
A Proofs

Theorem 1. Given a surprise value function V asurp(s, u, σ)∀a ∈ N , the energy operator
T V asurp(s, u, σ) = log

∑N
a=1 exp (V asurp(s, u, σ)) forms a contraction on V asurp(s, u, σ).

Proof. We follow the process of [2]. Let us first define a norm on surprise values ||V1 − V2|| ≡
max
s,u,σ
|V1(s, u, σ)− V2(s, u, σ)|. Suppose ε = ||V1 − V2||,

log

N∑
a=1

exp (V1(s, u, σ)) ≤ log

N∑
a=1

exp (V2(s, u, σ) + ε)

= log

N∑
a=1

exp (V1(s, u, σ)) ≤ log exp (ε)

N∑
a=1

exp (V2(s, u, σ))

= log

N∑
a=1

exp (V1(s, u, σ)) ≤ ε+ log

N∑
a=1

exp (V2(s, u, σ))

= log

N∑
a=1

exp (V1(s, u, σ))− log

N∑
a=1

exp (V2(s, u, σ)) ≤ ||V1 − V2|| (9)

Similarly, using ε with log
∑N
a=1 exp (V1(s, u, σ)),

log

N∑
a=1

exp (V1(s, u, σ) + ε) ≥ log

N∑
a=1

exp (V2(s, u, σ))

= log exp (ε)

N∑
a=1

exp (V1(s, u, σ)) ≥ log

N∑
a=1

exp (V2(s, u, σ))

= ε+ log

N∑
a=1

exp (V1(s, u, σ)) ≥ log

N∑
a=1

exp (V2(s, u, σ))

= ||V1 − V2|| ≥ log

N∑
a=1

exp (V2(s, u, σ))− log

N∑
a=1

exp (V1(s, u, σ)) (10)

Results in Equation 9 and Equation 10 prove that the energy operation is a contraction.

Theorem 2. Upon agent’s convergence to an optimal policy π∗, total energy of π∗, expressed by E∗
will reach a thermal equilibrium consisting of minimum surprise among consecutive states s and s′.

Proof. We begin by initializing a set of M policies {π1, π2..., πM} having energy ratios
{E1, E2..., EM}. Consider a policy π1 with surprise value function V1. E1 can then be expressed as

E1 = log

[∑N
a=1 exp (V a1 (s′, u′, σ′))∑N
a=1 exp (V a1 (s, u, σ))

]
Invoking Assumption 2 for s and s′, we can express V a1 (s′, u′, σ′) = V a1 (s, u, σ) + ζ1 where ζ1 is a
constant. Using this expression in E1 we get,

E1 = log

[∑N
a=1 exp (V a1 (s, u, σ) + ζ1)∑N
a=1 exp (V a1 (s, u, σ))

]

E1 = log

[
exp (ζ1)

∑N
a=1 exp (V a1 (s, u, σ))∑N

a=1 exp (V a1 (s, u, σ))

]
E1 = ζ1

16

Similarly, E2 = ζ2,E3 = ζ3...,EM = ζM . Thus, the energy residing in policy π is proportional to the
surprise between consecutive states s and s′. Clearly, an optimal policy π∗ is the one with minimum
surprise. Mathematically,

π∗ ≥ π1, π2..., πM =⇒ ζ∗ ≤ ζ1, ζ2..., ζM
= π∗ ≥ π1, π2..., πM =⇒ E∗ ≤ E1, E2..., EM

Thus, proving that the optimal policy consists of minimum surprise at thermal equilibrium.

B Relation to Maximum Entropy Framework
B.1 Similarities & Differences

We conceptually compare EMIX to the maximum entropy framework.

Similarities: Both methods utilize an auxilary objective as intrinsic motivation to tackle uncertainty.
While the maximum entropy formulation assigns low energy to uncertain actions, our method assigns
low energy to uncertain encoded representations od states (as presented in Fig. 2).

Differences: Our method differs from maximum entropy in its optimization process and learning
scheme. The maximum entropy formulation aims to maximize entropy in the value function space so
as to motivate exploration. Our proposed scheme, on the other hand, aims to minimize surprise in the
low-dimensional representation space to obtain dynamics-aware robust policies.

B.2 Connection to Soft Q-Learning

The Soft Q-Learning objective with V θ
−

soft(s
′) and Qsoft(u, s; θ) as state and action value functions

respectively is given by-

JQ(θ) = Es,u∼R
[

1

2

(
r + γEs′∼R[V θ

−

soft(s
′)]−Qsoft(u, s; θ)

)2]

= JQ(θ) = Es,u∼R

1

2

(
r + γEs′∼R

[
log
∑
u∈A

expQsoft(u
′, s′; θ−)

]
−Qsoft(u, s; θ)

)2

The gradient of this objective can be expressed as-

∇θJQ(θ) = Es,u∼R

[(
r + γEs′∼R

[
log
∑
u∈A

expQ(u′, s′; θ−)

]
−Qsoft(u, s; θ)

)]
∇θQsoft(u, s; θ)

(11)

And the gradient of the EMIX objective is obtained as-

L(θ) = Es,u,s′∼R

1

2

(
r + γmax

u′
Q(u′, s′; θ−) + β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2

∇θL(θ) = Es,u,s′∼R

[(
r + γmax

u′
Q(u′, s′; θ−)

+ β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)]
∇θQ(u, s; θ) (12)

Comparing Equation 11 to Equation 12 we notice that Soft Q-Learning and EMIX are related to
each other as they utilize EBMs. Soft Q-Learning makes use of a discounted energy function
which downweights the energy values over longer horizons. Actions consisting of lower energy
configurations are given preference by making use of Qsoft(u, s; θ) as the negative energy. On
the other hand, EMIX makes use of a constant energy function weighed by β which minimizes
surprise-based energy between consecutive states. Both the objectives can be thought of as energy
minimizing models which search for an optimal energy configuration. Soft Q-Learning searches for
an optimal configuration in the action space whereas EMIX favours optimal behavior on spurious
states. In fact, EMIX can be realized as a special case of Soft Q-Learning if the mixer agent utilizes
an energy-based policy and attains thermal equilibrium. This leads us to express Theorem 3.

17

Theorem 3. Given an energy-based policy π with its target function V (s′) =
log
∑
u∈A expQ(u′, s′; θ−), the surprise minimization objective L(θ) reduces to the Soft Q-

Learning objective L(θsoft) in the special case surprise absent between consecutive states,∑N
a=1 exp (V asurp(s′, u′, σ′)) =

∑N
a=1 exp (V asurp(s, u, σ)).

Proof. We know that the EMIX objective is given by-

L(θ) = Es,u,s′∼R

1

2

(
r + γmax

u′
Q(u′; s′, θ−) + β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2

(13)
Replacing the greedy policy term max

u′
Q(u′, s′; θ−) with the energy-based value function V (s′) =

log
∑
u′∈A expQ(u′, s′; θ−), we get,

L(θ) = Es,u,s′∼R

1

2

(
r + γEs′∼R[V (s′)] + β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2

(14)

= L(θ) = Es,u,s′∼R

[
1

2

(
r + γEs′∼R

[
log

∑
u′∈A

expQ(u′, s′; θ−)

]

+ β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s, u, σ))

)
−Q(u, s; θ)

)2]

At thermal equilibrium,
∑N
a=1 exp (V asurp(s, u, σ)) =

∑N
a=1 exp (V asurp(s′, u′, σ′)),

= L(θ) = Es,u,s′∼R

[
1

2

(
r + γEs′∼R

[
log

∑
u′∈A

expQ(u′, s′; θ−)

]

+ β log

(∑N
a=1 exp (V asurp(s′, u′, σ′))∑N
a=1 exp (V asurp(s′, u′, σ′))

)
−Q(u, s; θ)

)2]

= L(θ) = Es,u,s′∼R

1

2

(
r + γEs′∼R

[
log

∑
u′∈A

expQ(u′, s′; θ−)

]
+ β log(1)−Q(u, s; θ)

)2

(15)

= L(θ) = Es,u,s′∼R

1

2

(
r + γEs′∼R

[
log

∑
u′∈A

expQ(u′, s′; θ−)

]
−Q(u, s; θ)

)2
 (16)

Equation 16 represents the Soft Q-Learning objective, hence proving the result.

C Convergence Analysis
We now analyze convergence of the surprise minimization scheme during policy optimization. Our
notation denotes BVk−1 = r + γVk−1 as the Bellman operator which obeys monotonicity and
contraction.

Monotonicity: V1 ≤ V2 =⇒ BV1 ≤ BV2 ; Contraction: ‖BV1 − BV2‖2 ≤ γ‖V1 − V2‖2

We now denote V̂k = rk + γV̂k−1 + β log
∑N
a=1 exp(V asurp,(k)(s, u, σ)) as the total value at step k.

As per the definition of B, this gives us V̂k = BV̂k−1 + β log
∑N
a=1 exp(V asurp,(k)(s, u, σ)).

18

Consider
∥∥∥∥V̂k − V ∗∥∥∥∥

2

with V ∗ being the optimal value at convergence,

∥∥∥∥V̂k − V ∗∥∥∥∥
2

≤
∥∥∥∥BV̂k−1 + β log

N∑
a=1

exp(V asurp,(k))− V
∗
∥∥∥∥
2

(17)

Where β log
∑N
a=1 exp(V asurp,(k)) > 0 as per constant positive surprise ζ > 0 in 2. We impose this

constraint by adding ReLU nonlinearities in surprise encoder to obtain positive V asurp,(k) values.

≤
∥∥∥∥B2V̂k−2 + β log

N∑
a=1

exp(V asurp,(k−1)) + β log

N∑
a=1

exp(V asurp,(k))− V
∗
∥∥∥∥
2

(18)

≤
∥∥∥∥B2V̂k−2 + β

(
log

N∑
a=1

exp(V asurp,(k−1)) + log

N∑
a=1

exp(V asurp,(k))

)
− V ∗

∥∥∥∥
2

(19)

≤
∥∥∥∥B2V̂k−2 + β

(
log

[
N∑
a=1

exp(V asurp,(k−1))

][
N∑
a=1

exp(V asurp,(k))

])
− V ∗

∥∥∥∥
2

(20)

Thus, for k iterations, we have,

≤
∥∥∥∥BkV0 + β

(
log

k∏
i=1

[
N∑
a=1

exp(V asurp,(i))

])
− V ∗

∥∥∥∥
2

(21)

=

∥∥∥∥BkV0 + β

(
log

N∑
a=1

[
k∏
i=1

exp(V asurp,(i))

])
− V ∗

∥∥∥∥
2

(22)

=

∥∥∥∥BkV0 + β

(
log

N∑
a=1

[
exp(

k∑
i=1

V asurp,(i))

])
− V ∗

∥∥∥∥
2

(23)

We now absorb the sum of surprise values from time index i = 1, .., k in a single variable V atot. Thus,
using V atot =

∑k
i=1 V

a
surp,(i) and utilizing the Triangle Inequality, we get,

=

∥∥∥∥BkV0 − V ∗∥∥∥∥
2

+

∥∥∥∥β
(

log

N∑
a=1

[exp(V atot)]

)∥∥∥∥
2

(24)

We now bound the two terms separately. Considering the first term and following the results of value
iteration convergence [5], ∥∥∥∥BkV − V ∗∥∥∥∥

2

≤ γk
∥∥∥∥V − V ∗∥∥∥∥

2

(25)∥∥∥∥BkV0 − V ∗∥∥∥∥
2

≤ γk
∥∥∥∥V + Vµ − Vµ − V ∗

∥∥∥∥
2

(26)

wherein Vµ denotes an approximation to V . Utilizing the triangle inequality yields,∥∥∥∥BkV0 − V ∗∥∥∥∥
2

≤ γk
∥∥∥∥V − Vµ∥∥∥∥

2

+ γk
∥∥∥∥Vµ − V ∗∥∥∥∥

2

(27)

The two terms are bounded using the convergence result of [4].∥∥∥∥BkV0 − V ∗∥∥∥∥
2

≤ γk
√
rmax + γk

√
rmax|S|
1− γ

(28)

Now, considering the second term in Equation 24 and denoting V ∗tot =
∑k
i=1 V

∗
surp,(i) as the sum of

optimal surprise values,

β

∥∥∥∥ log

N∑
a=1

exp(V atot)

∥∥∥∥
2

= β

∥∥∥∥ log

N∑
a=1

exp(V atot)− log

N∑
a=1

exp(V ∗tot) + log

N∑
a=1

exp(V ∗tot)

∥∥∥∥
2

(29)

19

using the triangle inequality,

≤ β
∥∥∥∥ log

N∑
a=1

exp(V atot)− log

N∑
a=1

exp(V ∗tot)

∥∥∥∥
2

+ β

∥∥∥∥ log

N∑
a=1

exp(V ∗tot)

∥∥∥∥
2

(30)

Since T = log
∑N
a=1 exp(V atot) is a contraction following Theorem 1, for the first term we have,

≤ βγ
∥∥∥∥V atot − V ∗tot∥∥∥∥

2

+ β

∥∥∥∥ log

N∑
a=1

exp(V ∗tot)

∥∥∥∥
2

(31)

The second term in the above relation is bounded due to the completeness assumption,∥∥∥∥ log
∑N
a=1 exp(V ∗tot)

∥∥∥∥
2

. The first term, on the other hand, is simplified by applying

Jensen’s Inequality on the definitions of V atot and V ∗tot,
∥∥∥∥∑k

i=1 V
a
surp,(i) −

∑k
i=1 V

∗
surp,(i)

∥∥∥∥
2

=∥∥∥∥∑k
i=1

(
V asurp,(i) − V

∗
surp,(i)

)∥∥∥∥
2

≤
∑k
i=1

∥∥∥∥V asurp,(i) − V ∗surp,(i)

∥∥∥∥
2

. Denoting
∥∥∥∥V asurp,(i) −

V ∗surp,(i)

∥∥∥∥
2

= RMSE(V asurp,(i)), we obtain the following result,

≤ βγ
k∑
i=1

RMSE(V asurp,(i)) + βζ , ζ > 0 (32)

Finally, combining Equation 28 and Equation 32 in Equation 24, we obtain the desired convergence
bound. ∥∥∥∥Vk − V ∗∥∥∥∥

2

≤ γk
(
√
rmax +

√
rmax|S|
1− γ

)
+ β

(
γ

k∑
i=1

RMSE(V asurp,(i)) + ζ

)
(33)

While the first term in Equation 33 denotes the convergence of policy optimization, the second
term indicates the bounded convergence of surprise to ecological niches with finite (yet nonzero)
surprising elements. The policy optimization process converges at a geometric rateO(γk) towards its
stable fixed points. The surprise minimization process, on the other hand, demonstrates an annealing
behavior which depends on the temperature parameter β. Furthermore, convergence to stable fixed
point V atot is bounded in respect to each agents individual surprise values V atot. This insight indicates
that different agents converge towards different locally optimal values of surprise. Finally, the
presence of constant ζ corroborates prior claims [50, 12] that agents continue to experience surprise
irrespective of their convergence to minimum energy niches. To further develop intuition for this
claim, consider the special case wherein

∑k
i=1 RMSE(V asurp,(i))→ 0, i.e.- surprise estimation error

for all iterations goes to zero. Irrespective of global convergence among all agents, a finite yet small

ζ continues to contribute to the upper bound of
∥∥∥∥Vk − V ∗∥∥∥∥

2

.

Role of β: We further discuss the role of β which is of balancing the terms at successive iterations.
While the first term geometrically decays with O(γk) rate, the second term approaches a finite
constant βζ as V atot → V ∗tot. Irrespective of our choice of β, the LHS ‖Vk − V ∗‖2 is upper bounded
by a constant which validates the claims of minimum yet finite surprise values. We do note that a
small β is still desirable to remove any approximation errors in order to push Vk → V ∗. However,
this comes at the cost of increased surprise if β is not selected appropriately.

D Implementation Details

D.1 Model Specifications

Architecture: This section highlights model architecture for the surprise value function. At the
lower level, the architecture consists of 3 independent networks called state_net, q_net and surp_net.

20

Each of these networks consist of a single layer of 256 units with ReLU non-linearity as activations.
Similar to the mixer-network, we use the ReLU non-linearity in order to provide monotonicity
constraints across agents. Using a modular architecture in combination with independent networks
leads to a richer extraction of joint latent transition space. Outputs from each of the networks are
concatenated and are provided as input to the main_net consisting of 256 units with ReLU activations.
The main_net yields a single output as the surprise value V asurp(s, u, σ) which is reduced along the
agent dimension by the energy operator. Alternatively, deeper versions of networks can be used in
order to make the extracted embeddings increasingly expressive. However, increasing the number of
layers does little in comparison to additional computational expense.

Computation of σ: The deviation σ corresponds to the standard deviation across each dimension of
the state s. Considering the state as a tensor of size B ×A×M with B as the batch size, A as the
number of agents and M as the observation dimension, we compute σ by calculating the standard
deviation across the M dimension. This yields σ as a B ×A× 1 dimensional array.

Computation of surprise estimates: Vsurp denotes the surprise value function which quantifies the
amount of surprise experienced by agents. Analogous to a Q value function which provides estimates
of returns, Vsurp provides estimate of surprise. Our framework learns Vsurp much like any other
value function (using a neural network), but by additionally undergoing a log

∑
exp transformation

to obey the fixed point property. This is achieved by realizing log-sum-exp as an energy operator
T = log

∑
exp which can be computed using standard computation libraries. Since our code is

implemented in PyTorch, we implement this as T_V = torch.logsumexp(V_surp, dim=1).

Global State Encoder: The global state encoder serves as a mapping from the state space to a low
dimensional representation space S → Z . The encoder takes in a sequence of states {s1, s2, ..., sT }
as input and outputs a latent representation zstate. We use a standard pyramid MLP network consisting
of 2 hidden layers of 256 units each with ReLU non-linearity. Embeddings obtained from the encoder
are concatenated with other latent embeddings before being passed to the final surprise encoder.

Standard Deviation Encoder: The standard deviation encoder serves as a mapping from standard
deviations across state dimensions to a low dimensional representation space. Each standard deviation
σ is computed across dimensions of the state st. These deviations are then packed in a sequence
{σ1, σ2, ..., σT } and passed as inputs to the standard deviation encoder. Intuitively, the encoder learns
changes across states in a batch of observations. This is similar to a dynamics model predicting future
states, except that we map these states to a low dimensional embedding. We use a standard pyramid
MLP network consisting of 2 hidden layers of 256 units each with ReLU non-linearity. Embeddings
obtained from the encoder are concatenated with other latent representations and used by the final
surprise encoder to estimate the surprise distribution.

D.2 Hyperparameters

Table 3 presents hyperparameter values for EMIX. A total of 2 target Q-functions were used as the
model is found to be robust to any greater values.

Hyperparameters Values
batch size b = 32

learning rate α = 0.0005
discount factor γ = 0.99

target update interval 200 episodes
gradient clipping 10

exploration schedule 1.0 to 0.01 over 50000 steps
mixer embedding size 32

agent hidden size 64
temperature β = 0.01

target Q-functions 2
Table 3: Hyperparameter values for EMIX agents

21

D.3 Selection & Tuning of β

One can manually tune β using a fine-grained hyperparameter search. We tune β between 0.001 and
1 in intervals of 0.01 with best performance observed at β = 0.01. However, we find two additional
methods helpful for obtaining more accurate values. These are described as follows-

Armijo’s Line Search: One can borrow from optimization theory and utilize Armijo’s line search
[41] by setting a termination condition. The method starts with a constant value of β which is
iteratively incremented/decremented until a termination criterion (example- ‖∇L(θ)‖ < ε with ε a
constant) is reached. While line search is proven to converge towards globally optimal values, its
O(n2) convergence may be computationally expensive that too in the MARL setting. Thus, we turn
to the more efficient automatic tuning.

Algorithm 2 Armijo’s Line Search

1: Initialize β, δ ∈ (0, 1], EMIX & T V asurp;
2: while EMIX(Q+β∗T V asurp)> EMIX(Q)

+ α ∗ β ∗ ∇EMIX(Q)TT V asurp do
3: β = δ ∗ β
4: end while
5: return β

Algorithm 3 Automatic Tuning

1: Initialize β, δ ∈ (0, 1], EMIX & T V asurp;
2: EMIX(Q+ β ∗ T V asurp)
3: beta_loss = β ∗ 0.5 ∗ (T V asurp − 0)2

4: beta_loss.backward()
5: return β

Automatic Tuning: We choose to automatically tune β following single-agent RL literature [20, 28].
This is achieved by treating β as a parameter and adaptively optimizing over it using Adam. We treat
a surprise value of 0 as our target value. The method works well in practice and provides β values
closer to 0.01 (our manual selection).

E Additional Results

E.1 Statistical Significance

Scenarios EMIX SMiRL-QMIX QMIX VDN COMA IQL
2s_vs_1sc 14 7 - 21 25 4

2s3z 15 9 - 6 0 0
3m 17 0 - 0 2 12

3s_vs_3z 11 3 - 0 0 1
3s_vs_4z 21 0 - 2 0 0
3s_vs_5z 5 0 - 25 0 0

3s5z 7 13 - 0 0 0
8m 15 1 - 1 3 0

8m_vs_9m 7 11 - 0 0 0
10m_vs_11m 14 25 - 6 0 0

so_many_baneling 24 14 - 9 4 0
5m_vs_6m 21 15 - 18 0 0

Table 4: Comparison of the U statistic on StarCraft II benchmark. U here denotes the statistical
significance of an algorithm against QMIX (higher is better).

We follow the recommendation of [33] and evaluate the statistical significance of our results by
carrying out the Mann-Whitney U test [38]. All 5 seeds of an algorithm (on each task) are compared
to that of QMIX to yield the U statistic. U here denotes the statistical significance of performance
with higher values being desirable.

Table 4 presents the comparison of U statistic on the StartCraft II benchmark. EMIX demonstrates
consistently high values of U across a diverse set of tasks when compared to SMiRL and prior MARL
agents. This highlights the consistent surprise-minimizing performance of EMIX across random
seeds.

22

E.2 StarCraft II Benchmark

Scenarios EMIX SMiRL-QMIX QMIX VDN COMA IQL
2s_vs_1sc 90.33 ± 0.72 88.41 ± 1.31 89.19 ± 3.23 91.42 ± 1.23 96.90 ± 0.54 86.07 ± 0.98

2s3z 95.40±0.45 94.93±0.32 95.30±1.28 92.03±2.08 43.33±2.70 55.74±6.84
3s_vs_3z 99.58±0.07 97.63±1.08 99.43±0.20 97.90±0.58 0.21±0.54 92.32±2.83
3s_vs_5z 52.91±11.80 0.00±0.00 43.44±7.09 68.51±5.60 0.00±0.00 18.14±2.34

3s5z 88.88±1.07 88.53±1.03 88.49±2.32 63.58±3.99 0.25±0.11 7.05±3.52
8m 94.47±1.38 89.96±1.42 94.30±2.90 90.26±1.12 92.82±0.53 83.53±1.62

Table 5: Comparison of success rate percentages between EMIX and prior MARL methods on
StarCraft II micromanagement scenarios. EMIX is comparable to or improves over QMIX agent. In
comparison to SMiRL-QMIX, EMIX demonstrates improved minimization of surprise. Results are
averaged over 5 random seeds.

E.3 Predator-Prey Benchmark

Figure 8: Variation
in performance with
increasing number of
agents.

We consider a simple toy task from the Predator-Prey benchmark to
demonstrate the importance of surprise minimization. We select preda-
tor_prey_easy due to its simplicity and convenient dynamics. The task
consists of 3 agents and 3 opponents. We increase the number of opponents
while keeping the task fixed. This way the dynamics of the MDP remain
unchanged and the only changing factor is opponent behaviors.

Fig. 8 presents the variation of average returns for EMIX and QMIX
over 5 random seeds. While QMIX agents undergo a steady decrease in
performance, EMIX agents are found robust to this fast degradation. Even
after the addition of 20 opponents (against only 3 agents), EMIX is able
to retain positive returns. The algorithm acquires a surprise robust-policy
early on during training to tackle fast-paced changes introduced by the large
number of agents.

E.4 Note on Minimum Entropy Conjugate Objective

The minimum conjugate entropy objective denotes the dual problem to surprise minimiza-
tion. If we compute the Legendre Transform of our energy-based operator T V asurp(s, u, σ) =

log
∑N
a=1 exp(V asurp(s, u, σ)) we obtain the entropy functionH(x) where x is the gradient of the oper-

ator, x = T V asurp(s, u, σ). This insight indicates that minimizing the energy operator T V asurp(s, u, σ)
is same as minimizing entropy in the space of gradients. Intuitively, our objective aims to minimize
uncertainty in the learning signal.

F Additional Related Work on Multi-Agent Value Factorization

We discuss recent MARL methods within the Centralised Training and Decentralised Control
paradigm [26] which improve value factorization. The original work of QTRAN [51] improves
representational capacity of factorization schemes by generalizing methods such as QMIX [44] and
VDN [53]. More recent advances combine techniques from dueling networks and temporal abstrac-
tion to learn MARL agent factorizations with sufficient representations [59]. A notable work is that
of [60] which employs pretrained action representations to learn agent-specific roles. Decomposing
policy optimization into role selection and role execution stages allows larger number of MARL
agents to collaborate well even in unseen scenarios. Alternate works consider information theoretic
objectives to introduce diversity in optimization and representation of shared multi-agent parameters
[10]. Lastly, [61] extend these ideas by decomposing value learning in multi-agent actor-critic
methods. Within the off-policy setting, these agents highlight sufficient representational capacity in
both discrete and continuous action spaces.

23

	Proofs
	Relation to Maximum Entropy Framework
	Similarities & Differences
	Connection to Soft Q-Learning

	Convergence Analysis
	Implementation Details
	Model Specifications
	Hyperparameters
	Selection & Tuning of

	Additional Results
	Statistical Significance
	StarCraft II Benchmark
	Predator-Prey Benchmark
	Note on Minimum Entropy Conjugate Objective

	Additional Related Work on Multi-Agent Value Factorization

