
Appendix

In this appendix, we first introduce the datasets and evaluation metrics used in the experiments in
Section A. Then, we provide extra experimental results in Section B. In Section C, we present details
of network design, training scheme, and hyper-parameter tuning.

A Datasets and Evaluation Metrics

We conduct experiments on 11 popular time series datasets: (1) Electricity Transformer Tempera-
ture [42] (ETTh(1,2),ETTm1) 3consists of 2 year electric power data collected from two separated
counties of China. Each data point includes an "oil temperature" value and 6 power load features.
(2) Traffic4 contains the hourly data describing the road occupancy rates (ranging from 0 to 1) that
are recorded by the sensors on San Francisco Bay area freeways from 2015 to 2016 (48 months
in total). (3) Solar-Energy5 records the solar power production from 137 PV plants in Alabama
State, which are sampled every 10 minutes in 2016. (4) Electricity6 includes the hourly electricity
consumption (kWh) records of 321 clients from 2012 to 2014. (5) Exchange-Rate7 collects the daily
exchange rates of 8 foreign countries from 1990 to 2016. (6) PeMS8 contains four public traffic
network datasets (PEMS03, PEMS04, PEMS07 and PEMS08) which are respectively constructed
from Caltrans Performance Measurement System (PeMS) of four districts in California. The data is
aggregated into 5-minutes windows, resulting in 12 points per hour and 288 points per day.

A.1 Electricity Transformer Temperature (ETT)

For data pre-processing, we perform zero-mean normalization, i.e., X
′
= (X −mean(X))/std(X),

where mean(X) and std(X) are the mean and the standard deviation of historical time series,
respectively. We use Mean Absolute Errors (MAE) [17] and Mean Squared Errors (MSE) [26] for
model comparison. Besides, the train, validation and test sets contain 12, 4 and 4 months data,
respectively.

MAE =
1

τ

τ∑
i=0

|x̂i − xi| (5)

MSE =
1

τ

τ∑
i=0

(x̂i − xi)
2 (6)

where x̂i is the model’s prediction, and xi is the ground-truth. τ is the length of the prediction
horizon.

A.2 PeMS

Following [17], the data is pre-processed using zero-mean normalization and we use Root Mean
Squared Errors (RMSE) and Mean Absolute Percentage Errors (MAPE) as evaluation metrics on this
dataset.

RMSE =

√√√√ 1

τ

τ∑
i=0

(x̂i − xi)2, (7)

MAPE =

√√√√ 1

τ

τ∑
i=0

|(x̂i − xi)/xi|. (8)

A.3 Traffic, Solar-Energy, Electricity and Exchange-Rate

In our experiments, the length of the look-back window T for these datasets is 168, and we trained
independent models for different length of future horizon (i.e., τ = 3, 6, 12, 24). We use Root Relative

3https://github.com/zhouhaoyi/ETDataset
4http://pems.dot.ca.gov
5http://www.nrel.gov/grid/solar-power-data.html
6https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
7https://github.com/laiguokun/multivariate-time-series-data
8https://pems.dot.ca.gov
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Squared Error (RSE) and Empirical Correlation Coefficient (CORR) to evaluate the performance of
the TSF models on these datasets following [19], which are calculated as follows:

RSE =

√∑τ
i=0(x̂i − xi)2√∑τ

i=0(xi − mean(X))2
, (9)

CORR =
1

d

d∑
j=0

∑τ
i=0(xi,j − mean(Xj))(x̂i,j − mean(X̂j))∑τ

i=0(xi,j − mean(Xj))2(x̂i,j − mean(X̂j))2
, (10)

where X and X̂ are the ground-truth and model’s prediction, respectively. d is the number of variates.

B Extra Experimental Results

In this section, we first add error bars on different forecasting steps T, and also conduct empirical
studies on ETTh1 and PEMS datasets to show the impact of different parameter and operator
combinations in SCI-Block.

B.1 Error Bars Evaluation

Since deep models for time series forecasting may be influenced by different random initialization,
we report our results with 5 runs on the ETTh1 dataset. From Table 8, we show the standard deviation
(Std.) is basically 2% to 3% of the mean values, indicating SCINet is robust towards different
initialization.

Table 8: The error bars of SCINet with 5 runs on the ETTh1 dataset.

T Metrics Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Mean Std.
24 MSE 0.3346 0.3381 0.3541 0.3370 0.3370 0.3402 0.0079

MAE 0.3699 0.3742 0.3826 0.3719 0.3722 0.3742 0.0050
48 MSE 0.4148 0.4259 0.3899 0.3830 0.3856 0.3998 0.0193

MAE 0.4370 0.4520 0.4139 0.4108 0.4173 0.4262 0.0177
168 MSE 0.4490 0.5038 0.4433 0.4493 0.4432 0.4577 0.0259

MAE 0.4526 0.4985 0.4466 0.4501 0.4476 0.4591 0.0222
336 MSE 0.5288 0.5935 0.5230 0.5308 0.5373 0.5427 0.0289

MAE 0.5131 0.5486 0.5114 0.5150 0.5166 0.5209 0.0156
720 MSE 0.5607 0.5923 0.5855 0.5582 0.5678 0.5729 0.0152

MAE 0.5469 0.5653 0.5630 0.5418 0.5502 0.5534 0.0103

B.2 Evaluation on the Impact of K and L

We conduct experiments on ETTh1 dataset (with the multivariate experimental setting) to evaluate
the impact of K (number of stacks) and L (number of levels), under various look-back window sizes
T . The prediction horizon is fixed to be 24.

As can be observed from Table 9, when fixing K = 1, larger L leads to better prediction accuracy
for the cases with larger T (T = 128 or 192). This is because we could further extract essential
information from coarser temporal resolutions with deeper levels in the SCINet when T is large.
As for the number of stacks K, when fixing L = 3, if T is small (e.g. T =24 or 48), we find that
increasing K would improve prediction accuracy. This is because, under such circumstances, the
information extracted from a single SCINet is insufficient. By stacking more SCINets, we effectively
increase the representation learning capability of the model, which facilitates extracting more robust
temporal relations for the forecasting task. However, when T is large (e.g., 192), a shallow stack can
already well capture the temporal dependencies for the time series. Under such circumstances, using
deeper stacks may suffer from overfitting issues with the increase of parameters, which degrades the
performance in the inference stage.

From Table 9, we can observe a clear trade-off between L and K. Moreover, the performance
variation under different T also indicates the importance of the look-back window selection for
forecasting tasks. While T is typically pre-determined based on domain knowledge about the time
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Table 9: The impact of L and K on MSE.

Number of
Levels & Stacks

Horizon 24
T 24 48 96 128 192

Level L
(K =1)

2 0.411 0.348 0.347 0.334 0.384
3 0.405 0.346 0.316 0.418 0.330
4 - 0.360 0.340 0.331 0.325
5 - - 0.354 0.323 0.356

Stack K
(L = 3)

1 0.405 0.346 0.316 0.418 0.330
2 0.423 0.344 0.344 0.339 0.375
3 0.374 0.341 0.345 0.353 0.363
4 0.390 0.342 0.335 0.356 0.388

- Dash denotes the input cannot be further splitted.

series data, based on our empirical study, L ≤ 5 and K ≤ 3 are usually sufficient and tuning these
hyperparameters does not incur much effort.

B.3 Empirical Study on Operator Selection

In interactive-learning equation,

F
′
odd = Fs

odd ± ρ(Fs
even), F

′
even = Fs

even ± η(Fs
odd). (11)

the operators can be either "addition" or "subtraction". Although the model can learn the operation
adaptively during training, the parameter initialization would affect the final performance. As shown
in the following table the impact of operator settings is minor.

Table 10: The impact of different operators

Operators PEMS03 PEMS04 PEMS07 PEMS08
MAE

+, + 15.08 19.27 21.69 15.72
-, - 15.06 19.21 21.63 15.78
+, - 15.09 19.31 21.77 15.84
-, + 15.30 19.32 21.72 15.79

C Reproducibility

Our code is implemented with PyTorch. All the experiments are conducted on an Nvidia Tesla V100
SXM2 GPU (32GB memory), which is sufficient for all our experiments.

Structure of the network modules ϕ, ρ, ψ, and η in SCI-Block: As shown in Fig. 5, ϕ, ρ, ψ, and η
use the same network architecture. First, the replication padding is used to keep the border shrunk
caused by the convolution operation. Then, a 1d convolutional layer with kernel size k is applied to
extend the input channel C to h*C and followed with LeakyRelu and Dropout. h means a scale of the
hidden size. Next, the second 1d convolutional layer with kernel size k is to recover the channel h*C
to the input channel C. The stride of all the convolutions is 1. We use a LeakyRelu activation after
the first convolutional layer because of its sparsity properties and a reduced likelihood of vanishing
gradient. We apply a Tanh activation after the second convolutional layer since it can keep both
positive and negative features into [-1, 1].

Loss Function

To enhance the performance in single-step (short-term time series forecasting Sec. 4.2) forecasting,
we revise the loss function of the last SCINet in the stacked SCINet with K(K ≥ 1). The loss
function contains two parts:

Lk =
1

τ

τ∑
i=0

∥∥x̂k
i − xi

∥∥ , k ̸= K. (12)
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ReplicationPad1d

Conv1d (in_channels = C, out_channels = h*C, Kernel =k)

LeakyRelu (negative_slop = 0.01)

Dropout (d)

Tanh

Conv1d (in_channels =h*C, out_channels = C, Kernel =k)

Input : X (C, L)

Output: 푋’(C, L)

Figure 5: The structure of ϕ, ρ, ψ, and η.

For the last stackK, we introduce a balancing parameter λ ∈ (0, 1) for the value of the last time-step9:

LK =
1

τ − 1

τ−1∑
i=0

∥∥x̂K
i − xi

∥∥+ λ
∥∥x̂K

τ − xτ

∥∥ . (13)

Therefore, the total loss of the stacked SCINet can be written as:

L =

K−1∑
k=1

Lk + LK . (14)

Training details: For all datasets, we fix the random seed to be 4321, and train the model for 150
epochs at most. The reported results on the test set are based on the model that achieves the best
performance on the validation set.

Hyper-parameter tuning: We conduct a grid search over all the essential hyper-parameters on the
held-out validation set of the datasets. The detailed hyper-parameter configurations of ETT are shown
in Table 11 10. Besides, the parameters of the four datasets in PeMS are presented in Table13. The
Traffic, Solar-Energy, Electricity and Exchange-rate are shown in Table 12. Notably, we only apply
the weighted loss to the Solar and Exchange-rate data since they show less auto-correlation [19],
which indicates the temporal correlation of the distant time-stamp cannot be well modelled by a
general L1 loss. Moreover, to build a non-causal TCN11 in the paper, we only need to remove the
chomps in the code and make the padding equal to the dilation.

9This is slightly different from other practice for single-step forecasting [19], because we choose to use all
the available values in the prediction window as supervision signal.

10The results on ETTh2 and ETTm1 datasets can be referred to: https://github.com/cure-lab/SCINet
11https://github.com/locuslab/TCN/issues/45
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Table 11: The hyperparameters in ETT datasets (Multivariate)
Model configurations ETTh1 ETTh2 ETTm1

Hyperparameter

Horizon 24 48 168 336 720 24 48 168 336 720 24 48 96 288 672
Look-back window 48 96 336 336 736 48 96 336 336 736 48 96 384 672 672

Batch size 8 16 32 512 256 16 4 16 128 128 32 16 32 32 32
Learning rate 3e-3 9e-3 5e-4 1e-4 5e-5 7e-3 7e-3 5e-5 5e-5 1e-5 5e-3 1e-3 5e-5 1e-5 1e-5

SCI Block
h 4 4 4 1 1 8 4 0.5 1 4 4 4 0.5 4 4
k 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Dropout 0.5 0.25 0.5 0.5 0.5 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
SCINet L (level) 3 3 3 4 5 3 4 4 4 5 3 4 4 5 5

Stacked SCINet K (stack) 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2

Table 12: The hyperparameters in Traffic, Solar-energy, Electricity and Exchange-rate datasets
Model configurations Solar Electricity Traffic Exc-Rate

Hyperparameter

Horizon 3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24
Look-back window 160 168

Batch size 256 256 1024 256 32 16 4
Learning rate 1e-4 9e-3 5e-4 5e-3 7e-3

SCI Block
h 1 0.5 2 1 8 1 2 0.5 2 0.125
k 5 5 5 5

Dropout 0.25 0 0.5 0.25 0.25 0.5 0.5
SCINet L (level) 4 3 3 2 3

Stacked SCINet K (stack) 2 1 2 2 1 2 2 1
Loss weight (λ) 0.5 × × 0.5

Table 13: The hyperparameters in PeMS datasets
Model configurations PEMS03 PEMS04 PEMS07 PEMS08

Hyperparameter

Horizon 12
Look-back window 12

Batch size 8
Learning rate 1e-3

SCI Block
h 0.0625 0.0625 0.03125 1
k 5

Dropout 0.25 0 0.25 0.5
SCINet L (level) 2

Stacked SCINet K (stack) 1
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