 [0.69, 0.75] 0.24 [0.19, 0.28] 0.70 [0.68, 0.73] 0.21 [0.17, 0.25]

EWC, best-return 0.70 [0.68, 0.73] 0.25 [0.21, 0.28] 0.71 [0.69, 0.73] 0.28 [0.25, 0.31]

PackNet, random 0.84 [0.81, 0.86] 0.26 [0.22, 0.29] 0.80 [0.79, 0.82] 0.18 [0.14, 0.22]

PackNet, preceding 0.84 [0.82, 0.85] 0.24 [0.20, 0.27] 0.81 [0.80, 0.83] 0.20 [0.16, 0.24]

PackNet, uniform-previous 0.84 [0.81, 0.86] 0.21 [0.15, 0.26] 0.80 [0.78, 0.82] 0.23 [0.18, 0.27]

PackNet, best-return 0.85 [0.83, 0.86] 0.23 [0.20, 0.26] 0.82 [0.81, 0.83] 0.23 [0.21, 0.25]

5.2 Data rehearsal

Rehearsal techniques work very well in supervised continual learning [7]. In RL, two major ap-
proaches to utilizing previous data have been studied: applying them as offline data using SAC loss,
and behavioral cloning of the previous policies. The former, dubbed Perfect memory, was reported to
perform poorly [47]. Behavioral cloning achieves more promising results [45, 35]. We study these
two approaches with an emphasis on the effects on transfer.

In Perfect memory, all the experiences are kept in the buffer. SAC training is applied to data from the
current task and offline data from the previous ones. In Behavioral cloning, an additional small buffer
is filled at the end of training on each task. We annotate a subset of samples from the main SAC buffer
using the trained actor and critic networks. When training the new task, we sample data from expert
buffers and apply auxiliary losses (with different weights), minimizing the KL divergence between
current and saved outputs for the actor and L2 distance for the critic; see details in Appendix B.

Firstly, we study the effect of rehearsal on transfer in the two-task scenario, using 100 task pairs
from CW10, as in Section 4.1. We observe that using Perfect memory or cloning both actor and
the critic has a detrimental effect on transfer, providing more evidence that critic regularization can
be catastrophic. On the other hand, cloning only the actor has a neutral effect; we report results for
these and more setups in Appendix E. As such, in the remaining Behavioral cloning experiments, we
regularize only the actor, unless noted otherwise.

Secondly, we perform experiments on longer sequences, CW10 and CW20; see Table 4. For reference,
we include two methods tested in [47], Fine-tuning and PackNet. Fine-tuning achieves the highest
transfer and PackNet the highest overall performance out of the methods tested in [47]. Behavioral

7



Table 4: Average performance and forward transfer for Perfect memory and Behavioral cloning
methods, as described in Section 5.2. Fine-tuning and PackNet are included for reference.

method CW10 perf. CW10 f. transfer CW20 perf. CW20 f. transfer

Perfect memory 0.27 [0.24, 0.30] -1.13 [-1.23, -1.04] 0.09 [0.06, 0.12] -1.32 [-1.41, -1.24]

Behavioral cloning 0.84 [0.81, 0.86] 0.41 [0.38, 0.43] 0.83 [0.81, 0.85] 0.36 [0.34, 0.38]

Fine-tuning 0.10 [0.10, 0.10] 0.31 [0.27, 0.34] 0.05 [0.05, 0.05] 0.19 [0.15, 0.23]

PackNet 0.84 [0.81, 0.86] 0.26 [0.22, 0.29] 0.80 [0.79, 0.82] 0.18 [0.14, 0.22]

cloning performs very well. In terms of the average performance, it is on par with PackNet on CW10
and better on CW20. Importantly, it significantly outperforms the baselines in terms of transfer. We
can see that Perfect memory works poorly, in line with the existing literature. In Appendix C, we
present the results for five other CL methods benchmarked in [47].

In the end, we observe an interesting phenomenon. While behavioral cloning does not improve
transfer in two-task scenario, it has a positive effect for the longer sequences. This result hints
that perhaps the learner accumulates knowledge of the previous tasks and, thus, can reuse the most
relevant parts of the past to improve the training of the current task. Additionally, perhaps behavioral
cloning loss acts as a regularizer and helps shape more general features, thus further improving
transfer.

5.3 Regularizing the critic

This section is devoted to the study of critic regularization in CRL methods. Since in our formulation
of the problem, the primary objective of CRL is the final performance of the actor, we have some
flexibility in how we treat the critic. We can even completely ignore forgetting in the critic, as
recommended in [47]. Other works suggest that regularization might be beneficial [21].

To understand this issue better, we carefully measure the performance while varying the strength of
the regularization, by changing the critic regularization coefficients for EWC, L2, and Behavioral
cloning. We first find a good value for the actor regularization coefficient, with the critic regularization
coefficient being set to 0. Then, with this value, we perform the sweep over the critic coefficients,
covering a wide range from 1 × 10−10 to 100, and run training on the CW10 sequence. For all
three methods, we observe that for the smallest values of critic regularization, the performance is
similar to the version without critic regularization, and then after some threshold, performance visibly
deteriorates. In the case of Behavioral cloning, it drops from 0.82 (no critic regularization) to 0.77
(critic regularization coefficient = 0.001) and then further, see Table 15. The complete results are
presented in Appendix E.3.

This confirms the practical recommendation from [47] to regularize only the actor. One possi-
ble explanation is that TD-learning used for the critic is highly sensitive to biases introduced by
regularization.

6 Combining the improvements: ClonEx-SAC

Based on the experimental findings presented so far, we propose to combine the discovered enhance-
ments in a simple method for continual reinforcement learning. This method significantly improves
the performance in the Continual World benchmark [47]. In particular, we observe a sharp transfer
increase to a value that matches a soft upper bound for transfer introduced in [47].

We incorporate the following choices in the proposed method:

• We use behavioral cloning for the actor, which, as we showed in Section 5.2, effectively
mitigates forgetting and increases transfer.

• We use best-return exploration, as described in Section 5.1, which efficiently reuses old
policy heads for faster exploration.

• As indicated in Section 5.3, we do not use any CL regularization for the critic.

8



• We use multiple output heads for both actor and critic to profit from transferred repre-
sentations without introducing too much bias in the new tasks, as discussed in Section
4.1.

We dub the method ClonEx-SAC to reflect the usage of the behavioral cloning, improved exploration,
and SAC algorithm.

We compare ClonEx-SAC with the behavioral cloning and 7 methods considered in [47], on the
CW10 and CW20 sequences. We present results in Figure 1 (see Introduction) and Appendix C.
ClonEx-SAC achieves 87% final performance compared to 80% of PackNet, the best method in [47].

The forward transfer of ClonEx-SAC, improves sharply from 0.19, the best previous result, to
0.54. Notably, ClonEx-SAC’s result closely matches the reference forward transfer, see below. We
conjecture that this excellent transfer is an important factor in the final performance. We also notice
that improvements brought separately by behavioral cloning and the best-return exploration strategy
work well together.

Reference forward transfer (RT) was introduced in [47] as a soft upper bound for transfer. For
a sequence of tasks t1, . . . , tN , it is defined defined as RT := 1

N

∑N
i=2 maxj<i FT(tj , ti), where

F (tj , ti) denotes the forward transfer for the pair of tasks tj , ti.

Intuitively, RT estimates the level of forward transfer, which could be achieved when a method is
able to remember and transfer all meaningful aspects of previously seen tasks. Note that in principle,
higher values of RT could still be achievable if the knowledge from the previous tasks is composed.
In our setup, the values of RT are 0.44 for CW10 and 0.55 for CW20. In both cases, they are closely
matched by the forward transfer of ClonEx-SAC. We note that our RT values are higher than the one
reported in [47], since their work does not take into account the effects of improved exploration.

7 Limitations

We are fully aware that our analyses do not cover the entire spectrum of problems that one might be
interested in when studying transfer in CRL. Here, we summarize a few limitations of our work:

• We build on top of the SAC algorithm. There is a risk that some of the conclusions from
this paper would differ for another choice of the underlying RL method.

• We focus on the Continual World suite. There is a possibility that some of the results from
this paper would differ in environments from other domains or with different, potentially
structured state spaces.

• ClonEx-SAC requires retaining data from previous tasks, which may not always be feasible
(e.g., due to privacy concerns).

8 Conclusions

In this work, we identify and study some of the key factors contributing to transfer in continual
reinforcement learning. In the first part of the study, we focus on the transfer alone, disregarding other
CL desiderata, and analyze how different components of the SAC algorithm (actor, critic, exploration)
contribute to it. We identify the critic as the leading component.

In the second part, we study further effects that are relevant to the full continual learning setup with
long task sequences. In particular, we show that behavioral cloning and reusing previous policies
for exploration significantly improve both transfer and the final performance. This leads to a new
method, ClonEx-SAC, which outperforms considered baselines.

We believe that this work constitutes the first step toward understanding the mechanisms behind
transfer in continual reinforcement learning. There are still important issues to be resolved, e.g.,
pinpointing the exact role of feature reuse or the interplay between transfer and forgetting. We hope
that these will be addressed by the community in the future.

9



Acknowledgments and Disclosure of Funding

The work of Maciej Wołczyk was supported by the National Centre of Science (Poland) Grant No.
2021/43/B/ST6/01456. The work of Piotr Miłoś was supported by the Polish National Science Center
grant UMO-2017/26/E/ST6/00622 and UMO-2019/35/O/ST6/03464. This research was supported by
the PL-Grid Infrastructure. Our experiments were managed using https://neptune.ai. We would
like to thank the Neptune team for providing us access to the team version and technical support.

References
[1] Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to forget. In Vittorio Ferrari, Martial
Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III, volume
11207 of Lecture Notes in Computer Science, pages 144–161. Springer, 2018.

[3] Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In International Conference on Machine Learning, pages 166–175. PMLR,
2017.

[4] Bowen Baker, Ingmar Kanitscheider, Todor M. Markov, Yi Wu, Glenn Powell, Bob McGrew,
and Igor Mordatch. Emergent tool use from multi-agent autocurricula. CoRR, abs/1909.07528,
2019.

[5] Tim Brys, Anna Harutyunyan, Matthew E Taylor, and Ann Nowé. Policy transfer using reward
shaping. In AAMAS, pages 181–188, 2015.

[6] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with A-GEM. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[7] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet Ku-
mar Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. Continual learning with tiny episodic
memories. CoRR, abs/1902.10486, 2019.

[8] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis,
Gregory Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in
classification tasks. arXiv preprint arXiv:1909.08383, 2019.

[9] Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learn-
ing modular neural network policies for multi-task and multi-robot transfer. In 2017 IEEE
international conference on robotics and automation (ICRA), pages 2169–2176. IEEE, 2017.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. 2018.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[12] Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning. CoRR,
abs/1805.09733, 2018.

[13] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

[14] Scott Fujimoto, David Meger, Doina Precup, Ofir Nachum, and Shixiang Shane Gu. Why
should i trust you, bellman? the bellman error is a poor replacement for value error, 2022.

10

https://neptune.ai


[15] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[16] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic
algorithms and applications. CoRR, abs/1812.05905, 2018.

[17] Raia Hadsell, Dushyant Rao, Andrei A. Rusu, and Razvan Pascanu. Embracing change:
Continual learning in deep neural networks. Trends in Cognitive Sciences, 24(12):1028 – 1040,
2020.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[19] Yizhou Huang, Kevin Xie, Homanga Bharadhwaj, and Florian Shkurti. Continual model-based
reinforcement learning with hypernetworks. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 799–805. IEEE, 2021.

[20] Christos Kaplanis, Murray Shanahan, and Claudia Clopath. Continual reinforcement learning
with complex synapses. In International Conference on Machine Learning, pages 2497–2506.
PMLR, 2018.

[21] Samuel Kessler, Jack Parker-Holder, Philip J. Ball, Stefan Zohren, and Stephen J. Roberts.
Same state, different task: Continual reinforcement learning without interference. CoRR,
abs/2106.02940, 2021.

[22] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual rein-
forcement learning: A review and perspectives, 2020.

[23] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. CoRR, abs/1612.00796, 2016.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C.
Burges, Léon Bottou, and Kilian Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States,
pages 1106–1114, 2012.

[25] Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Pretrained transformers as universal
computation engines. arXiv preprint arXiv:2103.05247, 2021.

[26] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by
iterative pruning. In 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 7765–7773. IEEE Computer
Society, 2018.

[27] Neville Mehta, Sriraam Natarajan, Prasad Tadepalli, and Alan Fern. Transfer in variable-reward
hierarchical reinforcement learning. Machine Learning, 73(3):289–312, 2008.

[28] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer
learning? Advances in neural information processing systems, 33:512–523, 2020.

[29] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer
learning? In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 512–523. Curran Associates, Inc.,
2020.

11



[30] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In Icml, volume 99, pages 278–287,
1999.

[31] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual
learning. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[32] German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

[33] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. arXiv preprint arXiv:1909.09157,
2019.

[34] Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can wikipedia help offline reinforcement
learning? CoRR, abs/2201.12122, 2022.

[35] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-
ence replay for continual learning. Advances in Neural Information Processing Systems, 32,
2019.

[36] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[37] Jonathan Schwarz, Daniel Altman, Andrew Dudzik, Oriol Vinyals, Yee Whye Teh, and Razvan
Pascanu. Towards a natural benchmark for continual learning. In Continual learning Workshop,
Neurips 2018, 2018.

[38] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep
reinforcement learning in video games. arXiv preprint arXiv:1912.10944, 2019.

[39] Lorenzo Steccanella, Simone Totaro, Damien Allonsius, and Anders Jonsson. Hierarchical
reinforcement learning for efficient exploration and transfer. arXiv preprint arXiv:2011.06335,
2020.

[40] Erik Talvitie and Satinder P Singh. An experts algorithm for transfer learning. In IJCAI, pages
1065–1070, 2007.

[41] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A
survey on deep transfer learning. In Věra Kůrková, Yannis Manolopoulos, Barbara Hammer,
Lazaros Iliadis, and Ilias Maglogiannis, editors, Artificial Neural Networks and Machine
Learning – ICANN 2018, pages 270–279, Cham, 2018. Springer International Publishing.

[42] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10(7), 2009.

[43] Matthew E Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task mappings for
temporal difference learning. Journal of Machine Learning Research, 8(9), 2007.

[44] Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck,
Jakob Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michaël Mathieu, Nat McAleese,
Nathalie Bradley-Schmieg, Nathaniel Wong, Nicolas Porcel, Roberta Raileanu, Steph Hughes-
Fitt, Valentin Dalibard, and Wojciech Marian Czarnecki. Open-ended learning leads to generally
capable agents. CoRR, abs/2107.12808, 2021.

[45] René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Guanghang Cai, Natalia Díaz
Rodríguez, and David Filliat. Discorl: Continual reinforcement learning via policy distillation.
CoRR, abs/1907.05855, 2019.

12



[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 5998–6008, 2017.

[47] Maciej Wołczyk, Michał Zając, Razvan Pascanu, Lukasz Kucinski, and Piotr Miłoś. Contin-
ual world: A robotic benchmark for continual reinforcement learning. Advances in Neural
Information Processing Systems, 34, 2021.

[48] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

[49] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura, editors, 3rd Annual
Conference on Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November 1, 2019,
Proceedings, volume 100 of Proceedings of Machine Learning Research, pages 1094–1100.
PMLR, 2019.

[50] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, André Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas
Beyer, Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly,
and Neil Houlsby. The visual task adaptation benchmark. CoRR, abs/1910.04867, 2019.

[51] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforcement learning:
A survey. arXiv preprint arXiv:2009.07888, 2020.

[52] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A comprehensive survey on transfer learning, 2021.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In Section 7
(c) Did you discuss any potential negative societal impacts of your work? [No] We do not

see this work as having a significant societal impact.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

13



(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] The code,
including the scripts used to run the experiments from the paper, are in the supplemen-
tary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We conduct each experiment with multiple seeds (at least
10)

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] We describe these details in
Appendix F.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


