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Abstract

We study the task of efficiently sampling from a Gibbs distribution dπ∗ =
e−hdvolg over a Riemannian manifold M via (geometric) Langevin MCMC;
this algorithm involves computing exponential maps in random Gaussian directions
and is efficiently implementable in practice. The key to our analysis of Langevin
MCMC is a bound on the discretization error of the geometric Euler-Murayama
scheme, assuming ∇h is Lipschitz and M has bounded sectional curvature. Our
error bound matches the error of Euclidean Euler-Murayama in terms of its stepsize
dependence. Combined with a contraction guarantee for the geometric Langevin
Diffusion under Kendall-Cranston coupling, we prove that the Langevin MCMC
iterates lie within ε-Wasserstein distance of π∗ after Õ(ε−2) steps, which matches
the iteration complexity for Euclidean Langevin MCMC. Our results apply in
general settings where h can be nonconvex and M can have negative Ricci cur-
vature. Under additional assumptions that the Riemannian curvature tensor has
bounded derivatives, and that π∗ satisfies a CD(·,∞) condition, we analyze the
stochastic gradient version of Langevin MCMC, and bound its iteration complexity
by Õ(ε−2) as well.

1 Introduction

Stochastic differential equations (SDEs) offer a powerful formalism for studying diffusion processes,
Brownian motion, and algorithms for sampling and optimization. We study in particular the following
geometric stochastic differential equation:

dx(t) = β(x(t))dt+ dBgt , (1.1)
that evolves on a d-dimensional Riemannian manifold (M, g). Analogous to the Euclidean setting,
the map β : x→ TxM denotes a drift (TxM is the tangent space at x ∈M ), and dBgt denotes the
standard Brownian motion on M [Hsu, 2002, Ch. 3]. The notation in (1.1) is a shorthand; we can
define (1.1) more precisely as the unique diffusion process whose generator is the operator Lf =
⟨∇f, β⟩+ 1

2∆f , where ∆ is the Laplace-Beltrami operator (see [Hsu, 2002, Proposition. 3.2.1]).

When the drift β(x) = − 1
2∇h(x) (the gradient is taken w.r.t. the manifold metric), the SDE (1.1)

has an invariant distribution π∗ with density e−h(x), with respect to the Riemannian volume measure
volg(x); forM = Rd with metric g(x) = I , this reduces to the familiar result for Euclidean Langevin
diffusion. Using the Kendall-Cranston Coupling technique (Chapter 6.5, Hsu [2002]) together with a
carefully constructed Lyapunov function by Eberle [2016], we can quantify the mixing rate for (1.1)
in the 1-Wasserstein distance (w.r.t. the manifold distance) under suitable regularity conditions.
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However, the exact SDE is not implementable in practice, so we consider an MCMC algorithm using
the Geometric Euler-Murayama [Piggott and Solo, 2016, Muniz et al., 2021] discretization of (1.1):

xk+1 = Expxk

(
δβ(xk) +

√
δζk

)
, (1.2)

where Expx denotes the exponential map for M , and ζk is a standard Gaussian with respect to any
orthonormal basis of Txk

M . It has long been known that the discrete-time process (1.2) converges to
the SDE (1.1) in the limit as δ → 0 [Gangolli, 1964, Jørgensen, 1975, Hsu, 2002].

Motivation for studying the SDE (1.1)

Geometric SDEs such as (1.1) play a crucial role in the design and analysis of MCMC algorithms
[Girolami and Calderhead, 2011, Patterson and Teh, 2013] that have had much success in solving
Bayesian problems on statistical manifolds. Recently, it has been shown that the mirror Langevin
Algorithm on the Hessian manifold of a function can be significantly faster than its Euclidean
counterpart [Zhang et al., 2020, Chewi et al., 2020, Li et al., 2022, Gatmiry and Vempala, 2022].

These SDEs also directly relate to the tasks of sampling and optimization on manifolds, where
often a Lie group structure helps capture symmetries (e.g., the Grassmann manifold, SO(n), O(n),
etc.) [Moitra and Risteski, 2020, Piggott and Solo, 2016, Muniz et al., 2021]. Furthermore, in Lee
and Vempala [2017, 2018], the authors propose fast algorithms for constrained sampling and volume
estimation on polytopes by sampling from the Hessian manifold of a barrier function.

2 Overview of Main Contributions

Our first contribution in this paper is to provide a quantitative, non-asymptotic bound on the
discretization error between (1.1) and (1.2). We present this bound in Lemma 1 in Section 4. In our
bound, the expected-squared-distance between a single step of (1.2) and (1.1) over δ time is bounded
by O(δ3). This δ3 error scaling matches that of Euler Murayama in Euclidean space [Durmus and
Moulines, 2017]. We highlight that our bound is entirely explicit, and depends polynomially on
dimension, sectional curvature of M , and the Lipschitz parameter for β – quantities which are intrisic
to the manifold, and invariant to the choice of coordinate system.

Two recent papers, [Wang et al., 2020, Li et al., 2022] also look into a similar problem of bounding
the discretization error of (1.2). Wang et al. [2020] analyze the error of (1.2), but rely on uniformly
bounding certain derivatives of the densities along the sample path (see Assumption 3 [Wang et al.,
2020]); even in Euclidean space, it is not clear whether such a bound exists, and whether it depends
only polynomially on parameters such as dimension. Li et al. [2022] provide a quantitative bound
on the bias of (1.2) on Hessian manifolds; they assume a bound on a “modified self-concordance”
parameter that is not affine invariant and can be made arbitrarily large.

We discuss Lemma 1 in more detail , and sketch its proof in Section 4. The proof relies on a careful
construction of geometric Langevin Diffusion as the limit of (1.2), and may be of independent interest.

Our second contribution is to show that after Õ(ε−2) steps, the distribution of (1.2) is within ε
1-Wasserstein distance from the stationary distribution of (1.1). We present this result in Theorem 1.
This ε dependence matches that of Euclidean Langevin MCMC [Durmus and Moulines, 2017].

The Õ in our iteration complexity hides polynomial dependency on dimension, sectional curvature,
Lipschitz-parameter of β, and 1/α, where α can be viewed as “mixing rate of the exact SDE.” Theo-
rem 1 requires that β satisfy a manifold analog of the distant-dissipativity assumption (Assumption 2
with m > LRic/2, where −LRic is a lower bound on the Ricci curvature of M ). Assumption 2 is
general enough to include cases when β = −∇h for some nonconvex h or whenM has negative Ricci
curvature. The catch is that in such cases, 1/α can become very large; this is generally unavoidable,
even on Euclidean space. Distant-dissipativity assumption has often been used in the analysis of
Euclidean Langevin diffusion for non-log-concave distributions [Eberle, 2016, Bou-Rabee et al.,
2020, Gorham et al., 2019, Cheng et al., 2020].

We highlight a computational sub-contribution that (1.2) only requires computing exponential
maps in the direction of β plus a uniform Gaussian direction. In many cases, exponential maps are
efficiently computable, and this Theorem 1 leads to a computationally efficient sampling algorithm.
Our analysis extends naturally if one replaces (1.2) by a retraction step; if the retraction is of order 3/2
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or higher, the one-step error still scales as O(δ3). The question of how to construct good retraction
maps is well studied in literature, and is somewhat orthogonal to our main objective, so we do not
provide details here, and instead refer readers to [Absil and Malick, 2012, Absil et al., 2009].

Recently, Ahn and Chewi [2021], Gatmiry and Vempala [2022], Li and Erdogdu [2020] have
considered a different discretization of (1.1), where one assumes that the endpoint of the geometric
Brownian motion dBgt can be sampled exactly (so that only the drift β is discretized). Sampling the
exact geometric Brownian motion can be done efficiently in special settings such as the sphere [Li
and Erdogdu, 2020], but on a general manifold, this can be much more expensive than computing an
exponential map; in such settings the Langevin MCMC algorithm based on (1.2) may be prefereable.
We do highlight, however, that a number of the above results provide error bounds in KL-divergence,
which is tighter than the Wasserstein bound in Theorem 1.

We discuss assumptions and consequences of Theorem 1 in more detail and sketch its proof in Section
5. The proof essentially combines our discretization analysis with a mixing result for (1.1) based on
the Kendall-Cranston coupling and a Lyapunov function from [Eberle, 2016].

For our third contribution, we analyze the manifold analog of SGLD [Welling and Teh, 2011]:

xk+1 = Expxk

(
δβ̃k(xk) +

√
δζk

)
, (2.1)

The the difference between (2.1) and (1.2), is that at each step, β is replaced by a random vector field
β̃k which satisfies: (i) E[β̃k] = β; and (ii) ∥β̃k(x)− β(x)∥ ≤ σ almost surely. We show that after
Õ(ε−2) steps, (2.1) is within ε-2-Wasserstein distance from the stationary distribution of (1.1); thus
the ε dependency does not degrade when replacing β by its stochastic estimate. We present this result
in Theorem 2. For this analysis, we require Assumption 2, with m > LRic/2 and R = 0; this is a
more restrictive condition than Theorem 1; when β = − 1

2∇h, this restriction is equivalent to the
CD(·,∞) condition [Bakry et al., 2014]: ∇2h+Ric ≻ 0, where Ric is the Ricci curvature tensor1.

Though restrictive, the CD(·,∞) class of distributions is nonetheless interesting; it is the manifold
analog of the class of log-concave densities on Euclidean space, and sampling from this class has
been a topic of much recent interest. In machine learning, the stochastic estimate of β can often be
computed much more quickly than the exact β, e.g., when β = −2∇f , where f is the empirical
average of some loss over a large number of observations. In such cases, (2.1) can be much faster
than (1.2). In Section 6 we discuss the assumptions and consequences of Theorem 2 in greater detail.

Though Theorem 2 requires more restrictive assumptions than Theorem 1, its proof differs from the
proof of Theorem 1 in a significant way: we show mixing of the discrete-time process directly (instead
of relying on mixing of the exact SDE). This approach is necessary in order to take advantage of the
fact that β̃k is an unbiased estimate β. The key intermediate result for showing mixing under (2.1) is
Lemma 29. We believe this lemma to be of independent interest as it quantifies the distance evolution
between two arbitrary discrete-time stochastic processes (that may be unrelated to Gaussian noise
and Brownian motion). As an example, Mangoubi and Smith [2018] showed that ball walk mixes
quickly on manifolds with positive sectional curvature. Using Lemma 29, one can show the more
general statement “ball walk mixes quickly on compact manifolds with positive Ricci curvature.”

3 Preliminaries: Key Assumptions and Notation

We state in this section the four key assumptions of this paper. Our first assumption involves lower
bounding Ricci curvature of the manifold M . Let Ric denote the Ricci curvature tensor:
Assumption 1. We assume that for all x ∈M , u, u ∈ TxM , Ric(u, u) ≥ −LRic, for some LRic ∈ R.

Intuitively, the more positive the Ricci curvature (i.e. the smaller the value of LRic), the faster
geometric Brownian motion mixes.

Our second assumption is a natural generalization of the distant-dissipativity condition in the Eu-
clidean setting. It helps ensure that the drift traps the variable within a bounded region. For any
x, y ∈M , let d(x, y) denote their Riemannian distance.
Assumption 2. We call a vector field β (m, q,R)-distant-dissipative if there exist constants m > 0,
R ≥ 0, and q ∈ R such that, for all x, y satisfying d(x, y) ≥ R, there exists a minimizing geodesic

1note that β = −1/2∇h, therefore m is 1/2 times strong-convexity parameter of h.
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γ : [0, 1] →M with γ(0) = x and γ(1) = y, such that the inequality

⟨Γ(β(y); y → x)− β(x), γ′(0)⟩ ≤ −md(x, y)
2
,

holds, where Γ(·; y → x) denotes parallel transport from TyM to TxM along γ. In addition, for all
x, y satisfying d(x, y) ≤ R, there exists a minimizing geodesic γ : [0, 1] → M with γ(0) = x and
γ(1) = y, such that we have instead the inequality

⟨Γ(β(y); y → x)− β(x), γ′(0)⟩ ≤ qd(x, y)
2
.

For some intuition: a strictly convex function will have m > 0, R = 0, and q arbitrary. Note that we
do not require a unique geodesic between x, y.

For some intuition about Assumption 2: in the Euclidean setting, the first condition sim-
plifies to ⟨β(y)− β(x), y − x⟩ ≤ −m∥y − x∥22, and the second condition simplifies to
⟨β(y)− β(x), y − x⟩ ≤ q∥y − x∥22.

We need our third and fourth assumptions for bounding the discretization error of (1.2). Assumption
3 upper bounds the Lipschitz constant of β; Assumption 4 lower bounds sectional curvature of M .
Assumption 3. A vector field β is L′

β-Lipschitz if, for all x ∈ M and all v ∈ TxM , ∥∇vβ(x)∥ ≤
L′
β∥v∥.

In the (flat) Euclidean setting, Assumption 3 is equivalent to saying that β(x) being a L′
β Lipschitz

vector field.
Assumption 4. Let R be the Riemannian curvature tensor of the manifold M . We assume that
there exists LR ∈ R+ such that for all x ∈ M , and for all u, v, w, z ∈ TxM , ⟨R(u, v)v, u⟩ ≤
LR∥u∥2∥v∥2.

We now introduce additional notation that will be used throughout this paper. We assume some
background in Riemannian geometry, and freely use standard notation; we refer the reader to [Jost,
2008, Lee, 2006, Petersen, 2006] for an in depth treatment. Readers may also find some works on
Riemannian optimization useful as additional context: [Bacák, 2014, Udriste, 2013, Absil et al., 2009,
Zhang and Sra, 2016, Boumal, 2022].

We use ∇ to denote the Levi Civita connection. Given x, y ∈M and v ∈ TxM , we use Γ(v;x→ y)
to denote parallel transport of v from x to y along their minimizing geodesic (if such a choice is
not unique we will specify); we sometimes also use the more concise alternative notation Γyxv :=
Γ(v;x→ y). Given a general curve (possibly non-geodesic) γ : [0, 1] →M , we will also use Γγ(t)v
to denote the parallel transport of v from γ(0) to γ(1), along γ.

A basis F of the tangent space TxM at some point x ∈ M is an ordered tuple (F 1, . . . , F d) of
vectors that span TxM . We use Γ(F ;x→ y) := (Γ(F 1;x→ y)...Γ(F d;x→ y)) to denote the
ordered tuple of parallel transport of the each of the basis vectors in F . Given v ∈ Rd and basis F of
some TxM , we use v ◦ F as shorthand for

∑d
i=1 viF

i. A distribution that we will see frequently in
this paper is the one given by ξ ◦ Ex, where ξ ∼ N (0, I) is a random vector in Rd, and x ∈M and
Ex is an orthonormal basis of TxM . We use Nx(0, I) to denote the distribution of ξ ◦ Ex. One can
verify that Nx(0, I) does not depend on the choice of basis Ex.

3.1 An illustrative example: sampling from a sphere

To give some intuition about Assumptions 1 - 4, we present a simple example for sampling from
Sd−1, the unit d-sphere in Rd, which is a positively curved Riemannian manifold.2 The subsequent
bounds for the Sd case also generalize with minor modifications to other closely-related manifolds
such as SO(d).

Let U(x) : Rd → Re be a potential function, and suppose that we wish to sample from dp(x) ∝
e−U(x)dvolg(x) defined over Sd−1. It is known that for any x ∈ Sd−1, v ∈ TxM , Ric(v, v) > 0,

2The sphere is one of the special cases when Brownian motion can be efficiently sampled exactly, and so
if one’s actual goal is to sample from a sphere, prior work such as Li and Erdogdu [2020] provide a better
algorithm and analysis.
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so that Assumption 1 is satisfied with LRic = 0. The sectional curvature is bounded by 1, so that
Assumption 4 holds with LR = 1. For the remainder of this example, for x ∈ Sd−1 we will identify
TxM with

{
v ∈ Rd : vTx = 0

}
. Since the sphere is a submanifold of Rd, the metric is simply given

by the Euclidean dot product, i.e. g(u, v) = uT v.

Next, we will verify Assumption 3. Let us assume that for all x on the sphere, U(x) satisfies
∥∇U(x)∥ ≤ L1 and

∥∥∇2U(x)
∥∥
2
≤ L2, where ∇ and ∇2 are the usual Euclidean gradient and

Hessian respectively (bolded to distinguish from ∇, the covariant derivative). In order to sample from
dp(x), β(x) = (I − xxT )∇U(x). It is known that a geodesic γ(t) corresponds to a great arc on the
sphere, and that parallel transport of a vector v involves a rotation of the tangential component of
v. To be precise, for any x ∈ Sd and u, v ∈ TxM such that ∥u∥ = 1, we verify that, in Cartesian
coordinates, ∇uv = (uuT )v. Thus ∇β(x) = (uuT )(I − xxT )∇U(x) + ∇2U(x)u ≤ L1 + L2.
Thus Assumption 3 holds with L′

β = L1 + L2.

Finally, we will verify Assumption 2. Since Sd−1 has diameter π, the first part of Assumption
2 is satisfied with arbitrary m and R = π. The second part of Assumption 2 is satisfied with
q = L′

β . This is because d
dt ⟨Γ(β(γ(t)); γ(t) → γ(0))− β(γ(0)), γ′(0)⟩ = d

dt ⟨β(γ(t)), γ
′(t)⟩ =〈

∇γ′(t)β(γ(t)), γ
′(t)

〉
≤ L′

β∥γ′(t)∥
2.

4 Bounding the Discretization Error in Geometric Euler-Murayama

One of our main technical contributions is an error bound for the Euler-Murayama discretization.
We provide an informal statement of this error bound as Lemma 1 below, and provide the formal
statement as Lemma 7 in Appendix A.3.
Lemma 1 (Informal version of Lemma 7). Let x(t) denote the solution to (1.1) initialized at
some x(0). Let x0(t) denote one step geometric Euler Murayama discretization: x0(t) :=
Expx(0) (tβ(x(0)) +

√
tζ), where ζ ∼ Nx(0)(0, I). Under Assumptions 3 and 4, for sufficiently

small t, there exists a coupling between x(t) and x0(t) such that

E[d(x(t), x0(t))2] ≤ O(t3),

where O() hides polynomial dependence on the Lipschitz constant L′
β , the sectional curvature of M ,

and dimension d.

Proof Sketch for Lemma 1

Given a time interval T , we construct a sequence of processes {xi(t)}i≥0 indexed by i (exact
definitinion given in (4.2) below). Marginally, each xi(t) corresponds to the linear interpolation of a
sequence of Euler-Murayama steps with stepsize δi = 2−iT . More specifically, for k ∈ Z+,

xik+1 = Expxi
k
(δiβ(xik) +

√
δiζik) ζik ∼ Nxi

k
(0, I)

xi(t) = Expxi
k
(
t− kδi

δi
(δiβ(xik) +

√
δiζik)) for t ∈ [kδi, (k + 1)δi]

Notice that for i = 0, x0(T ) is a single step of (1.2) with stepsize T . On the other hand, x(t) :=
limi→∞ xi(t) is exactly the SDE in (1.1) (see Lemma 2 at the end of this section). We will soon
see that E[d(xi(T ), xi+1(T ))

2
] = O(T 2δi). We can then bound E[d(x0(T ), x(T ))2] = O(T 3) by

summing over the pairwise distance between adjacent xi and xi+1 for i ∈ Z+ (this diminishes
geometrically). This proves Lemma 1.

To bound the distance between xi and xi+1, we introduce a crucial additional structure: adjacent pairs
of processes (xik, x

i+1
k ) are coupled using the manifold analog of synchronous coupling, together

with the discrete-time analog of "rolling without slipping". (see Remark 1),

The exact formula for how xi+1
k is to be constructed from xik is given in (4.1) below; it is a little

dense, so we provide a pictorial illustration in Figure 1. For simplicity, we assume that β = 0 (the
dominating error in Lemma 1 is due to Brownian motion). Figure 1 takes place over a period of
time from kδi to (k + 1)δi (equivalently, 2kδi+1 to (2k + 2)δi+1). The black squiggle denotes
(B(t)−B(kδi)) ◦ Eik for t ∈ [kδi, (k + 1)δi], where B(t) is a standard d-dimensional Brownian
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motion, and Eik is some basis at xik. Let bik := (B((k + 1)δi)−B(kδi)) ◦ Eik (black solid arrow).
Bounding the distance between xi and xi+1 consists of two steps:

Figure 1: An illustration of the coupling between paths for xi and xi+1 when β = 0 over the time
interval [kδi, (k + 1)δi].

Step 1: Bounding d(xik+1,Expxi+1
2k

(Γ(bik;x
i
k → xi+1

2k ))) [Solid black arrow vs dotted black arrow]

The purple line represents the geodesic from xik to xi+1
2k ; by construction, the basis Ei+1

2k is
the parallel transport of Eik along the purple geodesic. The dotted black arrow denotes the
(B((k + 1)δi)−B(kδi)) ◦Ei+1

2k ; we verify that it is the paralle transport of bik (black arrow) along
the purple geodesic. Using Lemma 28, we can bound the distance between xik+1 = Expxi

k
(bik) (gray

point) and Expxi+1
2k

(Γ(bik;x
i
k → xi+1

2k )) (green point) as

E[d(Expxi
k
(bik),Expxi+1

2k
(Γ(bik;x

i
k → xi+1

2k )))
2
] ≤ (1 +O(LRdδ

i))E[d(xik, x
i+1
2k )

2
]

Step 2: Bounding d(Expxi+1
2k

(Γ(bik;x
i
k → xi+1

2k )), xi+1
2k+2) [Dotted black arrow vs blue + red arrow]

Let

bi+1
2k := (B((2k + 1)δi+1)−B(2kδi+1)) ◦ Ei+1

2k

bi+1
2k+1 := (B((2k + 2)δi+1)−B((2k + 1)δi+1)) ◦ Ei+1

2k

We verify that Γ(bik;x
i
k → xi+1

2k ) (black dotted arrow) is equal to bi+1
2k + bi+1

2k+1 (note that δi+1 =

1/2δi). On the other hand, xi+1
2k+2 (orange point) is obtained from taking a step in bi+1

2k direction (blue
arrow) followed by a step in the Γ(bi+1

2k+1;x
i+1
2k → xi+1

2k+1) direction (red arrow). Due to curvature,
this is not the same as taking a single step in the bik = bi+1

2k + bi+1
2k+1 direction (green point). However,

we can bound the distance between the orange point and the green point using Lemma 3 of Sun et al.
[2019] (restated as Lemma 38 for ease of reference):

E[d(Expxi+1
2k

(Γ(bik;x
i
k → xi+1

2k )), xi+1
2k+2)

2
] ≤ O(

∥∥bi+1
2k

∥∥2∥∥bi+1
2k+1

∥∥2(∥∥bi+1
2k

∥∥+
∥∥bi+1

2k+1

∥∥)2) = O((δi)3)

Summing the bounds of Step 1 and Step 2 gives E[d(xik+1, x
i+1
2k+2)

2
] ≤ eO(LRdδ

i)E[d(xik, x
i+1
2k )

2
] +

O((δi)3). Recursing over k = 0...2i, and assuming that T ≤ 1
LRd

, we get E[d(xi2i , x
i+1
2i+1)

2
] =

E[d(xi(T ), xi+1(T ))
2
] ≤ O(T 2δi). Summing over i = 0...∞ gives E[d(xi(T ), x(T ))2] = O(T 3).

Details for Construction of Brownian Motion

To bound the discretization error, we first characterize the manifold SDE (1.1) as the limit of a family
of random processes. Let x0 ∈ M be an initial point and E =

{
E1, . . . , Ed

}
be an orthonormal

basis of Tx0 . Let B(t) denote a standard Brownian Motion in Rd. Let T ∈ R+. Define

x00 = x0, E0
0 = E,

x01 = Expx0
0
(Tβ(x00) + (B(T )−B(0)) ◦ E0

0).
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For any i ∈ Z+, let δi := 2−iT . We will now define points xik ∈ M and orthonormal basis Eik
of Txi

k
for all i and all k ∈ {0, . . . , T/δi}. Our construction is inductive: Suppose we have already

defined xik and Eik for some i and for all k ∈ {0, . . . , T/δi}. Then, we construct xi+1
k , for all

k = {0, . . . , T/δi+1}, as follows:

xi+1
0 := x0, Ei+1

0 := E,

xi+1
2k+1 := Expxi+1

2k
(δi+1β(xi+1

2k ) + (B((2k + 1)δi+1)−B(2kδi+1)) ◦ Ei+1
2k ),

Ei+1
2k+1 := Γ(Ei+1

2k ;xi+1
2k → xi+1

2k+1),

xi+1
2k+2 := Expxi+1

2k+1
(δi+1β(xi+1

2k+1) + (B((2k + 2)δi+1)−B((2k + 1)δi+1)) ◦ Ei+1
2k+1),

Ei+1
2k+2 := Γ(Eik+1;x

i
k+1 → xi+1

2k+2). (4.1)

The above display defines points xi+1
k for all k = {0, . . . , T/δi+1}. For parallel transport, if

the minimizing geodesic is not unique, any arbitrary choice will do. We verify that for any
i, for all k, xik is indeed of the form (1.2), i.e. xik+1 = Expxi

k
(δiβ(xik) +

√
δiζik), where

ζik := 1√
δi
(B((k + 1)δi)−B(kδi) ◦ Eik) ∼ Nxi

k
(0, I). Finally, for any i, any k, and any

t ∈ [kδi, (k + 1)δi), we define xi(t) to be the “linear interpolation” of xik and xik+1, i.e.,

xi(t) := Expxi
k

(
t−kδi
δi (δiβ(xik) + (B((k + 1)δi)−B(kδi))) ◦ Eik

)
. (4.2)

Remark 1. The choice of basis Eik in (4.1) can be seen as a combination of “synchronous cou-
pling” and “rolling without slipping” (see Chapter 2 of [Hsu, 2002]). In particular, Ei+1

2k :=

Γ(Eik;x
i
k → xi+1

2k ) corresponds to “synchronous coupling”—the step from xi+1
2k to xi+1

2k+1 is (roughly)
parallel to the step from xik to xik+1. On the other hand, Ei+1

2k+1 := Γ(Ei+1
2k ;xi+1

2k → xi+1
2k+1) corre-

sponds to “rolling without slipping”—the step from xi+1
2k+1 to xi+1

2k+2 is with respect to an orthonormal
basis that is parallel-transported from xi+1

2k to xi+1
2k+1.

We verify in the following Lemma that the limit, i→ ∞, of xi(t) is the SDE (1.1):
Lemma 2. For any T , for t ∈ [0, T ], let x(t) := limi→∞ xi(t). This limit exists uniformly almost-
surely, and x(t) is a diffusion process generated by the operator L whose action on any smooth
function f is given by Lf = ⟨∇f, β⟩ + 1

2∆(f), where ∆ denotes the Laplace Beltrami operator.
Thus x(t) is equal to (1.1) in distribution.

Lemma 2 follows immediately from [Gangolli, 1964, Jørgensen, 1975], but we provide a proof in
Appendix A.1 for completeness.

5 Langevin MCMC on Riemannian Manifolds

With the one-step discretization error in Lemma 1, we can bound the iteration complexity of Langevin
MCMC (1.2):
Theorem 1 (Convergence of Langevin MCMC on Riemannian Manifold). Assume the manifold M
satisfies Assumptions 1 and 4. Assume in addition that there exists a constant L′

R such that for all
x ∈M , u, v, w, z, a ∈ TxM , ⟨(∇aR)(u, v)w, z⟩ ≤ L′

R∥u∥∥v∥∥w∥∥z∥∥a∥ (this last assumption is
for analytical convenience; L′

R does not show up in the quantitative bounds). Let β be a vector field
satisfying Assumptions 2 and 3; assume in addition that m > LRic/2 and that q + LRic/2 ≥ 0. Let
x∗ be some point with β(x∗) = 0.

Let y(t) denote the exact geometric SDE given in (1.1) initialized at some y(0). Let K ∈ Z+ be
some iteration number and δ be some stepsize. Let xk denote the Euler Murayama discretization
of (1.1), defined by xk+1 = Expxk

(δβ(xk) +
√
δζk), where ζk ∼ Nxk

(0, I), initialized at some x0
satisfying d(x0, x

∗) ≤ 2R.

Then, there exists a constant C0 = poly(L′
β , d, LR,R, 1

m−LRic/2
, logK), such that if δ ≤ 1

C0
, then

there is a coupling between xK and y(Kδ) satisfying the distance bound

E[d(y(Kδ), xK)] ≤ e−αKδ+(q+LRic/2)R2/2E[d(y(0), x0)] + exp ((q + LRic/2)R2) · Õ(δ1/2).
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Õ hides polynomial dependence on L′
β , d, LR,R, 1

m−LRic/2
, logK, log 1

δ , and

α := min
{
m−LRic/2

16 , 1
2R2

}
· e− 1

2 (q+LRic/2)R2

.

We defer the proof of Theorem 1 to Appendix A.4, where we state the explicit expressions for C0.

Discussion of Theorem 1

To sample from dπ∗(x) = e−h(x)dvolg(x), we let β(x) := − 1
2∇h(x); under this choice of

β, π∗(x) is invariant under the SDE for y(t). Picking y(0) ∼ π∗(x), we thus ensure that
Law(y(t)) = π∗ for all t. Therefore, the W1 distance between Law(xK) and π∗ is upper
bounded by E[d(y(Kδ), xK)], which is in turn upper bounded in Theorem 1.

The distance bound consists of two terms: the first term is exponentially small in Kδ, so it
goes to 0 as the number of steps tends to infinity; the second term is proportional to δ1/2.
We first pick δ = Õ(ε2) so that the second term is bounded by ε. It then suffices to let
K = 1

αδ log (
E[d(y(0),x0)]

ε ) + (q + LRic/2)R2 = Õ(ε−2) in order for the first term to be bounded by
ε. Note that by our assumptions and by Lemma 18 E[d(y(0), x0)] ≤ poly(LR, L

′
β , d,R, 1

m ).

We now discuss a few specific cases for Assumption 2. The easiest setting is when m > LRic/2
and R = 0 (in this case the value of q does not matter); this occurs, for example, if β = − 1

2∇h for
some c-strongly-convex h, and M has positive Ricci curvature. The mixing rate is α = c−LRic

32 , and
this closely relates to a well known result by Bakry and Emery on the Log-Sobolev Inequality of
CD(·,∞) distributions:

Theorem ([Bakry et al., 2014]) Let Ric denote the Ricci curvature tensor. If dπ∗(x) =
e−h(x)dvolg(x), and ∇2h + Ric ≻ ρI , then π∗ satisfies the Log-Sobolev Inequality (LSI) with
parameter ρ.

When π∗ satisfies the LSI(ρ), it has been shown in [Bakry et al., 2014] that for any initialization, the
KL divergence of Law(x(t)) of (1.1) with respect to its stationary distribution converges to 0 with
rate ρ. In our example in the preceding paragraph, dπ∗ = e−hdvolg satisfies LSI with ρ = c− LRic,
which is, up to a constant factor, equal to our mixing rate.

The requirement q + LRic/2 ≥ 0 is without loss of generality. If q + LRic/2 < 0, we can take
q′ = −LRic/2 and verify that β satisfies Assumption 2 with (m, q′,R). Since q′ + LRic/2 = 0, the
mixing rate is then α = min

{
m−LRic/2

16 , 1
2R2

}
, which corresponds to the easy “CD(0,∞)” setting.

A harder, but more general setting is when β = 1
2∇h for some non-convex h, and LRic > 0,

i.e. the manifold can have negative Ricci curvature. We will still need to assume that ∇h(x) is
contractive for points which are further away than some radius R; otherwise, the SDE (1.1) may drift
off to infinity and e−h may not be integrable. Under Assumption 3, β satisfies Assumption 2 with
m,L′

β ,R. The mixing rate α is then proportional to e−(L′
β+LRic/2)R2

; this can be very small if h is
nonconvex and highly nonsmooth, and the manifold M has large negative Ricci curvature, leading to
very slow mixing. This is generally unavoidable, even when M is the flat Euclidean space.

Readers familiar with the Holly-Stroock perturbation may find the exp ((q + LRic/2)R2) term
familiar: Let M have diameter R and let U have 2q-Lipschitz gradient„ so that β = 1

2∇U satisfies
Assumption 2 with q. Then we can decompose U = U1 + U2, where U1 is −LRic-strongly-convex
and U2 is a "perturbation" with magnitude (2q + LRic)R2. e2U1dvolg satisfies CD(0,∞) and thus
e2Udvolg has Log-Sobolev constant scaling with exp ((2q + LRic)R2).

Finally, on compact manifolds without boundary, one may take R to be the diameter of the
manifold and upper bound the mixing rate α by α = 1

2R2 e
− 1

2 (q+LRic/2)R2

.

5.1 Proof Sketch of Theorem 1

The proof of Theorem 1 consists of two steps. The first step is bounding the discretization error of
(1.2); we have already done this in Lemma 1 in the previous section.

The second step is showing that two paths of (1.1) converge. To do so, we consider f(d(x(t), y(t))),
where f is a Lyapunov function taken from [Eberle, 2016] (its exact form is given in Definition 2 in
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the Appendix). Two key property of f are that (i) 1
2 exp (−(q + LRic/2)R2/2)r ≤ f(r) ≤ r; and

(ii) f ′(r) ≤ 1, so that convergence in f(d(x(t), y(t))) implies convergence in d(x(t), y(t)).

Under the Kendall-Cranston Coupling 3 of x(t) and y(t), one can show that f(d(x(t), y(t))) contracts
with rate α. We quantify the contraction rate in Lemma 3 below. We stress that Lemma 3 is not new;
it was first presented by Eberle [2016] (with minor variation), and its proof combines Theorem 6.6.2
of [Hsu, 2002] with the Lyapunov function analysis of [Eberle, 2016]. For completeness, we provide
a proof of Lemma 3 in Appendix B.3.
Lemma 3. Assume β is (m, q,R)-distant dissipative as per Assumption 2, and that is also satisfies As-
sumption 3. Further assume thatm > LRic/2 and q+LRic/2 ≥ 0. Let x(t) and y(t) denote solutions
to (1.1). Then there exists a Lyapunov function f satisfying 1. f(r) ≥ 1

2 exp (−(q + LRic/2)R2/2)r
and 2. |f ′(r)| ≤ 1, and a coupling between x(t) and y(t), such that for all time T ,

E[f(d(x(T ), y(T )))] ≤ exp (−αT )f(d(x0, y0)),

where α := min
{
m−LRic/2

16 , 1
2R2

}
· exp (− 1

2 (q + LRic/2)R2).

Given these two steps, we can now sketch the proof of Theorem 1. Consider an arbitrary step k
of (1.2). For t ∈ [kδ, (k + 1)δ), let x̄(t) denote the solution to (1.1), initialized at x̄(kδ). Then
by Lemma 3, E[f(d(y((k + 1)δ), x̄((k + 1)δ)))] ≤ e−αδE[f(d(y(kδ), xk))]. On the other hand,
by Lemma 1 E[d(x̄((k + 1)δ), xk+1)] ≤ O(δ3/2). Summing these two bounds, applying triangle
inequality, and using the fact that f ′(r) ≤ 1, we get

E[f(d(y((k + 1)δ), xk+1))] ≤ e−αδE[f(d(y(kδ), xk))] +O(δ3/2) (5.1)

Applying the above recursively for k = 0...K, we get

E[f(d(xK , y(Kδ)))] ≤ e−αKδE[f(d(x0, y(0)))] +
1

α
O(δ1/2)

Theorem 1 thus follows from the bounds 1
2 exp (−(q + LRic/2)R2/2)r ≤ f(r) ≤ r.

Lastly, we briefly mention a complication in the full proof that we omitted from the above sketch:
the discretization error between x̄((k + 1)δ) and xk+1 grows with ∥β(xk)∥, which does not have
a global upper bound. In practice, we can verify that d(xk, x∗) is sub-Gaussian, so that with high
probability d(xk, x

∗) ≤ O(log(kδ)); this in turn allows us to bound ∥β(xk)∥ via Assumption 3. This
is the reason for the dependency on logK and log(1/δ) in the iteration complexity of Theorem 1.

6 Stochastic Gradient Langevin MCMC

Finally, we bound the iteration complexity of process (2.1), which takes the Euler-Murayama scheme
(1.2), and replaces β(xk) at step k by a stochastic estimate β̃k(xk).
Theorem 2 (Convergence of SGLD on Riemannian Manifold). Assume the manifold M satisfies
Assumptions 1 and 4. Assume in addition that there exists a constant L′

R such that for all x ∈ M ,
u, v, w, z, a ∈ TxM , ⟨(∇aR)(u, v)w, z⟩ ≤ L′

R∥u∥∥v∥∥w∥∥z∥∥a∥. Let β be a vector field satisfying
Assumptions 2 and 3; assume in addition that m > LRic/2 and that R = 0.

Let y(t) denote the exact geometric SDE given in (1.1). Let xk denote the stochastic Euler Murayama
discretization (2.1), where β̃k denote independent random vector fields, with E[β̃(x)] = β(x) for all
x and ∥β(x)− β̃k(x)∥ ≤ σ with probability 1.

Let K ∈ Z+ be some iteration number and δ be some stepsize. There exists a constant C1 =
poly(L′

β , d, LR, L
′
R,

1
m , logK), such that if δ ≤ 1

C1
, then there is a coupling between xK and y(Kδ)

satisfying the distance bound

E[d(y(Kδ), xK)
2
] ≤ e−

1
8 (m−LRic/2)KδE[d(y(0), x0)2] + Õ(δ).

Õ hides polynomial dependence on L′
β , d, LR, L

′
R, σ,

1
m−LRic/2

, logK, log 1
δ .

We defer the proof of Theorem 2 to Appendix A.5, where we state the explicit expressions for C1.
3This is the manifold analog of reflection coupling of Euclidean Brownian motions; see [Hsu, 2002, Ch. 6.5]
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Discussion of Theorem 2

To sample from dπ∗(x) = e−h(x)dvolg(x), we let β(x) := − 1
2∇h(x) and let y(0) ∼ π∗(x). The

W2 distance between Law(xK) and π∗ is upper bounded by
√
E[d(y(Kδ), xK)

2
]. To achieve ε

error in W2, Theorem 2 requires Õ(ε−2) steps. The reasoning is very similar to Theorem 1.

As already discussed in Section 2, the Assumption on Theorem 2 is considerably more restrictive
than Theorem 1. We also highlight that the error bound in Theorem 2 does depend on L′

R, the
derivative of the Riemannain curvature tensor. This is in contrast to Theorem 1, where L′

R does not
appear in any of the bounds.

Though the iteration complexity for Theorem 2 can be larger than Theorem 1 as it depends on
additional parameters σ and L′

R, (2.1) may nonetheless be faster than (1.2). For example, let
h(x) = 1

N

∑N
i=1 hi(x) and assume ∥∇hi −∇hj∥ ≤ σ for all i, j, one step of (2.1) can be performed

with a single gradient computation for a single uniformly sampled hi, whereas (1.2) would require N
gradient computations.

Proof Sketch of Theorem 2 and Theoretical Highlights

For any step k, let us define ȳk+1 := Expy(kδ) (δβ(y(kδ)) +
√
δζ̄k), where ζ̄k ∼ Nyk(0, I). We

show, in Lemma 8, that E[d(xk+1, ȳk+1)
2
] ≤ (1− δ

4 (m− LRic/2))E[d(xk, y(kδ))2]+16δ2σ2. On
the other hand, once again applying Lemma 1, we can verify that E[d(y((k + 1)δ), ȳk+1)

2
] ≤ O(δ3).

By Young’s inequality and triangle Inequality,

E[d(xk+1, y((k + 1)δ))
2
] ≤ (1− δ

8
(m− LRic/2))E[d(xk, y(kδ))2] +O(δ2)

The bound in Theorem 2 follows immediately from applying the above recursively for k = 1...K. We
note that The contraction in Lemma 8 is in turn derived from Lemma 29, which may be of independent
interest as it quantifies the distance evolution between two general discrete-time stochastic processes
(which do not have to be diffusions or related to the Gaussian noise).

It is elucidative to compare the proof structure of Theorem 2 with that of Theorem 1 above. On a
high level, at step k, Theorem 1 first approximates the discrete MCMC step (xk+1) by an exact SDE
initialized at xk (x̄((k + 1)δ)). It then uses two facts: 1. f(d(x̄(t), y(t))) contracts under the exact
SDE, and 2. the approximation error between xk+1 and x̃((k + 1)δ) is small. In contrast, at step k,
Theorem 2 first approximates the exact SDE (y((k + 1)δ)) by a Euler-Murayama step (ȳk+1). It then
uses two facts: 1. d(xk+1, ȳ((k + 1)δ)) contracts under the stochastic Euler-Murayama step, and
2. the approximation error between ȳk+1 and y((k + 1)δ) is small. The reason for this change is
to make use of the fact that E[β̃k] = β, conditioned on the randomness up to time kδ. Suppose we
had followed the proof of Theorem 1 and defined x̄(t) to be the solution to the exact SDE, with drift
β̃k, then showing contraction of the exact SDE becomes very tricky as E[β̃k] is not equal to β when
conditioned on x̄(t) for any t > kδ.
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