
A Theoretical appendix

A.1 Proof of Proposition 1

Recall Proposition 1:
Proposition. Let R be a positive reward function on X .

(a) If PF (−|−; θ), PB(−|−; θ), and Zθ are the forward and backward policies and normalizing
constant of a Markovian flow F satisfying (8), then LTB(τ) = 0 for all complete trajectories τ .

(b) Conversely, suppose that LTB(τ) = 0 for all complete trajectories τ . Then the corresponding
Markovian flow Fθ satisfies (8), and PF (−|−; θ) samples proportionally to the reward.

Proof. Part (a) is an elementary manipulation of the trajectory balance constraint (13), with R(x)
substituted for F (x) by the reward matching assumption (8).

Conversely, if LTB(τ) = 0 for all complete trajectories τ = (s0→ → · · · → sn = x), then the
policies PF (−|−; θ) and PB(−|−; θ) satisfy the constraint

Z

n∏
t=1

PF (st|st−1; θ) = R(x)

n∏
t=1

PB(st−1|st; θ). (17)

Let x be a terminal state. By iterating the law of total probability, we have∑
τ=(s0→s1→...→sn=x)

n∏
t=1

PB(st−1|st; θ) = 1. (18)

(Each term in this sum is the conditional likelihood of τ conditioned on terminating at sn = x under
the the Markovian flow F ′

θ uniquely determined by setting terminal state flows F ′
θ(x) = R(x) and

backward policy PB(−|−; θ), cf. the uniqueness properties.)

On the other hand, we have

Fθ(x) =
∑

τ=(s0→...→sn)=x

Fθ(τ) (by definition of state flows)

=
∑

τ=(x0→...→sn)=x

Z

n∏
t=1

PF (st|st−1; θ) (by (4))

=
∑

τ=(x0→...→sn)=x

R(x)

n∏
t=1

PB(st−1|st; θ) (by (17))

= R(x) (by (18)).

We conclude that Fθ satisfies (8), as desired.

(We remark that one can show in a similar way that Fθ(s→s′) = F ′
θ(s→s′) for all actions (s→s′) ∈

A, and thus, by the uniqueness properties, Fθ = F ′
θ, i.e., the forward and backward policies determine

the same Markovian flow.)

A.2 Generalizations

The trajectory balance constraint (13) can be generalized to partial (not complete) trajectories, i.e.,
those that do not start at s0 and end in a terminal state. Generalizations such as those we present here
could be useful for a future goal of modularized or hierarchical GFlowNets, where each module (or
low-level GFlowNet) can apply them to just the subsequences they have access to (cf. §9.4 and §10.2
in [4]).

Subtrajectory balance. If τ = (sm→sm+1→ . . .→sn) is a partial trajectory (i.e., (st→st+1) ∈ A
for all t), then, for any Markovian flow F with forward and backward policies PF and PB ,

F (sm)

n−1∏
t=m

PF (st+1 | st) = F (sn)

n−1∏
t=m

PB(st | st+1). (19)

14

This can be derived by showing that both sides are equal to∑
τ=(...→sm→sm+1→...→sn→...)∈T

F (τ). (20)

The trajectory balance constraint (13) is the special case of this for full trajectories, while the detailed
balance constraint (7) is the special case of trajectories wth only one edge. This subtrajectory balance
constraint can be converted into a learning objective: a model can output estimated state flows Fθ(s)
only for certain nonterminal states s (“hubs"), and the error in (19) optimized along segments of
trajectories between these hubs. Thus the detailed balance loss corresponds to all nodes being hubs,
and the trajectory balance loss corresponds to only the initial state s0 being a hub.

Subtrajectory balance has been explored and was shown to have convergence benefits in a work that
appeared while this paper was under review [18].

Non-forward trajectories. Trajectory balance has a more general form for trajectories that have a
mix of forward and backward steps. Here we describe just one example: terminal-terminal paths that
take several backward steps, then take several forward steps.

Let s1 = s′1 be any state (not necessarily a child of the GFlowNet’s initial state s0) and
(s1→s2→ . . .→sn) and (s′1→s′2→ . . .→s′n′) two trajectories from s0 to terminal states. Then
the following must hold for any Markovian flow F :

R(s′n′)

n′−1∏
t=1

PB(s
′
t | s′t+1)

n−1∏
t=1

PF (st+1 | st) = R(sn)

n−1∏
t=1

PB(st | st+1)

n′−1∏
t=1

PF (s
′
t+1 | s′t).

(21)
That is, the path that goes “backward, then forward” from sn to s′n′ must have the same likelihood no
matter in which direction it is traversed, up to the ratio of rewards at the endpoints. A simple way to
derive (21) is by writing the trajectory balance constraint for two paths from the GFlowNet’s initial
state to sn and s′n′ that are identical until s1 and then diverge, then dividing one constraint by the
other. Notice that the flow F (s1) is not present here. Thus, (21) can be converted into an learning
objective does not require a model to output any state flows (even the initial state flow Z).

Such terminal-terminal paths could also be used for exploration of X with MCMC-like local search
algorithms [32]. The special case of ‘one step back, two steps forward’ paths was used for a graph
generation problem in Bayesian structure learning [8].

A.3 GFlowNets and variational methods

We build a connection between the TB loss for GFlowNets and a naïve variational approach to fitting
sequential samplers.

Suppose that the backward policy PB is fixed, and suppose for ease of the derivation that it is known
that

∑
x∈X R(x) = 1. As in the main text, we write PB(τ |x) for the likelihood of obtaining the

reverse of the trajectory tau when sampling from the backward policy starting from x.

The on-policy trajectory balance objective has gradient with respect to the parameters of PF :

E(τ,x)∼PF

[
∇θ

(
log

R(x)PB(τ |x)
PF (τ ; θ)

)2
]
= E(τ,x)∼PF

[
−2 log R(x)PB(τ |x)

PF (τ ; θ)
∇θ logPF (τ ; θ)

]
,

(22)
which is estimated by sampling τ ∼ PF (terminating in x ∈ X) and computing the term inside the
expectation.

The model PF could also be optimized with respect to an evidence lower bound (ELBO) objective,
i.e., minimizing DKL(PF (τ)∥R(x)PB(τ |x)). We derive the gradient of this KL:

∇θDKL(PF (τ ; θ)∥R(x)PB(τ |x)) (23)

= ∇θE(τ,x)∼PF

[
log

PF (τ)

R(x)PB(τ |x)

]
= E(τ,x)∼PF

[
∇θ log

PF (τ ; θ)

R(x)PB(τ |x)
+ log

PF (τ ; θ)

R(x)PB(τ |x)
∇θ logPF (τ ; θ)

]
. (24)

15

The last step is the standard score function trick, and the Reinforce estimator optimizes the KL by
sampling τ ∼ PF (τ ; θ) and using the term inside the expectation as the direction of the gradient step.
But now notice that

E(τ,x)∼PF

[
∇θ log

PF (τ ; θ)

R(x)PB(τ |x)

]
= E(τ,x)∼PF

[∇θ logPF (τ ; θ)] = 0, (25)

because of the constraint
∑

τ PF (τ ; θ) = 1. We conclude that the expected trajectory balance
gradient (22) is equal to the expected Reinforce gradient (24) up to a constant.

However in the vicinity of the optimum (when TB and KL equal 0), the TB graident estimator has
lower variance, as the following computation shows:

Var(τ,x)∼PF

[
log

p(x)

PF (τ ; θ)
∇θ logPF (τ ; θ)

]
−Var(τ,x)∼PF

[
∇θ log

PF (τ ; θ)

R(x)PB(τ |x)
+ log

PF (τ ; θ)

R(x)PB(τ |x)
∇θ logPF (τ ; θ)

]
= −E(τ,x)∼PF

[
(∇θ logPF (τ ; θ)∇θ logPF (τ ; θ)

⊤)

(
1 + 2 log

R(x)PB(τ |x)
PF (τ ; θ)

)]
.

If the term in parentheses is always positive (in particular, in the neighbourhood of the solution where
PF (τ) = R(x)PB(τ |x) for all τ), then the difference of variances for all directional derivatives is
negative for all θ.

The connection between GFlowNets and variational methods was more thoroughly explored in two
papers that appeared while this work was under review [31, 19].

B Experimental appendix

B.1 Hypergrid

For the GFlowNet policy model, we use an MLP of the same architecture as [3], with 2 hidden layers
of 256 hidden units each. We train all models with a learning rate of 0.001 (PF and PB policy model)
and 0.1 (Zθ) with up to 106 sampled trajectories with a batch size of 16, using the Adam optimizer
with all other parameters at their default values.

To reproduce the flow matching and non-GFlowNet baselines, we used the code published by [3] out
of the box. For TB and DB, we used a learning rate of 10−3 for the flow and policy models and a
10−1 for the initial state flow logZ = logF (s0). (In a search of learning rates over powers of 10,
10−3 was found to be the largest that does not lead to instability in the form of rapid mode collapse.)
All experiments with TB and DB were performed on CPU and take about 2 hours for 106 episodes
on a single core, totaling ∼10 CPU days for all 24 DB and TB experiment settings with 5 seeds each:

{TB,DB}× {uniform PB , learned PB}× {R0 = 10−1, 10−2, 10−3}× {(H, d) = (8, 4), (64, 2)}.

B.2 Molecule synthesis

We use the dataset and proxy model provided by [3]. We also train GFlowNet using the same
architecture and hyperparameters (except β and learning rate) but using the trajectory balance loss
presented in this paper, using fixed uniform backward policy PB . The binding scores in the provided
dataset were computed with AutoDock [26].

To test hyperparameter robustness we trained models using reward exponents β = {4, 8, 10, 16}, and
learning rates {5 × 10−5, 10−4, 5 × 10−4, 10−3}. In contrast to [3], we used a more exploratory
training policy: with probability 0.1 (instead of the original 0.05) trajectories are set to stop at some
length k, which is chosen uniformly between 3 and 8, the minimum and maximum allowed trajectory
length respectively.

We observed a runtime improvement of up to 5× for TB relative to FM. There are three factors
responsible for this:

(1) Most importantly, FM requires as many model evaluations as there are parents of all states in a
sampled trajectory, since the model gives the out-flows F (s→s′) for an input state s, while the

16

objective involves a sum over in-flows. On the other hand, TB and DB require just one evaluation
of the forward and backward policy models per state.

(2) The average trajectory length. If a model learns to terminate early with higher frequency,
trajectories are shorter and fewer model evaluations are required.

(3) Hardware and the ratio of CPU and GPU load. Experiments on the molecule domain were run on
a Tesla K80 GPU; the computation time benefit of TB appears to be smaller but still present on
newer hardware with identical batch size settings. (Meanwhile, experiments on the lightweight
grid domain were run on CPU, and the trajectory length was the main factor controlling runtime.)

B.3 Bit sequence generation

Generating reference sequences. Let H be a set of symbols (short bit sequences of length
b), for instance H = {0110, 1100, 1111, 0000, 0011}. Sequences in S are then constructed
by randomly combining m symbols from H , for instance, 0011110000000011 where m = 4.
This construction imposes a structure on R(x). In our experiments we set m = n

b , b = 8,
H = {′00000000′,′ 11111111′,′ 11110000′,′ 00001111′,′ 00111100′}.
Generating the test set. Since the reward is defined based on the edit distance from the sequences in
set M , we generate a test set sampled approximately uniformly over the possible values of R(x) as
follows: (1) pick a mode s ∈ M , (2) modify i bits randomly ∀i < n and we repeat this for all the
modes.

Implementation. We implement GFlowNets with TB and FM in PyTorch for autoregressive gen-
eration tasks, along with the A2C baseline. For the MARS (MCMC) baseline we modify the
implementation released by [3].

Hyperparameters. We use a Transformer [28] as the neural network architecture for all the methods.
We use 3 hidden layers with hidden dimension 64 with 8 attention heads. All methods were trained
for 50, 000 iterations, with a minibatch size of 16. We set the the random action probability to 0.0005
selected from {0.0001, 0.0005, 0.001, 0.01}, the reward exponent β to 3 selected from {2, 3, 4}, and
the sampling temperature for PF to 1 for the GFlowNets. For trajectory balance we use a learning
rate of 1× 10−4 selected from {10−5, 10−4, 5× 10−4, 10−3, 5× 10−3} for the policy parameters
and 1 × 10−3 for logZ. For flow matching we use a learning rate of 5 × 10−4 selected from
{10−5, 10−4, 5× 10−4, 10−3, 5× 10−3} with leaf loss coefficient λT = 10. For A2C with entropy
regularization we share parameters between the actor and critic networks, and use learning rate of
10−4 selected from {10−5, 10−4, 5× 10−4, 10−3, 5× 10−3} with entropy regularization coefficient
10−3 selected from {10−4, 10−3, 10−2}. For SAC we use the formulation in [6] with a learning rate
of 5× 10−4 selected from {10−5, 10−4, 5× 10−4, 10−3, 5× 10−3} target network update frequency
500 and 200 initial random steps. For the MARS baseline we set the learning rate to 5×10−4 selected
from {10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3}. For all the methods we use the Adam optimizer.
Overall, for the Bit sequence generation experiments we used 25 GPU days.

B.4 AMP generation

Vocabulary. The vocabulary of the 20 amino acids is defined as: [‘A’, ‘C’, ‘D’, ‘E’, ‘F’,
‘G’, ‘H’, ‘I’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘V’, ‘W’, ‘Y’]

Reward Model. We use a Transformer-based classifier, with 4 hidden layers, hidden dimension 64,
and 8 attention heads. We train it with a minibatch of size 256, with learning rate 10−4, with early
stopping on the validation set.

Hyperparameters. As with the bit sequences, we use a Transformer [28] as the neural network archi-
tecture for all the methods. We use 3 hidden layers with hidden dimension 64 with 8 attention heads.
All method were trained for 20, 000 iterations, with a mini batch size of 16. We set the the random ac-
tion probability to 0.01 selected from {0.0001, 0.0005, 0.001, 0.01}, the reward exponent β : R(x)β

to 3 selected from {2, 3, 4}, and the sampling temperature for PF to 1 for the GFlowNets. For trajec-
tory balance we use a learning rate of 5×10−3 selected from {10−5, 10−4, 5×10−4, 10−3, 5×10−3}
for the flow parameters and 1× 10−2 for logZ. For flow matching we use a learning rate of 5× 10−4

selected from {10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3} with leaf loss coefficient λT = 25. For
A2C with entropy regularization we share parameters between the actor and critic networks, and
use learning rate of 5× 10−4 selected from {10−5, 10−4, 5× 10−4, 10−3, 5× 10−3} with entropy

17

regularization coefficient 10−2 selected from {10−4, 10−3, 10−2}. For SAC we use the formulation
in [6] with a learning rate of 5× 10−4 selected from {10−5, 10−4, 5× 10−4, 10−3, 5× 10−3} target
network update frequency 400 and 200 initial random steps. For the MARS baseline we set the learn-
ing rate to 5× 10−4 selected from {10−5, 10−4, 5× 10−4, 10−3, 5× 10−3}. We run the experiments
on 3 seeds and report the mean and standard error over the three runs in Table 1. Overall, for the
AMP Generation experiments we used 14 GPU days.

18

