
Appendix

A Proof of Theorem 1

The proof of Theorem 1 generally follows the proof of Nested-GNN’s expressiveness[52]. Let Qk
v,G

be the set of nodes in G that are exactly k distance away from node v. We can have the following
definition,

Definition A.1. The edge configuration bewteen Qk
v,G and Qk+1

v,G is a list Ck
v,G = (a1,kv,G , a

2,k
v,G , ...)

where ai,kv,G denotes the number of nodes in Qk+1
v,G of which each has exactly i edges from Qk

v,G .

The proof leverages the fact that nodes in randomly sampled regular graphs are very likely to have
different edge configurations within their small neighborhood, and GDGNN directly captures this
distinction to discriminate the graphs. Formally, we have the following excerpted Lemma from [52],

Lemma 2. For two graphs G(1) = (V(1), E(1)) and G(2) = (V(2), E(2)) that are uniformly in-
dependently sampled from all n-node r-regular graphs, where 3 ≤ r <

√
2 log n, we pick any

two nodes, each from one graph, denoted by v1 and v2 respectively. Then there is at least one
i ∈ (12

logn
log(r−1−ϵ) , (

1
2 + ϵ) logn

log(r−1−ϵ)) with probability 1− o(n−1) such that Ci
v1,G(1) ̸= Ci

v2,G(2) .

Proof. To prove Theorem 1, we first assume, without loss of generality, that the hidden dimension of
GDGNN is one. We know plain message passing GNN will generate the same embeddings for every
node in the regular graph because all nodes have the same degree/subtree. Hence, we can normalize
all the node representations to a constant of one. For simplicity, we also reduce vertical geodesic
pooling function R

(V)
gd in Equation 4 to a simple sum of the representations of the geodesic nodes.

Let dmax = ⌈(12 + ϵ) logn
log(r−1−ϵ)⌉, the maximum distance in which GDGNN searches for a target

node’s neighbors. We then consider node vi and it’s dmax-hop rooted subgraph Gdmax
vi , the vertical

geodesic pooling process is essentially counting the number of geodesic nodes of each node vj in
Gvi

. And the pair-wise vertical geodesic between the vi and vj becomes,

g(V)
vi,vj = |{P (V)

vj }| ⊕ d(vi, vj) (9)

where d(vi, vj) is the distance between vi and vj , and hence vj ∈ Q
d(vi,vj)
vi,Gvi

and g
(V)
vi,vj records the

number of edges of vj that connects to nodes in Q
d(vi,vj)−1
vi,Gvi

, and its distance to vi. We also have
the node-level pooling function to be a distance sorted bin count function on the set of pair-wise
vertical geodesic representations. It first sorts the geodesic representations by their second dimension
(distance) and performs bin count on their first dimension (number of geodesic nodes) separately for
each distance. Then GDGNN produces an mapping of Gvi to its exact set of edge configurations,
Cvi = (C1

vi,Gvi
, C2

vi,Gvi
, ...).

Let G(1) = (V(1), E(1)) and G(2) = (V(2), E(2)) be two graphs uniformly independently sampled
from all n-node r-regular graphs. We consider two nodes vi ∈ V(1) and vj ∈ V(2). Because
dmax = ⌈(12 + ϵ) logn

log(r−1−ϵ)⌉, the sets of edge configurations of the rooted subgraphs, Cvi and Cvj
are

different with probability 1− o(n−1), according to Lemma 2. In such case, GDGNN also maps their
rooted subgraphs to different edge configurations, and hence the node-level geodesic representation
z
(n)
vi and z

(n)
vj generated by GN-GNN will be different with the same probability.

Consider vi and all node vj ∈ V(2), by union bound, zvi ̸∈ {zvj |vj ∈ V(2)} with a probability of
1− o(1).

B Complexity Analysis

The complexity of GDGNN differs by task. On almost all tasks, GDGNN demonstrates superiority
in efficiency. The complexity of GDGNN can be divided into two parts, the geodesic extraction
part, and the GNN part. We first note that the complexity of geodesic extraction and GNN cannot
be directly compared as their computation units are different, geodesic extraction operates on unit

15

integers while GNN operates on d-dimensional vectors that are potentially very large, and running a
geodesic extraction on a graph takes significantly less amount of time compared to running a GNN
on the same graph. Meanwhile, we can always pre-compute distance for fast geodesics extraction
during inference. Hence, we present a complexity analysis of GDGNN on the GNN part.

B.1 Graph and node level tasks

The analysis of graph and node level tasks is similar as graph representation is generated by applying
mean/max pooling on all node representations. Specifically, consider the problem where we need
to infer k nodes in a graph with |V | nodes and |E| edges. In worst-case, the complexity of a T -
layer subgraph-based GNN is O(kT |E|), because it applies a T -layer GNN on k nodes’ subgraphs,
where each subgraph contains |E| edges (the full graph). GDGNN’s worst-case complexity is
O(T |E|+ k|E|), O(T |E|) is for applying the GNN once to the full graph, and the number of nodes
in a vertical geodesic is bounded by the number of edges and the pooling takes O(k|E|). Hence,
GDGNN is more efficient than subgraph GNNs. For graphs, the comparison becomes O(|V |T |E|)
versus O(T |E| + |V ||E|) = O(|V ||E|), this shows that GDGNN helps amortize the expensive
computation cost, T versus 1, of applying a GNN.

B.2 Edge level tasks

For edge-level tasks, we consider the worst-case scenario where we try to predict k links on a
graph with |V | nodes and |E| edges. The k links do not share any common nodes. GDGNN takes
O(T |E| + k|V |) for O(T |E|) GNN on the full graph and k geodesic pooling, where the number
of nodes in a link-level geodesic is bounded by the number of nodes O(|V |) in the graph (for both
vertical and horizontal geodesics). Subgraph GNN methods take O(kT |E|) for applying T -layer
GNN onto k links’ subgraphs (worst case O(|E|) edges). NBFNet [58] shares the same complexity
because the links do not have common nodes, and the results of one GNN run can not be shared
across links as suggested by the authors of NBFNet. Thus, k runs of GNN are necessary for the
NBFNet. Then, comparing the complexities of GDGNN and subgraph GNNs, when we have fewer
query links and hence O(T |E|) > O(k|V |), the subgraph method’s complexity O(kT |E|) grows
linearly with respect to the number of queries, while GDGNN’s complexity O(T |E|) does not. When
we have more query links and O(T |E|) < O(k|V |), GDGNN’s complexity O(k|V |) is more optimal
than subgraph GNNs’ O(kT |E|) complexity.

C Transductive Knowledge Graph link prediction

For transductive KG link prediction, we follow the inductive setting as in Section 5.1. Following [4],
we rank a positive link against all negative links that have the same head (or tail) as the positive links.
We additionally compared to general knowledge graph link prediction methods that are not inductive,
including TransE [4], RotatE [35], and RGCN [32]. We report H@N and Mean Reciprocal Rank
(MRR) for the transductive setting.

Table 9: Knowledge graph transductive link prediction results.

Method FB15K-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DRUM 34.3 25.5 37.8 51.6 48.6 42.5 51.3 58.6
NeuralLP 24.0 - - 36.2 43.5 37.1 43.4 56.6
TransE 29.4 - - 46.5 22.6 - - 50.1
RotatE 33.8 24.1 37.5 55.3 47.6 42.8 49.2 57.1
RGCN 27.3 18.2 30.3 45.6 40.2 34.5 43.7 49.4
NBFNet 41.5 32.1 45.4 59.9 55.1 49.7 57.3 66.6
GDGNN-Vert 23.2 15.8 26.4 45.1 46.2 39.3 48.6 59.1
GDGNN-Hor 25.1 16.2 28.7 44.9 43.2 35.2 47.2 58.0

16

We acknowledge that GDGNN does not perform as well in the transductive setting as in the inductive
setting. However, GDGNN is still able to greatly improve the performance of RGCN on the WN18RR
dataset, and RGCN requires trainable node embeddings while GDGNN does not. We suspect that the
performance discrepancy between the homogeneous setting and the knowledge graph setting is due to
the increased number of edge types. WN18RR dataset has 11 types of relations, and FB15K237 has
237. Note that GNN methods like NBFNet[58] train a set of weights for every target relation type,
meaning that their message passing is conditioned on the relation, while GDGNN only uses one set
of weights. We notice that GDGNN is able to outperform some embedding methods on the WN18RR
dataset, while not performing as good on FB15K237, possibly due to the fact that the FB15K237
dataset contains much more relations than the WN18RR dataset. This aligns with our hypothesis. A
potential solution is to also train multiple GDGNNs that each handle one target relation type, note that
we still only need to run each relation-specific GDGNN once and keep the good amortized property
of GDGNN. We leave this to future work.

D More link prediction results

Citation datasets[33] include Cora, Citeseer, and Pubmed datasets. We follow the experimental setting
in [58] and use 85:5:10 for the train/valid/test links split. The evaluation metric is ROC-AUC (AUC)
and Average Precision (AP) scores. We compare GDGNN with popular link prediction methods
VGAE [21], SEAL[50], NBFNet[58] for the citation datasets. Note that for citation data, we do not
use the pre-trained node embeddings from the publications’ content, incorporating such information
only increases the power of GDGNN.

We use GCN as the basic GNN. We search the number of GNN layers in {2, 3, 4, 5}, and the max
search distance for geodesic, dmax, is the same as the GNN layers. We use 32 hidden dimensions for
all fully-connected layers in the model. We train 100 epochs with a batch size of 64 for the citation
datasets.

Table 10: Link prediction results (%) on Citation dataset.

Method Cora Citeseer PubMed

AUC AP AUC AP AUC AP

VGAE 91.40 92.60 90.80 92.00 94.40 94.70
SEAL 93.32 94.21 90.52 92.43 97.78 97.90
NBFNet 95.61 96.17 92.28 93.74 98.30 98.15
GDGNN-Vert 94.47 95.71 91.98 94.01 98.16 98.17
GDGNN-Hor 94.56 95.48 92.06 93.59 97.83 98.10

On the citation dataset (Table 10), GDGNN achieved very competitive results compared to the SOTA
method NBFNet, and GDGNN is more efficient than NBFNet as demonstrated in Table 3.

We also include C.elegans, NS, and PB datasets adopted by DE-GNN [25]. We follow its experiment
setup to split the edges into 8:1:1 train/test/valid splits and repeat the experiment 20 times to report
the average AUC and 95% confidence range. For these datasets, we compare with other methods that
also rely on distance encoding, including DE-GNN, PGNN[48], SEAL, and the basis GNN, GIN.

Table 11: Link prediction results compared to other distance-related methods.
Method C.elegans NS PB

GIN 75.58± 0.59 87.75± 0.56 91.11± 0.52
PGNN 78.20± 0.33 94.88± 0.77 89.72± 0.32
SEAL 88.26± 0.56 98.55± 0.32 94.18± 0.57
DE-GNN 90.05 ± 0.26 99.43 ± 0.63 94.95± 0.37

GDGNN-Vert 87.88± 0.42 98.10± 0.26 94.43± 0.39
GDGNN-Hor 89.83± 0.70 98.65± 0.48 96.14 ± 0.73

From the experiment, we can see that GDGNN achieves very competitive results compared to
distance-encoding GNN and SEAL, and outperforms PGNN[48] significantly on all datasets. We

17

suspect the key reason is that PGNN relies on relative positions to the anchors, but the anchors that
PGNN randomly chooses are not necessarily representative to all links. In contrast, the geodesic
information is directly associated with each link.

E Ablation study

GDGNN has many components, and here we present an ablation study of GDGNN to demonstrate
the effect of each component. For link prediction datasets, we consider 4 settings, plain GCN
(GCN), GCN and distance between the two target nodes of the link (GCN+Dist), GDGNN-Vertical
without the geodesic degree (GDGNN-Vert), and GDGNN-Vertical with geodesics node degree
(GDGNN-Vert-Deg). Note that the results we report in Section 5 include geodesic node degree.

Table 12: Ablation study on link prediction datasets.
Method Cora (AUC) OGBL-COLLAB (H@50) OGBL-PPA (H@100)

GCN 81.79 44.75 18.67
GCN+DIST 92.93 53.82 20.39
GDGNN-Vert 94.14 54.38 43.86
GDGNN-Vert-Deg 94.56 54.74 45.92

From the experiment results (Table 12), we can see that distance is already able to assist link prediction,
especially on sparser datasets like Cora and OGBL-COLLAB. However, on OGBL-PPA, where the
connectivity of the graph is much larger, distance does not help, whereas geodesic representation is
able to significantly improve the expressive power of basic GNNs. Also, when the graph is sparse,
it is rather unlikely for the geodesic nodes to form subgraphs, meaning that most of the nodes on
the vertical geodesic have a degree of zero, and hence geodesic degree does not improve much.
Meanwhile, in OBGL-PPA, geodesic degrees are able to increase the performance of GDGNN, which
aligns with the intuition and example we present.

For horizontal geodesics, we present results where only part of the horizontal geodesic is used.

Table 13: Partial horizontal geodesic results.
Method Cora OGBL-COLLAB

4-GDGNN-Hor 94.40 54.21
4-GDGNN-Partial 92.73 53.17
5-GDGNN-Hor 94.37 53.84
5-GDGNN-Partial 92.68 53.29

Partial represents geodesics where only the head/tail, the head/tail’s direct neighbors on the shortest
path are used to form the geodesic. N-GDGNN means the cutoff distance is N . We do not compare
with 2-3 distances because Partial and horizontal geodesic will be exactly the same in that case. We
add distance to both Partial and horizontal geodesics to make a fair comparison. We can see that
without the full horizontal geodesic, the performance on the Cora dataset indeed dropped by 1.5%.
While the difference is not as significant, we still see that horizontal geodesics outperforms Partial on
the OGBL-COLLAB dataset. This shows that while being connected within some distance is already
a good indicator of the likelihood of the link, incorporating the node structure information can still
improve the representation of the link.

For graph classification tasks, we study two simpler versions of GDGNN. We reduce the vertical
pair-wise geodesic function (Equation 4) to be a pooling function only on the embeddings of the pair
of nodes. Then, the node-level geodesic is essentially combining the node embedding and its k-hop
neighbor embedding, we refer to this as Nei. Another version is we append the pair-wise distance to
the neighbor embeddings, we refer to this as Dist. Note that vertical geodesic takes part of the direct
neighbors of a neighbor node, we also study the variant where all neighbors are used as the geodesic,
we call this FullGDNei.

18

Table 14: Ablation study on graph classification datasets.
Method MUTAG (Accuracy) PROTEINS (Accuracy) OGBG-MOLHIV (AUC)

GIN 74.0 71.2 75.5
GIN+Nei 81.2 71.9 76.2
GIN+Nei+Dist 88.1 71.8 76.0
GIN+FullGDNei+Dist 88.1 71.9 76.4
GDGNN-Vert 89.0 73.3 77.9
GDGNN-Vert-Deg 89.4 73.6 79.1

From Table 14, we can see that the neighbor embedding alone is not very effective, and we need
to assist it with pair-wise distance, an explicit form of geodesic to improve the performance. By
incorporating the geodesic representation, we are able to consistently improve over the ’Nei+Dist’
version, which aligns with Theorem 1. Geodesic degrees do not give significant improvement on the
TU dataset possibly due to its high testing variance, but we can still see a notable improvement in the
OGBG-MOLHIV dataset. For FullGDNei, we see that it does not bring much performance increase
onto GIN+Nei+Dist compared to GDGNN-Vert. This shows that FullGDNei essentially weighs in as
an extra layer of GNN which can be covered by hyperparameter search.

F Impact of different cutoff distances

A non-negligible hyperparameter in our model is the cutoff distance. In this section, we present
results on the impact of different cutoff distances.

Table 15: Performance on link and graph datasets with different cutoff distances (%).
Method Cora(L) OGBL-PPA(L) OGBG-MOLHIV(G)

1-GDGNN 82.46 21.15 75.68
2-GDGNN 91.58 43.76 78.13
3-GDGNN 93.62 45.92 79.07
4-GDGNN 94.47 44.82 78.84

(L) represents the link prediction task, and (G) represents the graph classification task. N-GDGNN
means GNN with different max-cutoff distances, we use vertical geodesics with 3-layers of base
GNN. From Table 15, we see that for link prediction tasks (Cora in particular), as the cutoff distance
increases, the performance increases, this is because more links can be connected by geodesic
extraction, and distance itself is already a good indicator of the likelihood of the link. However,
disconnected nodes are not always predicted as negative. When disconnected, the link will have zero
geodesic representation, but still have meaningful node representations from the base GNN. In
such a case, GDGNN degenerates embeddings similar to models like VGAE, which is still able to
statistically learn the probability of a link based on the node structure around the two nodes of the
link. The choice of cutoff distance is data-dependent, as we can see in the results of OGBL-PPA and
OGBG-MOLHIV, 4-GDGNN is worse than 3-GDGNN, and the actual number can be determined by
hyperparameter tuning. In general, cutoff distance resembles the max number of hops in the subgraph
extraction process.

G Limitation of Horizontal Geodesics

A

CB

Figure 5

Figure 5 shows an example where vertical geodesic is more expressive than
horizontal geodesic. The gray nodes are symmetric and hence will be assigned
the same embedding by a 1-WL GNN, the yellow nodes, because they all connect
to two gray nodes, will also be assigned the same embedding by a 1-WL GNN.
In this case, both horizontal geodesics between AB and BC are gray-yellow-gray
nodes, hence we can not differentiate the two links. Nevertheless, the vertical
geodesic of AB is one yellow node, while the vertical geodesic of BC is three

19

yellow nodes, and the two links will have different representations after summarizing the vertical
geodesic information.

20

	Proof of Theorem 1
	Complexity Analysis
	Graph and node level tasks
	Edge level tasks

	Transductive Knowledge Graph link prediction
	More link prediction results
	Ablation study
	Impact of different cutoff distances
	Limitation of Horizontal Geodesics

