
A Summary of notation and important matrices

The prefix-sum linear operator S, and its inverse:

S :=

1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1

 and S−1 :=

1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 . (10)

Representation of momentum SGD as a linear operator M = M(η)M(β):

M(η) :=

η1 0 0 · · · 0
η1 η2 0 · · · 0
η1 η2 η3 · · · 0
...

...
...

. . .
...

η1 η2 η3 · · · ηn

 and M(β) :=

1 0 0 · · · 0
β 1 0 · · · 0
β2 β 1 · · · 0
...

...
...

. . .
...

βn−1 βn−2 βn−3 · · · 1

 (11)

Summary of notation The following table briefly summarizes notation used throughout this work.

gi ∈ Rd Input (e.g. gradient) on step i of the online process.

G ∈ Rn×d Matrix of all inputs, gi = G[i,:].

A ∈ Rn×n Lower-triangular linear query matrix to be factorized as A = BC.

λmin(A), λmax(A). Smallest and largest eigenvalues of real matrix A.

A∗ Conjugate transpose of A.

X? A matrix X that is “optimal” in a context-dependent sense.

A† Moore-Penrose pseudoinverse of matrix A.

A[i,j] The (i, j)th entry of matrix A.

A[i,:] and A[:,j] The ith row and jth column.

B Future work.

Each of the sections above poses a unique set of problems for future investigation, many interrelated.
We will highlight only some of the major questions left open by this work.

Scalable mechanism implementations Theorem 2.1 shows that we need not restrict ourselves to
any particular matrix structure in order to guarantee privacy over adaptive streams. Appendix H
shows we can find efficient approximations for the case of prefix sums, but this leaves open the
question of whether better or more general approximations are possible, or whether one can optimize
over structures that allow efficient implementations directly.

Analysis and numerics of φ Theorem 3.3 represents a usable convergence result for iterates of
the mapping φ; on the other hand, it represents only partial progress on the conjecture of global
convergence of these iterates. Though we factorized many distinct matrices in the course of writing
this paper, we generated no reason to doubt this conjecture. Indeed, the speed of convergence of
these iterates of φ (see Appendix E.4) only makes this method more intriguing from a theoretical
perspective. Further, though the fixed-point method utilized to compute these factorizations has
enabled significant exploration (as detailed in Section 4), it still does not quite represent the optimal
algorithm for computing these optima: an explicit formula for the fixed point of φ would clearly be
desirable, and might yield interesting insights into the structure of these optimal matrices.

We finally note that for production use, additional care will be needed to ensure that claimed privacy
guarantees fully account for floating point imprecision.

16

Adaptive choice of the query While the sequence of gradients during optimization is adaptive
(subsequent gradients depend on previous gradients), as we have seen SGD with momentum can be
expressed as a fixed linear operator M. Data-independent learning rate schedules can be incorporated
into an optimization matrix in a similar fashion, again allowing for optimal DP matrix mechanisms.
However, adaptive learning rate schedules such as AdaGrad amount to a non-linear (and adaptive, not
fixed) map on the gradient sequence; hence a very interesting open question is to see if the approach
used here can be extended to adaptive optimization algorithms.

C Tree aggregation and decoding as matrix factorization

As mention in Section 1, the tree data structure T is linear in the data matrix G (all of its internal
nodes are linear combinations of the rows G). Therefore the mapping G→ T can be represented as
multiplication by a matrix. We present a simple recursive construction of this matrix. The base case
is the 1× 1 matrix [1], which we will denote by C

(1)
T ; we will define C

(k)
T ∈ R(2k−1)×(2k−1) to be

the matrix constructed by duplicating C
(k−1)
T on the diagonal, and adding one more row of constant

1s. That is,

C
(1)
T := (1) ,C

(2)
T :=

(
1 0
0 1
1 1

)
,C

(3)
T :=

1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1
0 0 1 1
1 1 1 1

 , (12)

and so on. Each row of C
(k)
T G can be seen readily to correspond to a node of the binary tree T

constructed from G, assuming n = 2k−1 (possibly padding with zeros if needed).

With this construction, it is straightforward to represent both vanilla differentially-private binary tree
aggregation and the Honaker variant as instantiations of the matrix factorization framework. For a
vector x with n = 2k−1 entries, vanilla binary-tree aggregation can be represented as C = C

(k)
T , B

an appropriate {0, 1}-valued matrix satisfying BC = S for prefix-sum S. The Honaker estimators
can both be computed as (real-valued) matrices also satisfying BC = S, and are in fact optimal:

Proposition C.1. For the prefix-sum matrix S with n = 2k−1 rows, the (non-streaming) Honaker fully
efficient estimator represents the minimal-loss factorization for prefix sum S = BC for C = C

(k)
T .

This estimator is precisely SC†. The streaming Honaker estimator-from-below represents the minimal
loss factorization satisfying the property that the jth row of B zeros out rows in the matrix CG
which place nonzero weight on the ith row of G for i > j. The Honaker estimator-from-below can
be expressed similarly row-by-row with a constrained pseudoinverse of C.

Proof. We begin by recalling a geometric property of the Moore-Penrose pseudoinverse. Theorem
2.1.1 of [38] states that for any matrix C ∈ Cm×n, vector s ∈ Cm, the vector C†s is the minimal
least-squares solution to the linear system Cx = s. Notice that this statement is implicitly a statement
of uniqueness; C†s is the unique minimal-norm solution to Cx = s, assuming feasability of this
equation. Since the square of the Frobenius norm of the matrix B is the sum of the squared norms of
its rows, we may apply this Theorem row-by-row to B to demonstrate that the minimal Frobenius
norm solution B to S = BC for fixed C is SC†.

This minimal Frobenius norm property may be translated to a statistical perspective. That is, for a
fixed matrix C and data matrix G, SC† represents the minimal-variance unbiased linear estimator for
SG given the noisy estimates CG + Z. This is precisely the definition of Honaker’s fully efficient
estimator in Section 3.4 of [22], and we have the first statement of this proposition.

The second follows similarly, but leveraging instead the geometric properties of the constrained
pseudoinverse. These properties are collected in Theorem 3.6.3 of [38], and allow us to compute
directly the optimal B under constraints that certain entries in each row must be 0, corresponding to
the constraints stated in the proposition. By construction of the matrices C

(k)
T , the property described

in the statement of Proposition C.1 corresponds to restricting the linear estimator computed from a
binary tree to depend only on the information below the nodes corresponding to the 1s in a binary

17

expansion of the index of the partial sum under consideration. This is precisely the definition of the
estimator from below in Section 3.2 of [22].

D Proofs and missing details for Section 2

Proof of Proposition 2.1. The key idea is that the nonadaptive version of the definition implies a
bound on the log-odds ratio that always holds (even after the fact).

For simplicity, we focus on the case where the universe of possible outputs a is discrete (to avoid
measurability issues).

Fix an adversary A and mechanismM. Recall side is fixed an unknown to the adversary. When
side = 0, the probability of a particular view (G,H,a) is the following. We write (G,H,a) ←
〈M,A〉0 for the event with sequence of mechanism outputs a, when the mechanism and the adversary
are operating with the variable side = 0, and the neighboring data streams are G and H (and
analogously for side = 1).

Pr((G,H,a)← 〈M,A〉0) =

Pr (A() = (g1,h1)) × Pr (M(g1) = a1)×
Pr
(
A(a1) = (g2,h2)

∣∣g1,h1

)
× Pr

(
M(g2) = a2

∣∣g1,a1

)
×

· · ·
Pr
(
A(an−1) = (gn,hn)

∣∣g1, ...,gn−1,h1, ...,hn−1
)︸ ︷︷ ︸

these do not depend on side

× Pr
(
M(gn) = an

∣∣g1, ...,gn−1,a1, ...,an−1
)︸ ︷︷ ︸

these terms depend on side

.

The probability of (G,H,a) when side = 1 is similar, except that the inputs toM are now ht’s
instead of gt’s. Either way, we get a product of 2n terms, half of which are about the probability of
A’s outputs, and half of which are aboutM’s outputs. They key fact here is that the terms describing
A’s output are the same in both expressions. When we take the ratio, therefore, those terms cancel
out and we obtain:

Pr((G,H,a)← 〈M,A〉0)

Pr((G,H,a)← 〈M,A〉1)

=
Pr (M(g1) = a1)× Pr

(
M(g2) = a2

∣∣g1,a1

)
× · · · × Pr

(
M(gn) = an

∣∣g1, ...,gn−1,a1, ...,an−1
)

Pr (M(h1) = a1)× Pr
(
M(h2) = a2

∣∣h1,a1

)
× · · · × Pr

(
M(hn) = an

∣∣h1, ...,hn−1,a1, ...,an−1
)

=
Pr(M(g1, ...,gn) = (a1, ...,an))

Pr(M(h1, ...,hn) = (a1, ...,an))
.

This last expression involves no adversary—it is simply the ratio of the probabilities that the mecha-
nism would have produced a given output sequence if the sequences G and H had been specified
nonadaptively. Since G,H are always valid neighboring sequences, and since the nonadaptive
mechanism’s guarantee holds for all output sequences, the ratio above is bounded between e−ε and
eε, as desired.

Proof of Theorem 2.1. The idea is to show that, when A is lower triangular, the mechanismM can
be rewritten in such a way that the adaptive privacy ofM can be deduced from the privacy guarantees
of the usual Gaussian mechanism with adaptively selected queries.

Let (L,Q) form a lower-triangular LQ-factorization of B, meaning that L is lower triangular, Q is
orthonormal, and B = LQ. By assumption, A is square and invertible, so L and Q are also square
and invertible. Now consider the modified mechanism

M̃(G) = L(QCG + Z) where Z ∼ N (0, κ2σ2)n×d

where κσ is the same noise standard deviation as in the original mechanism. Since L and A are lower
triangular, it also means that L−1A = QC is also lower triangular. This means that QCG + Z can
operate in the continuous release model, as row i of QCG depends only on the first i rows of G.

18

Next, we further show the mechanism QCG+Z (that is, M̃ without the post-processing operation of
multiplying with L) is an instance of the standard Gaussian mechanism for computing an adaptively
defined function in the continuous release model with a guaranteed bound on the global `2 sensitivity.6
Let G,H ∈ N be any two fixed neighboring data streams with ‖C(G − H)‖F ≤ κ. Then
because Q is orthonormal we have ‖QC(G − H)‖F ≤ κ. Letting g = flatten(QCG) ∈ Rnd
and h = flatten(QCH) ∈ Rnd, we have ‖g − h‖2 ≤ κ. Hence, QCG + Z is equivalent to an
application of the standard Guassian mechanism on inputs QCG, and the result for adaptive streams
follows from Claim D.1 below. This claim holds as the privacy loss random variable is stochastically
dominated by an appropriate normally-distributed random variable (e.g., [56]).

Claim D.1 (Folklore). Consider a streaming data vector g = [g1, . . . , gn] ∈ Rn s.t. for any
neighboring stream h we have the `2-sensitivity ‖g − h‖2 ≤ κ. If g+N (0, κ2σ2)n satisfy (ε, δ)-DP
(or ρ-zCDP or µ-Gaussian DP) in the nonadaptive continual release model, then the same mechanism
satisfies the same privacy guarantee in the adaptive continuous release model.

As L is lower-triangular, the adaptive streaming DP guarantee of QCG+Z extends to the mechanism
M̃ by the post-processing property of DP.

Finally, we have
M(G) = B(CG + Z) = L(QCG + QZ),

and so the only difference from M̃ is the use of noise QZ vs Z. Since Q is orthonormal and the
Gaussian distribution is rotationally invariant, QZ and Z are identically distributed, and henceM
and M̃ produce identical output distributions on any fixed data set G. Thus an adversary can simulate
M given access to M̃. This in turn means that the privacy guarantee of the mechanism M̃ transfers
to the mechanismM. This completes the proof.

Proof of Proposition 2.2. The existence of such a lower-triangular factorization with identical in-
duced matrix mechanism distribution follows directly from the proof of Theorem 2.1. The body of
the proof leverages the distributional equivalence of all mechanisms expressible as

(BU) (U∗C) .

Since A is lower-triangular, letting U = R∗ recovers a lower-triangular mechanism (IE, both terms
in the factorization are lower-triangular) which is distributionally equivalent to the factorization
A = BC.

The claimed uniqueness follows from uniquness of the QR factorization with all-nonnegative diagonal
entries; see, e.g., [57, Theorem 2.1.14].

D.1 Not all additive noise mechanisms are adaptively private

Consider the following two step sampling process7:

1. A ∼ N (0, Id).

2. B ∼ N (0,Σ) where Σ = I− (1− η) AA
t

‖A‖2 and η = 5

√
log(d)

d . Observe that, conditioned on
A = a, we can write B as the sum of independent random variables B = B1 +B2 where
B1 ∼ N (0, I− aat

‖a‖2)—a component orthogonal to a with variance 1 in all other directions—
and B2 ∼ η a

‖a‖ · N (0, 1)—a component parallel to a with much smaller variance η in that
direction.

3. Return (A,B)

6Observe the same claim cannot be made forM, e.g., as CG+ Z cannot be used in the continuous release
setting as in general C induces a dependence on not-yet-seen data.

7For the clarity of noation, in this section we will refer to random variables with uppercase, and their
corresponding instantiations with lower case. Additionally, all norms are ‖·‖2.

19

Now consider a mechanismM that takes a parameter σ and two inputs of the form (x1, x2) ∈ (Rd)2
where x1 = 0 (always) and x2 has Euclidean norm at most 1, and returns (x1 + σA, x2 + σB). The
mechanism can be run interactively, in which case x2 could be selected based on A, which can be
deduced from x1 + σA. The notion of neighboring here is trivial: every pair (0, x2) is a neighbor of
every other pair (0, y2) so long as ‖x2‖ and ‖y2‖ are at most 1.

For simplicity, we formulate the mechanism for the special case when n = 2 and the first input is
forced to be 0, but similar constructions and reasoning apply for larger n and other types of inputs.

Proposition D.1. M is nonadaptively (ε, δ)-DP with parameters ε = Θ(
√

ln(1/δ)/σ) when d is
sufficiently large and δ ≥ exp(−cd) for an absolute constant c > 0.

Proof. Let (0, x2) and (0, y2) be the inputs submitted by the adversary. Let W = 〈x2 − y2, A
‖A‖ 〉.

Observe that 〈x2 − y2, A〉 distributed as N(0, ‖x2 − y2‖2) (with variance at most 2) and that ‖A‖
is between 1

2

√
d and 2

√
d with probability 1− exp(−Ω(d)) by standard concentration arguments.

Thus, W is at most η =
5
√

log(d)

d with probability 1− exp(−Ω(d)).

Given A = a, we can write the output b = b1 + b2 as a sum of a component b1 parallel to a and a
component b2 orthogonal to a. Recalling the notation B = B1 +B2 from the definition of (A,B),
we get the following distributions when side = 0:

b2 =
(
〈 a
‖a‖ , x2〉+ ησZ

)
a
‖a‖ where Z ∼ N(0, 1) and

b1 =Π(x2) +B2 where Π is the projector onto the subspace orthogonal to a.

We get the same distribution with side = 1, except that x2 is replaced by y2. Conditioned on a,
we have additive noise with a well-understood distribution in both cases. The likelihood ratio thus
depends only on W and Π(x2 − y2).

The first component consists of adding noise with standard deviation ησ to an input with sensitivity

|W | ≤ 5
√

log(d)

d ; the second consists of adding noise in with standard deviation σ (in all d − 1
relevant dimensions) to an input with sensitivity at most 2. Each of these satisfy (ε, δ)-differential
privacy for ε = Θ(

√
ln(1/δ)/σ), as desired.

Proposition D.2. When ση < 1/3, the mechanismM is not adaptively (ε, 14)-DP unless ε ≥ 1
3(ση)2 .

Proof. An adaptive adversary first submits vectors x1, y1 (both 0), receives a first output a which is
either x1 +A or y1 +A, and then submits x2 and y2 and receives a second output b which is either
x2 +B or y2 +B. Consider the specific adversary submits x2 = a

‖a‖ and y2 = −x2 (based on the
first output a) and then receives output b.

The idea is that the variance of B in the direction of x2 = a is only ησ (instead of σ) and so—
informally—the effective ε of the mechanism is roughly 1/(ησ) instead of 1/σ. When d is large, η is
much smaller than 1 and so the mechanism provides much weaker privacy guarantees in the adaptive
setting.

More formally, consider the random variable 〈a, b〉. The component of B in the direction of a can be
written B2 = η a

‖a‖ · Z for Z ∼ N(0, 1). When side = 0, we thus have

〈a, b〉 = 〈a, x2 + σB〉 = 〈a, x2 + σB2〉 = 〈a, a
‖a‖ + ση a

‖a‖Z〉 = ‖a‖ (1 + σηZ) .

Similarly, when side = 1, the inner product 〈a, b〉 is distributed as ‖a‖ (−1 + σηZ). The probability
that 〈a, b〉 > 0 is at least 1

2 when side = 1 and, for ση < 1, the same probability is at most

exp
(
− 1

2(ση)2

)
when side = 0. In particular, the mechanism is not (ε, δ)-DP in the adaptive model

unless 1
2 ≤ e

ε Pr(〈a, b〉 > 0|side = 0)− δ; that is, it requires ε ≥ 1
2(ση)2 − ln(2

1−2δ). The bound is
at least 1

3(ση)2 for δ ≤ 1/4 and ση < 1/3.

20

E Proofs and observations for Section 3

E.1 Proof of Theorem 3.1

Proof. The proof essentially follows from standard arguments about the DP guarantee for the
Gaussian mechanism [32, 35]. In the following, we provide some of the details for completeness.

First, notice that it is sufficient to state that the computation CG + Z satisfies (ε, δ)-DP, due to the
post processing property of DP. Now consider two data sets G and H differing in one data record (as
per the neighborhood definition in J.1). We have C(G−H) is equal to the outer product cg, where
g is the row of G that was changed, and c is the corresponding column of C. By assumption in the
theorem statement, we have

‖cg‖F ≤ ‖c‖2 · ‖g‖2 ≤ γζ.
With the bound on the sensitivity above, if each entry of Z is drawn i.i.d. from N (0, σ2), then
CG + Z satisfies ρ = γ2ζ2

σ2 -zCDP (Definiton J.2) [33]. We set the noise standard deviation σ by the
use of Remark 15 in Steinke [58]. Correspondingly, we have (ε, δ)-DP [59].

E.2 Proof of Theorem 3.2

Proof. For simplicity we consider the equality-constrained version of Eq. (4) (permissible by [27]):

X? = arg min
X is PD,X[i,i]=1,i∈[n]

tr(A∗AX−1). (13)

We begin by noting that Slater’s condition (see [60, Section 5.2.3]) holds in our setting, since the
minimum eigenvalue of a matrix is a concave function (expressible as a minimum of linear functions),
and we know from [27] that that the optimum is strictly positive definite. Therefore strong duality
holds, and complementary slackness implies we may drop the positive-definiteness constraint when
we move to the Lagrange formulation. Thus, we introduce a Lagrange multiplier v for Eq. (13),
defining,

L(X,v) = tr(A∗AX−1) +

n∑
i=1

vi(Xi,i − 1)

= tr(A∗AX−1) + tr
(

diag(v)(X− I)
)
. (14)

Differentiating Eq. (14) with respect to X, we find

∂L

∂X
= −(X−1A∗AX−1) + diag (v) . (15)

Let X? be the optimizer of the primal problem Eq. (13); then, by the Lagrange multiplier theorem
(see, e.g., Proposition 4.1.1 of [61]), there exists a unique v? satisfying

diag (v?) = X?−1A∗AX?−1, (16)

which is an equivalent form of Eq. (7). Since A is full-rank, and X? is known from [27] to be
positive-definite, Eq. (16) implies that diag (v) is invertible (indeed, positive definite).

Solving Eq. (16) for X corresponds to solving for a generalized matrix square root. The equation
Eq. (16) may be uniquely solved, yielding

X (v) = diag(v)−1/2
(

diag(v)1/2A∗A diag(v)1/2
)1/2

diag(v)−1/2. (6)

Clearly the X (v?) defined by Eq. (6) represents a solution for Eq. (16); that X (v?) = X? can be
seen by substituting Eq. (16) for diag(v?) in Eq. (6), and evaluating the result to the form X?.

Since X? has constant 1s on the diagonal (by the formulation Eq. (13)), the expression Eq. (6) implies
that

diagpart

(√
diag(v?)1/2A∗A diag(v?)1/2

)
= v?,

21

and that therefore v? is a fixed point of the mapping φ defined by Eq. (5).

We have shown that an optimizer X? corresponds to a fixed point v? of φ. If we begin with a fixed
point v? of φ, and define X (v?) via Eq. (6), the preceding calculations show that X (v?) is both
feasible and a stationary point of the Lagrangian. The strict convexity of the problem, along with its
smoothness, imply that the Hessian of the Lagrangian is positive definite at this stationary point, and
therefore (e.g. by Proposition 4.2.1 of [61]), this X (v?) is a local minimizer. Strict convexity implies
that this local minimizer is in fact the global minimizer.

The final claim of Eq. (8) follows immediately from weak duality and the fact that

inf
X
L(X,v) = L(X (v),v))

since the problem on the left is convex in X, and hence Eq. (6) gives an optimality condition. Eq. (8)
follows by using A∗AX−1 = X diag (v?) in the first trace in Eq. (14), and then simplifying using
properties of the matrix trace.

E.3 Proof of local-contractive property of φ.

Recall that we study the map, defined in Eq. (5),

φ(v) := diagpart

(√
diag(v)1/2 B∗B diag(v)1/2

)
,

from the positive cone in Rn to itself. By Theorem 3.2, we know that it has a unique fixed point,
which we denote by v?. We will need some notation:

• Q =
√

B∗B.
• In Rn, we consider two inner products

〈x,y〉 =
∑
j

xjyj , 〈x,y〉1 =
∑
j

xjyjwj , w−1j = v∗j .

The fist one is Euclidean, the second one is weighted with the weight given by v? itself. The
corresponding norms are ‖x‖ and ‖x‖1.

• The operator norms of linear map A acting in Rn will be denoted

‖A‖, ‖A‖1
depending on the considered inner products, e.g.,

‖A‖1 = sup
x:‖x‖1=1

‖Ax‖1 .

We start by giving a simple estimate on v?.
Proposition E.1. Suppose Q satisfies

0 < κ1 ≤ Q ≤ κ2 (17)

with some constants κ1 and κ2. Then,

κ21 ≤ diag v? ≤ κ22 .

Proof. Given any two non-negative matrices A and B that satisfy A ≤ B, we clearly have

diagpart A ≤ diagpart B,
√

A ≤
√

B . (18)

Then,

κ21 ≤ Q2 ≤ κ22 ⇒ κ21(diag v?) ≤ (diag v?)1/2Q2(diag v?)1/2 ≤ κ22(diag v?) .

Thus, we apply (18) by first taking the square roots and then the diagonal parts of both sides to get

κ1
√

diag v? ≤ diag v? ≤ κ2
√

diag v?

after we recall that v? is the fixed point of φ(v). The required statement is now immediate.

22

Remark. The argument in the proof shows that φ maps the convex set {v : α ≤ diag v ≤ β} into
itself provided that 0 < α ≤ C1 and C2 ≤ β. Since φ is continuous, the Brouwer fixed point theorem
gives yet another proof that a fixed point of φ exists.

The map v 7→ φ(v) is smooth on Rn. Its derivative at point v? is therefore a linear map in Rn. We
will denote

L := Dφ(v?). (19)

Our central result is precisely the statement that the (weighted) norm of L is smaller than 1, and
hence φ is a local contraction around v?:
Theorem E.1. The map L is a contraction in weighted norm, i.e.,

‖L‖1 ≤ C(κ1, κ2) < 1 .

Remark. This immediately implies that the sequence {vn} given by vn+1 = φ(vn) converges
exponentially fast to v? when v0 is chosen sufficiently close to v?. The exact parameters here depend
only on κ1 and κ2. The size of the neighborhood in which the first-order approximation implies that
φ itself is a contraction similarly depends on κ1, as this controls the smoothness of φ.

We will recall some facts before giving the proof of this theorem.
Proposition E.2. If A is n× n matrix and d ∈ Rn, then(

A +
1

2
(diag d)A +

1

2
A(diag d)

)2

=

A2(diag d) + (diag d)A2 + A(diag d)A + O(‖d‖2) (20)

where the constants in O depend on ‖A‖ only.

Proof. That is an immediate calculation.

Proposition E.3. If A is n× n positive matrix, then

√
A =

A

π

∫ ∞
0

(A + t)−1
dt√
t
. (21)

Proof. That follows from the Spectral Theorem for symmetric matrices and the trigonometric integral
formula √

λ =
λ

π

∫ ∞
0

(λ+ t)−1
dt√
t
, λ > 0 ,

which follows by substituting t = tan2 θ.

Proposition E.4. If A,V are n× n matrices and both A and A + V are non-degenerate, then

(A + V)−1 = A−1 − (A + V)−1VA−1

and
(A + V)−1 = A−1 −A−1VA−1 +O(‖V‖2). (22)

Proof. To check the first identity, it is enough to multiply it from the left by A + V and from the
right by A. The second identity will follows by iterating the first identity once.

The formula for L is given in the following lemma.

Lemma E.1. If T :=
√

(diag v?)1/2Q2(diag v?)1/2, then

Lw = w − π−1 diagpart

(∫ ∞
0

(T2 + t)−1T(diag w)(diag v?)−1T(T2 + t)−1
√
tdt

)
.

23

Proof. This result is based on a long but straightforward calculation. First, introduce d ∈ Rn by

diag v = (diag v?) exp(diag d) .

Hence, denoting ∆ := diag d for shorthand, one has

φ(v) = diagpart
(√

T2 + 0.5∆T2 + 0.5T2∆
)

+O(‖∆‖2)

since T > 0 and the matrix square-root is Lipschitz-continuous at every point which represents a
positive matrix. If one denotes X :=

√
T2 + 0.5∆T2 + 0.5T2∆, then Propositions E.2 and E.3

yield
X− (T + 0.5∆T + 0.5∆T) =

X2

π

∫ ∞
0

(X2 + t)−1
dt√
t
− X2 + T∆T

π

∫ ∞
0

(X2 + T∆T + t)−1
dt√
t

=

(22)
=

T2

π

∫ ∞
0

(T2 + t)−1T∆T(T2 + t)−1
dt√
t
−T∆ +O(‖∆‖2).

If we recall that v? = φ(v?) = diagpart T, then

diagpart X = diagpart(T + 0.5∆T− 0.5T∆)+

diagpart
T2

π

∫ ∞
0

(T2 + t)−1T∆T(T2 + t)−1
dt√
t

+O(‖∆‖2) =

diagpart T + diagpart
1

π

∫ ∞
0

(T2 + t− t)(T2 + t)−1T∆T(T2 + t)−1
dt√
t

+O(‖∆‖2) =

φ(v?)+diagpart(T∆)−π−1 diagpart

(∫ ∞
0

(T2 + t)−1T∆T(T2 + t)−1
√
tdt

)
+O(‖∆‖2) =

φ(v?)+diagpart((diag v?)∆)−π−1 diagpart

(∫ ∞
0

(T2 + t)−1T∆T(T2 + t)−1
√
tdt

)
+O(‖∆‖2)

(23)

Now, notice that
diag v = diag v? + diag v?∆ +O(‖∆‖2)

and
∆ = (diag w)(diag v?)−1 +O(‖∆‖2)

where w := v − v?. Finally, we have

φ(v) = φ(v?) + w−
1

π
diagpart

(∫ ∞
0

(T2 + t)−1T(diag w)(diag v?)−1T(T2 + t)−1
√
tdt

)
+O(‖w‖2) (24)

and that proves the required statement.

Our next step is to obtain the matrix representation of L in the standard basis of Rn.

Lemma E.2. If (T2 + t)−1T =: C(t) = C[i,j](t), then

L = I−
{ 1

π

∫ ∞
0

(C[i,j](t))
2

√
t

v∗j
dt
}
, i, j ∈ {1, . . . , n} .

Proof. That calculation is straightforward after we use symmetry of matrices T and C.

The Theorem E.1 will be proved if Lemma E.3 is shown. In its proof, the following property of the
Schur (elementwise, also known as Hadamard) product of two matrices is used.

Proposition E.5. Suppose A and B are non-negative matrices of size n× n. Then,

λmin(A ◦B) ≥ λmin(A)λmin(B) .

24

Proof. Indeed, the matrix A ◦ B represents the principal submatrix of the Kronecker (or tensor)
product A⊗B. Since λmin(A⊗B) = λmin(A)λmin(B), we get our result.

Lemma E.3. The operator L is selfadjoint with respect to the weighted inner product and ‖L‖1 ≤
C(κ1, κ2) < 1.

Proof. First, we can write a bilinear form

〈Lv,w〉1 = 〈v,w〉1 −
1

π

∫ ∞
0

n∑
i,j=1

G[i,j](t)
vjwi
v∗j v
∗
i

√
tdt

where G := C ◦C, the Schur product, is a symmetric matrix. Hence, 〈Lv,w〉1 = 〈Lw,v〉1 and
therefore L is appropriately selfadjoint. Next, we will prove a bound

C(κ1, κ2)‖v‖21 ≤
1

π

∫ ∞
0

n∑
i,j=1

G[i,j](t)
vjvi
v∗j v
∗
i

√
tdt ≤ C5‖v‖21 (25)

with some positive C and C5 ∈ (0, 1). That estimate for quadratic form is sufficient to prove
that ‖L‖1 < 1 due to the variational characterization of the norm of a self-adjoint operator, i.e.,
‖L‖1 = supv:‖v‖1=1 |〈Lv,v〉1|.

We claim that ∫ ∞
0

G(t)
√
tdt ≥ C3(κ1, κ2) > 0 (26)

in a sense of positive matrices. Indeed,

λmin(G(t)) ≥ (λmin(C(t)))2

as follows from the properties of the Schur product. Since C(t) = T/(T2 + t), we get∫ ∞
0

(λmin(C(t)))2
√
tdt ≥ C3(κ1, κ2) > 0

where C3 depends on parameters κ1 and κ2 from (17) only. So, our claim (26) is proved. Given (26),
we can write ∫ ∞

0

n∑
i,j=1

G[i,j](t)
vjvi
v∗j v
∗
i

√
tdt ≥ C3(κ1, κ2)

n∑
j=1

∣∣∣∣∣ vjv∗j
∣∣∣∣∣
2

≥

C4(κ1, κ2)

n∑
j=1

|vj |2

|v∗j |
= C4(κ1, κ2)‖v‖21

thanks to Proposition E.1. This shows the left bound in Eq. (25).

The inequality
1

π

n∑
i,j=1

G[i,j](t)
vjvi
v∗j v
∗
i

√
tdt ≤ C5‖v‖21

is equivalent to
1

π

n∑
i,j=1

G[i,j](t)
xjxi√
v∗j v
∗
i

√
tdt ≤ C5‖x‖2 (27)

if we make the change of variables xj := vj/
√
v∗j , j ∈ {1, . . . , n}. It will be convenient to introduce

a symmetric matrix D with coefficients given by

D[i,j] =
1

π

∫ ∞
0

G[i,j](t)
1√
v∗j v
∗
i

√
tdt =

1

π

∫ ∞
0

(C[i,j](t))
2 1√

v∗j v
∗
i

√
tdt .

To bound the norm of this matrix, we will start with the following observation. The application of
Spectral Theorem to matrix T yields

1

π

∫ ∞
0

(T2 + t)−2T2
√
tdt = C5T

25

where

C5 =
1

π

∫ ∞
0

(1 + ξ)−2
√
ξdξ =

2

π

∫ ∞
0

(1 + u2)−2u2du <
2

π

∫ ∞
0

(1 + u2)−1du = 1 .

Recall also that v? = diagpart T and therefore

1

π

∫ ∞
0

diagpart((T2 + t)−2T2)
√
tdt = C5v

?

Since the matrix elements of C(t) = (T2 + t)−1T are given by C[i,j](t), the diagonal elements of
(T2 + t)−2T2 can be obtained by the formula

n∑
j=1

C[i,j](t)C[j,i](t) =

n∑
j=1

(C[i,j](t))
2

for i ∈ {1, . . . , n}. Therefore, we get an identity

1

π

∫ ∞
0

n∑
j=1

(C[i,j](t))
2
√
tdt = C5v

∗
i , i ∈ {1, . . . , n}

which can be rewritten as
n∑
j=1

D[i,j]

√
v∗i v
∗
j = C5v

∗
i , i ∈ {1, . . . , n} .

The elements D[i,j] are non-negative and D[i,j] = D[j,i]. Taking the vector {
√
v∗i } with positive

entries, we rewrite the previous identity as
n∑
j=1

D[i,j]

√
v∗j = C5

√
v∗i , i ∈ {1, . . . , n} .

The application of Schur’s test for the norm of matrix gives ‖D‖ ≤ C5 < 1. Since D is symmetric,
this bound implies (27).

E.4 Numerical observations of the map φ.

Some care must be taken with floating point issues in the implementation of the map φ. In particular,
numerical evaluation of φ depends critically on the computation of a matrix square root, and precision
in this computation is crucial for the usability of these fixed-point methods.

Several numerical approaches can improve the stability of these algorithms. In particular, some of
the expressions above (e.g., the definition of X) imply a priori lower bounds on the eigenvalues of
matrices for which we need square roots. The results of [62] yield straightforward lower bounds
that can stabilize our iterative algorithms. These bounds can be applied to ensure the iterates never
encounter pathological numerical artifacts. As the size of matrices scales up (in particular, our
factorizations usually focused on 2048 × 2048 matrices, and larger matrices are of interest), we
observed that performing all computations in float64 precision was crucial to minimizing these
numerical artifacts.

We observed experimentally that while factorizing some matrices, though the fixed-point method
itself converged independently of the matrix factorized, some oscillation in the values of the loss
Eq. (2) occurred. Further investigation is needed to determine whether this oscillation represents
a true feature of the iterated dynamics, or simply another numerical artifact, due e.g. to lack of
precision in the matrix square root. If the former, certain approaches to prove global convergence of
these iterates are ruled out: in particular, those which rely on this loss as a potential function, which
iterating φ always decreases.

To evaluate empirical usefulness of this fixed-point method, we implemented three different algorithms
for computing optimal factorizations:

26

Figure 4: Value of loss Eq. (2) against elapsed time for a gradient-descent based, Newton-direction
based, and fixed-point implementation of computing optimal factorizations of 2048-dimensional
prefix sum matrix S. The gradient descent and Newton direction-based methods used an Armijo step
size search, and checked for existence of Cholesky factorization to verify positive-definiteness of the
iterates, as suggested by [27]. The methods were initialized identically, leveraging the expression
Eq. (6), a significantly better initialization for the gradient-based methods than might be obvious in
the absence of this expression (e.g., initialization to I).

1. A gradient-descent-based procedure to compute the optima of Eq. (4), guaranteed to be
convergent by the convexity of the problem.

2. [27, Algorithm 1], a Newton-direction-based algorithm with global convergence guarantees,
hand-optimized with the structure of the problem—in particular, avoiding the need to
materialize a Hessian with n4 elements. This implementation used the default settings from
[27].

3. Simply iterating the mapping φ.

In all situations we tested, the fixed-point method was significantly faster than either of the other two,
up to two orders of magnitude in some cases. In Fig. 4, we plot loss against time for an example
of 2048× 2048 matrix factorization using CPUs. The methods are all similarly amenable to GPU
acceleration.

27

F Proofs for Section 4

F.1 Proof of Proposition 4.1

Proof. Following the analysis of Theorem C.1, Kairouz et al. [6], we introduce a hypothetical
‘unnoised’ model trajectory θ̃t. Define bt := θt − θ̃t, and note that bt = −ηB[t,:]Z.

We note the well-known equivalence of FTRL and gradient descent, with requilarization parameter λ
equivalent to 1

η (as can be seen by solving for the FTRL update). Following the standard linearization
method of online convex optimization, we see:

1

n

n∑
t=1

`(θt;χt)− `(θ?;χt) ≤
1

n

n∑
t=1

〈∇t, θt − θ?〉 =
1

n

n∑
t=1

〈∇t, θ̃t − θ?〉︸ ︷︷ ︸
A

+
1

n

n∑
t=1

〈∇t, θt − θ̃t〉︸ ︷︷ ︸
B

Similarly to Kairouz et al. [6], the term A may be handled with standard online convex optimization
techniques, yielding

A≤ ηL2 +
1

2ηn

(
‖θ?‖22 − ‖θ1‖22

)
,

so we are left to evaluate the expectation of B over the noise injected by Algorithm 1. We compute:

E

[
1

n

n∑
t=1

〈∇t, θt − θ̃t〉

]
≤ 1

n
E

[
n∑
t=1

‖∇t‖2‖θt − θ̃t‖2

]
Cauchy-Schwartz

≤ L

n
E

[
n∑
t=1

‖bt‖2

]

≤ LE

(1

n

n∑
t=1

‖bt‖22

)1/2
 Jensen’s inequality

≤ L√
n

(
E

[
n∑
t=1

‖bt‖22

])1/2

Jensen again

=
Lη√
n

(
E
[
‖BZ‖2F

])1/2
definition of bt

=
Lση√
n
‖B‖F evaluating the expectation.

Putting together the estimates of A and B yields the result.

28

G Visualization of Optimal Factorizations

Figure 5: Visualizations of the optimal streaming matrix factorization S = WH (B = W,C = H)
for cumulative sums with n = 512. The matrix visualizations use a color palette that maps scalars in
[0, 1] to colors from white to dark red. The first row normalizes entries to [0, 1] by simply dividing all
entries by 2.36 (the largest value in either matrix). This clearly shows the heavy diagonal in B. The
second row normalizes the values in each matrix by ranking them by magnitude, and then mapping
the ranks to [0, 1] so 0 entries (the smallest) are mapped to 0.0, the median value is mapped to 0.5
(mid-red), and the largest value is mapped to 1.0 (darkest red). This visualization more clearly shows
the off-diagonal structure. The final row gives a histogram of the magnitudes of the non-zero entries
in each matrix.

H Computational efficiency for the matrix mechanism

Our primary goal has been to develop mechanisms with best-possible privacy vs utility tradeoffs in
the streaming setting. However, the (B,C) we compute are in general dense, and do not obviously
admit a computationally-efficient implementation of the associated DP mechanism. In contrast, tree
aggregation (including, with a careful implementation, the streaming Honaker estimator) allows

29

n Honaker (B?,C?) Efficient (h, r)

28 = 256 74.4 40.4 40.4 (4, 4)
29 = 512 116.5 62.0 62.2 (5,4)

210 = 1024 180.8 94.6 95.5 (5, 5)
211 = 2048 278.3 143.6 145.8 (6, 5)
212 = 4096 425.6 217.3 224.0 (6, 6)

Table 2: Values of
√
L for the expected squared reconstruction error L defined in Eq. (2) (which

implies equivalent levels of privacy). The “Efficient” column gives
√
L for the structured approxi-

mation B̂ of B? with parameters (h, r) described below. When n = 2i we choose h + r = i, so
that the mechanism based on B̂ has memory and computation efficiency comparable to the Honaker
approach.

implementations with only log(n) overhead; that is, each DP estimate of the ith partial sum can be
computed in time and space O(d log(n)).

In this section, we demonstrate empirically that the optimal B? from the factorization of the prefix
sum matrix S can be approximated by structured matrices in such a way as to be competitive with
the tree-aggregation approach in terms of computation and memory, but retain the advantage of
substantially improved utility. Recalling Algorithm 1, the key is to compute B[i,:]Z efficently. If B is
arbitrary, this takes O(nd) operations, which is likely prohibitive.

However, having a structured matrix B̂ that allows efficient multiplication with Z mitigates this
problem. We propose the following construction, which empirically provides a good approximation
while also allowing computational efficiency. Let D(h) denote the lower-triangular banded matrix
formed by taking the first h diagonals of B, so D(0) is the all-zero matrix, D(1) is the main diagonal
of B, and D(2) contains the main diagonal and one below it, etc. Let U(h) ∈ {0, 1}n×n contain a 1
in the place of each non-zero element of B not captured in D(h) and zero elsewhere, so in particular
B = B�U(h) + D(h) where � is elementwise multiplication. Then, we propose the representation

B̂ =
(
LR>

)
�U(h) + D(h),

where L,R ∈ Rn×r. Finding a low-rank factorization LR> which minimizes ‖B̂ −B‖2F can be
cast as a matrix completion problem, as we only care about approximating with LR> the entries
of B selected by U(h). For these experiments we used an alternating least squares solver with a
regularization penalty of 10−6 on ‖L‖2F + ‖R‖2F [63–65]. Given such a representation, the cost of
computing B̂[i,:]Z is O((h+ r)d): we maintain accumulators β such that

(Lβ)[i,:] =
(
(LR> �U(h))Z

)
[i,:]
,

and β can be updated in time rd on each step. Then, Finally, (D(h)Z)[i,:] can be computed in time
hd. Algorithm 3 makes this algorithm explicit.

Columns 3 and 4 in Table 2 shows empirically that this approximation recovers almost all of the
accuracy improvement of (B?,C?) at comparable computational efficiency to tree aggregation with
the Honaker estimator (that is, we choose h+ r = log2(n)). While a paired C is not used directly in
computing the private estimates, it is necessary in order to compute the loss L defined in Eq. (2), as
well as to appropriately calibrate the noise to achieve a DP guarantee (see Theorem 3.1). For these
purposes an optimal CB̂ can be found analogous to Eq. (3) as CB̂ = B̂−1S.

30

Algorithm 3 An efficient implementation (executed by the trusted curator)
1: # Iterations and matrices/vectors are zero indexed (unlike elsewhere)
2: Parameters:
3: Matrix D(h) containing h ∈ {0, . . . , n} diagonals from B
4: Matrices L,R ∈ Rn×r
5: Noise matrix Z ∈ Rn×d
6: Observations G ∈ Rn×d
7: β := 0 ∈ Rr×d # Buffer for relevant part of R>Z.
8: s := 0 ∈ Rd # Accumulator for prefix sum
9: for i in 1, . . . , n do

10: s += G[i,:] # Maintain the un-noised cumulative sum
11: y := 0 ∈ Rd # Accumulator for total noise in ith prefix sum
12: for k in 0, . . . ,min(i, h− 1) do # Handle h diagonals directly; No-op if h = 0

13: y += D
(h)
[i,i−k]Z[i−k,:] # hd multiplies

14: if i ≥ h then # Compute the low-rank portion
15: i′ ← i− h
16: β += R>[i′,:]Z[i′,:] # rd multiplies
17: y += L[i,:]β # rd multiplies
18: Release s + y # A DP estimate of

∑i
t=1 G[t,:]

I Experiment Details

Mechanism implementation Though Appendix H shows that time- and space-bounded approxima-
tions to our optimal factorizations are possible, for our experimental results we followed Algorithm 1
and implemented the straightforward version of our mechanism. That is, we leverage the expression

B (CG + Z) = AG + BZ,

for A = BC, where A represents the linear operator we are interested in estimating. By introducing
a seed to the generation of the noise vector Z, the appropriate noise vector (BZ)[i,:] can simply be
computed afresh for each iteration of training (or round in the federated setting). The linear operators
A in which we are interested admit efficient implementations; e.g., gradient descent with momentum
can be implemented with a single buffer, representing the current state of the model. The computation
of BZ is therefore the dominant component in the above.

We normalized all of our factorizations to have sensitivity exactly 1 in the single-pass setting.

Integration with federated learning We implemented these mechanisms via the DPQuery in-
terface in TensorFlow-Privacy [66], which integrates naturally with tff.aggregators, the
aggregators library of TensorFlow-Federated. We were therefore able to reuse precisely the same
code for training as [67], simply swapping in our matrix-factorization-based aggregators as an ar-
gument to TFF’s tff.learning.build_federated_averaging_process function. In
conjunction with this paper, we are in the process of open-sourcing the code to reproduce our experi-
ments. TFF’s distributed C++ runtime, equipped with one machine for every 10 clients per round
and low-priority CPU resources, enabled our experiment grids (including evaluation) to finish in
approximately 1 day.

Stackoverflow settings The preprocessing of our data, in addition to model architecture as well
as the settings of various task-specific hyperparameters like the maximum number of examples
processed per-client, we share with [6].

Test accuracy details Test accuracies (excluding predictions on out-of-vocabulary and end-of-
sentence tokens) plotted against ε values associated to δ = 10−6 for various instantiations of the
mechanisms we tested can be found in Fig. 2. This figure was generated with a sweep over client and
server learning rates, with grids chosen via in the heatmap for FedAvgM in Figure 2 of [51], as well
as a sweep over server momentum values. The noise multiplier settings were chosen with a simple

31

calculation, based on the reported noise multipliers for StackOverflow NWP in [6]. In particular, by
explicitly calculating the sensitivity of the binary tree (as in Theorem 4.1 of [6]), one can normalize
the noise multipliers to be equivalent between the two settings. In the process of testing our code, we
verified that we observed similar results to those claimed there under this normalization. The smallest
noise multiplier in our setting corresponds to the largest ε in figure 2(a) of [6], though our plots are
not exactly comparable to theirs due to the different number of rounds in the two experimental setups.
We calculate our ε values by simply measuring the privacy cost of the appropriate high-dimensional
Gaussian query, by Theorem 4.1. The grid we swept over can be found in Table 3.

The error bars in Figs. 2 and 3 were generated by first filtering down to runs which did not diverge
from repeated runs with 10 seeds (at least 7 converged for each setting in Fig. 2, at least 8 for each
setting in Fig. 3), then computing the empirical standard deviation. A similar process was used for
Fig. 6.

Evaluation accuracy details During training, we monitored performance on an evaluation set
consisting of 10,000 sentences from outside of the training and test sets. We plot this evaluation
accuracy for the final portion of training our learning-rate schedule and momentum matrices in Fig. 6.

Figure 6: Smoothed validation accuracy over the final 748 rounds at ε = 18.9, δ = 10−6, comparing
momentum and learning rate decay implemented as postprocessing operations to the prefix-sum
mechanism versus capturing these operations in the mechanism itself (see Section 4). Vertical line
represents the start of the decay schedule.

Additional figures We note that Fig. 6 demonstrates a consistent artifact we witnessed in training
these models: the momentum matrix factorization performs worse than the prefix-sum matrix during
the body of training, but catches up and overtakes towards the end of the training procedure. We
hypothesize this to be an artifact of the way these mechanisms distribute variance on the operator
residuals, and consider it an interesting pointer for future mechanism design, while noting that it
implies the matrix factorizations are significantly tuned to the number of iterations for which they are
designed.

Hyperparameter settings The parameter settings for the various figures in the main body and
appendix can be found below.

Table 3: Grids used in initial search for Fig. 2.

Parameter Grid values
Client learning rate [0.5, 1.0]
Server learning rate [0.25, 0.5, 1.0, 2.0]
Server momentum [0.0, 0.9, 0.95]
Noise multiplier [0.341, 0.682, 1.364, 2.728, 5.456]

32

Table 4: Hyperparameter settings for Fig. 2.

Mechanism ε (Server LR, Client LR, Server momentum)

Honaker Full

18.9 (0.5, 1., 0.95)

8.2 (0.25, 1., 0.95)

3.7 (0.25, 1., 0.9)

1.7 (0.25, 0.5, 0.9)

0.8 (0.25, 0.5, 0.0)

Honaker
Online

18.9 (0.25, 1., 0.95)

8.2 (0.25, 1., 0.9)

3.7 (0.25, 0.5, 0.9)

1.7 (0.25, 1., 0.0)

0.8 (0.25, 0.5, 0.0)

Opt
Prefix
Sum

18.9 (0.5, 1., 0.95)

8.2 (0.25, 0.5, 0.95)

3.7 (0.25, 1., 0.9)

1.7 (0.25, 0.5, 0.9)

0.8 (0.5, 0.5, 0.0)

Optimal
M = B C

18.9 (1., 1., 0.9)

8.2 (0.25, 1., 0.95)

3.7 (0.25, 0.5, 0.9)

1.7 (0.25, 0.5, 0.9)

0.8 (0.5, 0.5, 0.0)

For Fig. 3, the parameter settings differed based on the mechanisms explored. Constant LR schedules
used the same settings as ε = 18.9 in Table 4. For the exploration of learning rate decay schedules,
a server learning rate of 0.5, client learning rate of 1.0, and server momentum of 0.95 were shared.
The plot Fig. 6 was generated from the same set of experiments.

J Background on Differential Privacy

In this paper we operate with the “replace with zero” variant of differential privacy [6, Defn. 2.1],
sated below for completeness purposes.

Definition J.1 (Differential privacy). Let D be the domain of data records, ⊥ 6∈ D be a special
element, and let D̂ = D ∪ {⊥} be the extended domain. A randomized algorithm A : D̂n → S is
(ε, δ)-differentially private if for any data set D ∈ D̂n and any neighbor D′ ∈ D̂n (formed from D
by replacing one record with ⊥), and for any event S ∈ S, we have

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S] + δ, and

Pr[A(D′) ∈ S] ≤ eε · Pr[A(D) ∈ S] + δ,

where the probability is over the randomness of A.

In our algorithms, we would treat ⊥ specially, and assume it corresponds to the all-zeros vector of
appropriate dimensions. This definition extends naturally to other variants like Renyi differential
privacy (RDP) [35], and zero Concentrated Differential Privacy (zCDP). For completeness purposes
we provide the definition of zCDP we primarily use in the paper.

Definition J.2 (zero concentrated differential privacy). Analogous to the definitiion of (ε, δ)-
differential privacy in Definition J.1, a randomized algorithm A is ρ-zCDP if the condition on

33

A(D) and A(D′) in Definition J.1 are replaced with the following:

1

α− 1
logEs∼A(D)

(
Pr [A(D) = s]

Pr [A(D′) = s]

)α
≤ ρα, and

1

α− 1
logEs∼A(D′)

(
Pr [A(D′) = s]

Pr [A(D) = s]

)α
≤ ρα.

34

