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Abstract

We propose a model for online graph problems where algorithms are given access
to an oracle that predicts (e.g., based on modeling assumptions or on past data) the
degrees of nodes in the graph. Within this model, we study the classic problem
of online bipartite matching, and a natural greedy matching algorithm called
MinPredictedDegree, which uses predictions of the degrees of offline nodes. For
the bipartite version of a stochastic graph model due to Chung, Lu, and Vu where the
expected values of the offline degrees are known and used as predictions, we show
that MinPredictedDegree stochastically dominates any other online algorithm, i.e.,
it is optimal for graphs drawn from this model. Since the “symmetric” version of
the model, where all online nodes are identical, is a special case of the well-studied
“known i.i.d. model”, it follows that the competitive ratio of MinPredictedDegree
on such inputs is at least 0.7299. For the special case of graphs with power
law degree distributions, we show that MinPredictedDegree frequently produces
matchings almost as large as the true maximum matching on such graphs. We
complement these results with an extensive empirical evaluation showing that
MinPredictedDegree compares favorably to state-of-the-art online algorithms for
online matching.

1 Introduction

Online algorithms are algorithms that process their inputs “on the fly”, making irrevocable decisions
based only on the data seen so far. Since they do not make any assumptions about the future, they are
versatile and work even for adversarial inputs. Unfortunately, by focusing on the worst case, their
performance in “typical” cases can be sub-optimal. As a result there has been a large body of research
studying various relaxations of the worst-case model, where some extra information about the inputs,
or the distribution they are selected from, is available [1].

Motivated by the developments in machine learning, over the last few years, many papers have
studied online algorithms with predictions [47]. Such algorithms are equipped with a predictor that,
when invoked, provides an (imperfect) prediction of some features of the future part of the input,
which is then used by the algorithm to improve its performance. The specific information provided
by such predictors is problem-dependent. For graph problems studied in this paper, predictions could
include: the list of edges incident to a given vertex [33], the weight of an edge adjacent to a given
node in an optimal solution [4], or vertex weights that guide a proportional allocation scheme [36].

In this paper we focus on online graph problems, and propose a model where an algorithm is equipped
with a “degree predictor”, i.e., an oracle that, given any vertex, predicts the degree of that vertex
in the full graph (containing yet-unseen edges). This predictor has multiple appealing features.
First it is simple, natural, and easy to interpret. Second, it is useful: vertex degree information is
employed in many heuristic and approximation algorithms for graph optimization, for problems such
as maximum independent set [24] or maximum matching [53]. Third (as demonstrated in Section 7)
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such predictors can be easily obtained. Finally, degree prediction is closely related to the problem
of estimating the frequencies of elements in a data set1, and frequency predictors have been already
shown to improve the performance of algorithms for multiple data analysis problems [25, 28, 19, 17].

The specific graph problem studied in this paper is online bipartite matching, where we are given
a bipartite graph G = (U ∪ V,E), and the goal is to find a maximum matching in G. In the online
setting, the set U is known beforehand, while the vertices in V arrive online one by one. When a
new vertex v arrives, the edges in G adjacent to v are provided as well. Online maximum bipartite
matching is a classic question studied in the online algorithms literature, with many applications [41].
It is known that a randomized online greedy algorithm, called Ranking, computes a matching of size
at least 1− 1/e ≈ 0.632 times the optimum [31], and that this bound is tight in the worst-case. A
large body of work studied various relaxations of the problem, obtained by assuming that vertex
arrivals are random [21] or that the graph itself is randomly generated from a given “known i.i.d.
model” [20]. In this paper we extend the basic online model by assuming access to a predictor that,
given any “offline” vertex u ∈ U , returns an estimate of its degree. (Note that the degree of any
vertex in V is known immediately upon its arrival.)

Our results We study the following simple greedy algorithm for bipartite matching: upon the
arrival of a vertex v, if the set of neighbors N(v) of v in G contains any yet-unmatched vertex,
the algorithm selects u ∈ N(v) of minimum predicted degree in G and adds the edge (u, v) to the
matching. This algorithm, which we call MinPredictedDegree (MPD), is essentially identical2 to
the algorithm proposed in [10] which in turn was inspired by the offline matching algorithm called
MinGreedy [53]. The intuition is that vertices with higher degree will have more chances to be
matched in the future.

Our main contributions are as follows. First, following in a long line of work on the average-
case analysis of matching algorithms initiated by [30], we analyze MPD under a natural random
bipartite graph model we refer to as CLV-B, a bipartite version of the Chung-Lu-Vu random graph
model [12]. A CLV-B random graph is parameterized by n = |U |, m = |V |, and two weight vectors
p = {pi}ni=1 ∈ [0, 1]n and q = {qi}mi=1 ∈ [0, 1]m. For any ui ∈ U and vj ∈ V , the edge {ui, vj}
appears in the graph with probability piqj and these events are mutually independent. This model
corresponds to the setting where consumers pick their edges with probabilities proportional to the
vector p which describes the relative distribution over the producers.

Many natural families of random graphs can be described in the CLV-B model. Of particular interest
is the case when q = (1, . . . , 1), corresponding to the consumers picking their edges i.i.d.; we will
refer to this case as the symmetric CLV-B model. The symmetric version can be viewed as a special
case of the well-studied known i.i.d. model of [20]. If we further let p = (p, . . . , p), then the CLV-B
graph is an Erdős-Rényi random bipartite graph with edge probability p.

Theoretical Results For the CLV-B model and the MPD algorithm which uses the expected degrees
as predictions, we make the following theoretical contributions:

• We show that MPD stochastically dominates any other online algorithm, i.e., it is optimal for
graphs drawn from the CLV-B model (Section 5). Specifically, we show that for any degree
distribution, any algorithm A and any integer t, the probability that A produces matching
of size at least t is upper bounded by the analogous probability for MPD. Since symmetric
CLV-B is a special case of the known i.i.d. model, it follows that the competitive ratio of
MPD for this model is at least equal to the best competitive ratio of any algorithm that works
for the known i.i.d. model. By the result of [11], this ratio is at least 0.7299.

• We analyze MPD on symmetric CLV-B model with power law degree distribution (Section 6).
Our theoretical predictions demonstrate that the competitive ratio achieved by our algorithm
on such graphs is very high. In particular, for several different power law distributions, it
exceeds 0.99.

• We also analyze MPD on Erdős-Rényi bipartite random graphs where all edges appear with
the same probability (Appendix K). In particular, the competitive ratio of the algorithm on

1The degree of a node is simply the number of times the node appears in the union of all edges.
2The main differences are syntactic: the algorithm of [10] computes the degrees based on the given “type

graph” (see Section 2), while in this paper we allow arbitrary predictors.
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such graphs is at least 0.831. Since in this case all expected degrees are equal, the prediction
oracle is of no help. Thus, we conjecture that this is the worst distribution for MPD among
all distributions in the CLV-B model class.

• Finally, we observe that the competitive ratio of MPD is 1/2 for worst case graphs, and
that this bound is tight. In addition, we show that the worst-case competitive ratio of
any algorithm with access to the offline degrees is at most 1 − 1/e, implying that degree
predictions do not help in the worst-case though they prove to be useful in the random model
as well as in practice. See Appendix E for details.

Experiments We complement our theoretical studies with an extensive empirical evaluation of
MPD for multiple random graph models and real graph benchmarks in Section 7. Our experiments
show that, on most benchmarks, MPD has the best performance among about a dozen state-of-the-art
online algorithms, even when compared to algorithms that use much more information about the
input. These experimental results demonstrate that MPD performs well beyond the average-case
instances we study theoretically.

Prediction Error For our theoretical results on the CLV-B graphs, MPD is given only the expected
(as opposed to the actual) degrees. Although this models the uncertainty in the input, it is natural to
ask how MPD performs when even the expected degrees are mispredicted. To this end, in Appendix D,
we suppose that the offline nodes are prioritized in an arbitrary order π′ which may be different from
the order π obtained by sorting the nodes according to their expected degrees. Letting ∆ be the
minimum number of offline nodes that needs to be deleted such that π and π′ induce the same order
on the remaining nodes, we prove that using a noisy degree predictor which induces π′ instead of
π can shrink the size of the matching produced by MPD by at most ∆. We note that the number of
mispredicted nodes is an upper bound on ∆, but in general ∆ could be much smaller.

Importantly, we also note that the empirical performance of MPD shows its resilience to prediction
error. Our experiments on real graphs use predictors which are noisy and which degrade over time
but still find large matchings. Furthermore, on synthetic Zipfian data, we experiment with artifically
adding noise and show a gradual degradation of MPD’s performance as error increases.

2 Preliminaries

CLV-B model CLV-B is the bipartite version of the Chung-Lu-Vu model used in prior work [12, 42].
Given vectors p = {pi}ni=1 and q = {qj}mj=1, the edge {ui, vj} appears in the graph independently
with probability piqj . From the vectors p and q, we obtain the vector of offline expected degrees
d = {di}ni=1 = {pi · ‖q‖1}ni=1. For our theoretical results within this model, our algorithm
MinPredictedDegree uses the degree predictor which returns the expected degree for each offline
node: σ(ui) = di (see Appendix D for extension to noisy predictors). The particular case of
symmetric CLV-B where q = (1, . . . , 1) corresponds to the case where consumers (online) pick
their edges i.i.d. over producers (offline) and MPD has knowledge of the average preferences over
producers.

Known i.i.d. model In the known i.i.d. model of [20], algorithms are given access to a type graph
G = (U ∪V,E) and a distribution P : V → [0, 1]. The nodes in V and their incident edges represent
“types” of online nodes. An input instance Ĝ = (U ∪ V̂ , Ê) is formed by picking m online nodes
i.i.d. from V according to the probabilities described by P . Note that the symmetric CLV-B model
defined earlier is a special case of this model. In our experiments, the degree predictions are given by
the expected degrees of the offline nodes.

3 Related Work

Online bipartite matching and its generalizations have been investigated extensively. The survey [41]
and the recent paper [9] provide excellent overviews of this area. The state of the art competitive
ratios are 1− 1/e ≈ 0.632 in the worst case [31] and ≈ 0.7299 for the known i.i.d. model [11]. See
[9] for an extensive empirical study of the existing algorithms. Other algorithms examined in the
experimental section include [20, 5, 40, 26, 18, 10].
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Algorithm 1 MinPredictedDegree

Input: Offline nodes U and degree predictor σ : U → R≥0

Output: Matching M
Initialize M ← ∅.
while online node v ∈ V arrives do
N(v)← unmatched neighbors of v
if |N(v)| > 0 then
u∗ ← arg minu∈N(v) σ(u) (ties broken arbitrarily)
M ←M ∪ {(u∗, v)}

end if
end while

More generally, there has been lots of interest in online algorithms with predictions over the last
few years, for problems like caching [39, 50, 55, 29], ski-rental and its generalizations [49, 22, 2, 3],
scheduling [45, 35] matching [33, 4, 36] and learning [14, 7]. Other areas impacted by learning-based
algorithms include combinatorial optimization [13, 6, 15], similarity search [52, 56, 27, 54, 16], data
structures [32, 44] and streaming/sampling algorithms [25, 28, 19]. See [47] for an excellent survey
of this area.

4 Algorithm

Online Bipartite Matching The online bipartite matching problem is defined as follows. Given a
bipartite graphG = (U ∪V,E), we call U the “offline” side and V the “online” side of the bipartition.
Let n = |U | and m = |V |. The nodes in U are known beforehand and the nodes in V arrive one at a
time, along with their incident edges. An online bipartite matching algorithm maintains a matching
throughout the process, with the goal of maximizing the size of the matching. As each node v ∈ V
arrives, the algorithm can pick one of its neighboring edges to add to the matching.

MinPredictedDegree In addition to knowing the offline nodes U beforehand, MinPredictedDegree
(MPD) is given a degree predictor σ : U → R≥0. In practice, this predictor could be inferred from
additional knowledge about the graph or from past data. When a node v ∈ V arrives, MPD (see
Algorithm 1) uses this predictor to greedily select the minimum predicted degree neighbor u∗ of v
that is not already covered in the matching and then adds the edge {u∗, v} to the matching. If no
such valid neighbor exists, MPD does nothing with v. Intuitively, low degree offline nodes should be
matched as early as possible as they only appear a few times while we will have many chances to
match high degree offline nodes.

The MPD algorithm has similar structure to the worst-case optimal Ranking algorithm [31] which
assigns a random cost to each offline node and at each step greedily matches with the lowest cost
offline neighbor. Specifically, if the degree predictor is random, MPD and Ranking are equivalent.
As we show in the later sections, if the predictor is “good enough”, MPD often performs much better
than Ranking, both in theory and in practice.

5 Optimality of MPD on CLV-B graphs

In this section we show that the size of the matching found by the the MPD algorithm stochastically
dominates the size of the matching found by any other algorithm. We start by providing some
preliminaries for the analysis.

Preliminaries For p ∈ [0, 1]n and q ∈ [0, 1]m, let Ip,q denote an instance of a CLV-B graph with
n = |U | offline nodes, m = |V | online nodes, and weight vectors p and q, such that the probability
that an edge (ui, vj) exists is equal to piqj for any i ∈ [n], j ∈ [m]. Assume with no loss of generality
that p is ordered, p1 ≤ p2 ≤ . . . ≤ pn. Note that the expected degree of the offline node ui is pi‖q‖1,
i.e., it is proportional to the weight pi.

In the online setting, the nodes of V arrive sequentially in the order v1, . . . , vm with the random
neighborhood of vj ∈ V being revealed at the arrival of vj . When vj arrives, an online bipartite
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algorithm A can match vj to any of its unmatched neighbors in U but cannot change its decision later.
For any online bipartite matching algorithm A, let A(Ip,q) denote the size of the matching attained
by A on the instance Ip,q. Let A0 be the MinPredictedDegree algorithm which matches a node vj
with neighborhood S to an unmatched node ui ∈ S such that pi minimal, i.e. to an available node in
S with minimal expected degree (ties broken arbitrarily but consistently, e.g. by sorted order of the
offline node id’s). Let p(A,S) be the resulting set of weights after algorithm A (potentially) chooses
a neighbor in S to match with.

Consider two ordered weight vectors p, p′ both of length n. We say that p′ dominates p, equivalently
p � p′, if pi ≤ p′i for all i ∈ [n]. We are now ready to state our main result on the optimality of MPD.

Theorem 5.1. Let p ∈ [0, 1]n and q ∈ [0, 1]m. Let A be any online algorithm and let t ≥ 0. Then,

P(A(Ip,q) ≥ t) ≤ P(A0(Ip,q) ≥ t).

To prove the theorem, we will need two technical Lemmas. Informally, Lemma 5.2 states that for any
S 6= ∅, it is an advantage for A0 if the neighborhood of the first arriving node is S rather than the
empty set. Lemma 5.3 (the proof of which is the main technical challenge) states that if p � p′, then
A0(Ip′,q) stochastically dominates A0(Ip,q). Intuitively, Theorem 5.1 then follows from Lemma 5.3
by inducting on the number of online nodes m. For any algorithm A and non-empty subset S ⊆ [n],
if A matches v1 to a node in the neighborhood S, then p(A,S) � p(A0, S), and we can apply
Lemma 5.3 together with the induction hypothesis with m− 1 online nodes. We need Lemma 5.2 to
handle the issue that A may not to match v1 even in the case that S is non-empty. The proofs of the
two lemmas and of Theorem 5.1 are postponed to Appendices A, B and C.

Lemma 5.2. Let p ∈ [0, 1]n and q ∈ [0, 1]m be weight vectors. Let p∗ ∈ [0, 1]n−1 be obtained from
p by removing its i’th entry for some i ∈ [n]. For any t ≥ 0,

P(A0(Ip,q) ≥ t) ≤ P(A0(Ip∗,q) ≥ t− 1).

Lemma 5.3. Let p, p′ ∈ [0, 1]n, be ordered weight vectors and q ∈ [0, 1]m. Suppose that p � p′.
For any t ≥ 0,

P(A0(Ip,q) ≥ t) ≤ P(A0(Ip′,q) ≥ t).

While optimally only holds when the predicted degrees are the expected degrees (or at least induce
the same ordering over the offline nodes), the performance of MPD cannot be much worse if the
predictions are slightly off. Formally, for an arbitrary degree predictor σ, let p[σ] be the array of CLV-
B offline weights ordered by σ and let LIS(p[σ]) be the size of the longest increasing subsequence
in this array. We show (via a more general result) in Appendix D that MPD will match at most
n− LIS(p[σ]) fewer nodes than when given the expected degrees as predictions.

6 Competitive ratio of MPD on symmetric CLV-B random graphs

Though we know that MPD is optimal within the CLV-B model, this result does not give explicit
competitive ratios for MPD. In this section we analyze MPD under the symmetric CLV-B model,
and derive a set of equations that give a lower bound on MPD’s competitive ratio. To recap, the
symmetric model is parameterized by n = |U |, m = |V |, and a vector d = {di}ni=1 corresponding
to the expected degrees of the offline nodes. Formally, for any ui ∈ U and vj ∈ V , the edge {ui, vj}
appears in the graph with probability di/m.

As in the previous section, we analyze MPD when the degree predictions are given by the expected
degrees d. Our main results within this model are a set of equations that describe the size of the
matching produced by MPD as well as the size of the maximum matching.

• Given a set of expected degrees d, Equation 4 models the behavior of MPD on a symmetric
CLV-B(d) graph. We extend these results to the asymptotic case in Appendix J, giving the expected
matching size as n,m→∞ for a given distribution of expected degrees.

• Given a set of expected degrees d,in Appendix I, we give an upper bound on the expected size of the
maximum matching on a symmetric CLV-B(d) graph, and in Appendix J, we give the asymptotic
equivalent. Empirically, we find this upper bound to be close to the maximum matching size when
d follows a power law distribution.
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• Using these equations, we show that in expectation MPD returns matchings almost as large as the
maximum when the expected degrees of the offline nodes follow a power law distribution (see
Table 1 and Figure 6). For both MPD and the maximum matching, we show that the matching
sizes are concentrated about their expectations (Appendix L and M), implying that on these graphs,
MPD achieves a large competitive ratio.

6.1 Competitive ratios on power law graphs

CUTOFF λ α = 0.5 α = 1 α = 1.5 α = 2

10 0.967 0.948 0.934 0.928
100 0.998 0.986 0.958 0.937
1000 1.000 0.995 0.966 0.940
10000 1.000 0.997 0.969 0.940
100000 1.000 0.998 0.970 0.940

Table 1: Lower bound on the competitive ratio of MPD on symmetric CLV-B graphs with offline
expected degrees following a power law with exponential cutoff distribution as n,m → ∞. The
fraction of offline nodes with expected degree d is proportional to d−αe−d/λ for d = {1, 2, ...}.

In Table 1, we show the competitive ratio of MPD on symmetric CLV-B graphs with expected offline
degrees following a power law with exponential cutoff distribution [9, 46] and with n,m→∞. For
d = {1, 2, ...}, the fraction of offline nodes with expected degree d is proportional to d−αe−d/λ for
exponent α and cutoff λ. Note that in the asymptotic case, as the sizes of MPD’s matching and
the maximum matching are concentrated about their expectations (Theorems L.1, M.1), the ratio
of expectations is equivalent to the competitive ratio (expectation of ratio). When the exponent is
small or the cutoff is large, MPD achieves a better competitive ratio, with the ratio exceeding 0.99
when both occur. When α = 2, while MPD still achieves a competitive ratio of up to 0.94, the
competitive ratio is not as affected by a larger cutoff as with smaller exponents (the power law factor
is already significantly limiting the fraction of offline nodes with large expected degree). The analysis
we develop is general and can be used to evaluate MPD on symmetric CLV-B graphs with different
parameters than those we have considered.

6.2 Differential equation analysis of MPD

Let Y td be the number of offline nodes with expected degree d who are unmatched by MPD after
seeing the tth online node. Within this random graph model, {Y td }mt=0 form a Markov chain with the
following expected evolution:

E[Y t+1
d − Y td ] =−

(
1− (1− d/m)

Y td
) ∏
d′<d

(1− d′/m)
Y t
d′ . (1)

The first term corresponds to the probability that at least one unmatched offline node with expected
degree d is incident on the (t+ 1)st online node while the second term corresponds to the probability
that this online node has no neighboring unmatched offline nodes with smaller expected degree
(which would be prioritized).

Let kd = − log(1−d/m). To simplify the analysis of MPD, it will be helpful to consider the random
variables Ztd = −kd ∗ Y td where

E[Zt+1
d − Ztd] = kd

(
1− eZ

t
d

) ∏
d′<d

eZ
t
d′ . (2)

Following the work of Kurtz and many subsequent researchers [34, 57, 43, 38, 48], we show that the
behavior of MPD as described by these Markov chains is well approximated by the trajectory of the
following system of differential equations for all unique expected degrees d in d:

dzd(t)

dt
= kd

(
1− ezd(t)

) ∏
d′<d

ezd′ (t). (3)
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These functions zd(t) represent continuous-time approximations of the Markov chains with their
derivatives corresponding to expected change from Equation 2. In Appendix G, we give the solution
to these differential equations. Relying on past work [38], we give the following theorem (see
Appendix H for proof).
Theorem 6.1. Let G be a symmetric CLV-B random graph with unique expected offline degrees
{δi}`i=1. Let fd = λd · n be the number of offline nodes with expected degree d. Then, the expected
(over the randomness in G) size of the matching formed by MPD approaches∑̀

i=1

fδi + zδi(m)/k (4)

as n = m approach infinity, where zδi(t) for i ∈ {1, . . . , `} form the solution to the system of
differential equations in Equation 3.

The solution to the system of differential equations gives us a closed form continuous-time approxi-
mation for expected performance of MPD in terms of d. In particular, in the asymptotic case, the
equations give the exact expected performance and in the non-asymptotic case give an approximation
on the number of unmatched offline nodes (and thus the matching size).

7 Experiments

In this section, we evaluate the empirical performance of MPD on real and synthetic data. For each
dataset, we report the empirical competitive ratio of MPD and a variety of baselines. In each case, the
empirical competitive ratio is the average, over 100 trials, of the ratios of the sizes of the matchings
outputted by a given algorithm and the sizes of the maximum matching. In addition to the average
ratio, we report one standard deviation of the ratio across the trials.

Datasets We evaluate MPD on the following datasets.

• Oregon: 9 graphs3 sampled over 3 months representing a communication network of internet
routers from the Stanford SNAP Repository [37]. Each graph has ∼ 10k nodes on each side of the
bipartition and ∼ 40k edges. For MPD, the offline degree predictor σ : U → R is based on the
first graph: if an offline node u (i.e. a specific router) appeared in the first graph, σ(u) is the degree
of u in that graph. If an offline node u did not appear in the first graph, σ(u) = 1. For each trial,
the order of arrival of the online nodes is randomized.

• CAIDA: 122 graphs3 sampled approximately weekly over 4 years representing a communication
network of internet routers from the Stanford SNAP Repository [37]. Each graph has ∼ 20k
nodes on each side of the bipartition and ∼ 100k edges. The degree predictor is the same as for
the Oregon dataset (for each year, the first graph of the year is used to form the predictor). As
seen in Figure 8 (see Appendix N), the degree distribution of the graphs for both the Oregon and
Caida datasets are long-tailed and the error of the first graph predictor increases over time as the
underlying graph evolves. For each trial, the order of arrival of the online nodes is randomized.

• Symmetric CLV-B random graph: We consider symmetric CLV-B model where the expected
offline degrees are distributed according to Zipf’s Law, a popular power law distribution where
di = C · i−α [46]. In our experiments, we set size n = m = 1000, set C = m/2, and vary the
exponent α.

• Known i.i.d.: Finally, we compare MPD to algorithms for the known i.i.d. model, copying the
methodology of Borodin et al. [9] for synthetic power law graphs (Molloy Reed and Preferential
Attachment) and real world graphs. In the Molloy Reed experiments, the type graph is sample from
a family of random graphs with degrees distributed according to a power law with exponential
cutoff. In the Preferential Attachment experiments, the type graph is formed by the preferential
attachment model in which edges are added sequentially with edges between high degree nodes
being more likely. The Real World graphs are comprised of a variety of graphs from the Network
Repository [51]. See Appendix N for more results on Real World graphs.

3The graphs in the Oregon and CAIDA datasets are made bipartite following the bipartite double cover or
duplicating method used in prior work [9]. Given a graph G = (V,E), the bipartite double cover of G is the
graph G′ = (U ′ ∪ V ′, E′) where U ′ and V ′ are copies of V and there is an edge {u′

i, v
′
j} ∈ E′ if and only if

{vi, vj} ∈ E.
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Baselines We compare our algorithm to a variety of baseline algorithms.

• Ranking In all experiments, we compare to the classic, worst-case optimal Ranking algorithm [31].

• MinDegree The MinDegree algorithm is a version of MPD with a perfect oracle, i.e. σ(u) returns
the true degree of u. In comparison with MPD, MinDegree shows the effect of prediction error on
the performance of MPD.

• Known i.i.d. baselines For the experiments in the known i.i.d. case, we also compare to the
baselines in the extensive empirical study of [9]–see their paper for detailed descriptions of all
algorithms. The code is distributed under the GPL license. Notably, the algorithms Category-
Advice and 3-Pass are not strictly online algorithms: they take multiple passes over the data, using
some limited information from previous passes to make better decisions in the next pass. It should
also be noted that BKPMinDegree is distinct from either the MPD or MinDegree algorithms we
have described–it does not use the type graph but rather maintains and updates an estimate of the
degree of the offline nodes throughout the runtime of the algorithm.
Most known i.i.d. baselines are not greedy–they do not always match an online node even if it
has unmatched neighbors. [9] evaluate greedy augmentations of these algorithms (denoted by
Algorithm(g)) which match to an arbitrary unmatched neighbor in these cases and generally show
them to outperform their non-greedy counterparts. We additionally evaluate MPD augmented
versions of these algorithms (denoted by Algorithm(MPD)) which applies the MPD rule in these
cases using the expected degrees as predictions.
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Figure 1: Comparison of empirical competitive ratios on the Oregon dataset. The first graph is used
to form predictions.
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Figure 2: Comparison of empirical competitive ratios on the CAIDA dataset. For each subfigure, the
first graph of the year is used to form predictions for the rest of the year.

Results Across the various datasets, MPD performs well compared to the baseline algorithms. For
the Oregon, CAIDA, and symmetric CLV-B random graph datasets, MPD significantly outperforms
Ranking, and for Oregon and CAIDA, the performance of the algorithm mildly declines as the degree
predictions degrade. For the known i.i.d. datasets, MPD often outperforms all online baselines,
despite making only limited use of the known i.i.d. model. Additionally, augmenting the known i.i.d.
algorithms with the (MPD) rule often improves their performance over both the base and the greedy
(g) versions of the algorithms.

• Oregon and CAIDA (Figures 1, 2): On the Oregon dataset, MPD achieves a competitive ratio
of ∼ 0.99 across the graphs compared with competitive ratios ranging from 0.95 to 0.97 for
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Figure 3: Comparison of empirical competitive ratios on symmetric CLV-B random graphs with
offline expected degrees following Zipf’s Law with exponent α. In (a), we vary α and MPD uses
the expected degree as its predictor. In (b), the degree predictor is the offline degree in a random
subgraph using a (varying) fraction of the online nodes.
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Figure 4: Comparison of empirical competitive ratios for Known i.i.d. Molloy-Reed graphs. Algo-
rithms depicted in gray are not online algorithms (they use extra information or multiple passes).
Algorithms in green are augmented with MPD.

Ranking. Compared with MinDegree, which uses knowledge of the true offline degrees, MPD’s
performance slowly degrades over time as the graphs become less similar to Graph #1 (see Figure 8
in Appendix N for quantitative details).
Similarly, on the CAIDA dataset, MPD does significantly better than Ranking, achieving com-
petitive ratios almost always greater than 0.98 compared to ratios around 0.95, respectively. As
the performance of the degree predictor degrades over time, the performance of MPD gradually
declines (though it still significantly outperforms Ranking for both datasets).

• Symmetric CLV-B random graph (Figure 3): For symmetric CLV-B random graphs with offline
expected degrees following Zipf’s Law, MPD outperforms Ranking across a spectrum of exponents
α ranging from 0.2 to 2. For exponents less than 0.5 and greater than 1.5, MPD achieves a
competitive ratio close to 1 (greater than 0.995). All of the online algorithms have worse competitive
ratios when the exponent is closer to one with MPD achieving a ratio of ∼ 0.93 and Ranking
achieving a ratio of ∼ 0.86 when α = 0.8. Though MPD does worst at α = 0.8, it also achieves
its greatest improvement over Ranking at this setting.
In Figure 3b, we analyze the performance of MPD with a noisy degree predictor on Zipf’s Law
symmetric CLV-B random graphs with exponent 1. To introduce noise, the degree predictor σ(u)
is given by the number of neighbors u has with a random subset of the online nodes V . As
we decrease the fraction of V we subsample, thus increasing the variance of the predictor, the
performance of MPD steadily declines. Even when the degree predictor only uses 10% or even 1%
(the leftmost point on the graph) of the online nodes, it still outperforms Ranking.

• Known i.i.d. (Figures 4, 5): Across all of the experiments in the known i.i.d. model, MPD is
among the top online algorithms, and is often the best performing online algorithm (note the
algorithms in gray are not strictly online algorithms). Most of the algorithms (e.g. BahamiKapralov
and ManshadiEtAl) rely heavily on the type graph, including precomputing an optimal matching
on the type graph. By contrast, MPD only uses first-order information: it only looks at degrees
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Figure 5: Comparison of empirical competitive ratios on Known i.i.d. Preferential Attachment graphs
and Real World graphs. Algorithms depicted in gray are not online algorithms (they use extra
information or multiple passes). Algorithms in green are augmented with MPD. See Appendix N for
more Real World results.

and does not rely on any information about specific edges. Even so, in most cases, it outperforms
all of the other online algorithms. Additionally, the (MPD) augmented versions of the known
i.i.d. algorithms always beat the base algorithms and often beat the greedy (g) versions, indicating
the potential of predicted degrees to be integrated with other algorithms. Note that while the
standard deviations are quite wide (the known i.i.d. model is inherently stochastic), as the results
are summarized over 100 trials, relatively small differences in the average performance of these
algorithms are statistically significant as the standard error is small.
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A The Proof of Lemma 5.2

In this appendix, we provide the proof of Lemma 5.2.

Proof of Lemma 5.2. The result follows by coupling the instances Ip,q and Ip∗,q. Let U =
(u1, . . . , un), V = (v1, . . . , vm), and U∗ = (u1, . . . ui−1, ui+1, . . . , un). For any instance of a
bipartite graph I on (U, V ) we can generate an instance I∗ on (U∗, V ) as follows: For each j ∈ [m],
if N(vj) is the neigborhood of vj in I , then the neighborhood of vj in I∗ is N(vj) ∩U∗. It is readily
checked that if I is distributed as Ip,q , then I∗ is distributed as Ip∗,q . To prove the result, it therefore
suffices to show that for any instance I , if A0(I) ≥ t, then A0(I∗) ≥ t − 1, or equivalently, that
A0(I∗) ≥ A0(I)− 1. We prove this by induction on m. The case m = 0 is trivial, so assume that
m > 0 and inductively that the result holds for smaller values of m. Let Mj ⊆ U denote the set of
matched nodes by MPD on I after the arrival of v1, . . . , vj and let similarly M∗j ⊆ U∗ denote the set
of matched nodes by MPD on I∗ after the arrival of v1, . . . , vj .

We will proceed by cases. First, consider the case in which MPD does not match any vertex vj to
ui during its run on I . Then MPD’s behavior on I and I∗ will be identical as other than ui and its
incident edges, the two graphs are the same. In particular, A0(I) = |Mm| = |M∗m| = A0(I∗).

Consider next the case in which MPD does match ui to some vertex vj during its run on I . Up
until the arrival of vj , MPD has behaved similarly on I and I∗, and in particular, Mj−1 = M∗j−1.
Now if the neighborhood of vj in U∗ does not contain an unmatched node, then Mj = M∗j ∪ {ui},
and from this point on, MPD will behave similarly on the two instances I and I∗. In particular,
A0(I) = |Mm(I)| = |M∗m(I) ∪ {ui}| = A0(I∗) + 1, as desired. If on the other hand, MPD on I∗
matches vj to some node ui′ 6= ui in U∗, then |Mj | = |M∗j |. Moreover, by the induction hypothesis,
|Mm\Mj | ≤ |M∗m\M∗j |+1. It follows thatA0(I) = |Mj |+|Mm\Mj | ≤ |M∗j |+|M∗m\M∗j |+1 =
A0(I∗) + 1, as desired.

B The Proof of Lemma 5.3

In this appendix, we provide the proof of Lemma 5.3. We start with some preliminaries. For
some subset of offline nodes S ⊆ [n], let Pp(NS) be the probability that the first online node’s
neighborhood is exactly the set S in Ip,q. Note that Pp(NS) depends only on p and q1 and equals∏
i∈S(piq1)

∏
i∈[n]\S(1 − piq1). Let p(A,S) be the ordered vector of weights of the unmatched

offline nodes remaining after running A on the first online node if this node has neighborhood S. If
A = A0, then p(A,S) is obtained by removing the entry pi of p corresponding to the ui ∈ S with
minimal pi (if S = ∅, then p(A,S) = p), but generally, A could behave differently even choosing
not to match v1 to any node in S 6= ∅.

Proof of Lemma 5.3. We will prove the lemma by induction on the number of online nodes, m. The
base case m = 0 is trivial. Indeed, in this case, A0(Ip,q) = A0(Ip′,q) = 0 with probability 1, so the
probabilities of attaining matching size at least t are equal for the two weight vectors p and p′.

Now, we will consider the inductive case. Consider any m > 0 and assume the statement holds for
m− 1 online nodes. Define the (m− 1)-dimensional vector q∗ = (q2, . . . , qm). Then,

P(A0(Ip,q) ≥ t) = P
p
(N∅)P(A0(Ip,q∗) ≥ t) +

∑
S⊆[n],S 6=∅

P
p
(NS)P(A0(Ip(A0,S),q∗) ≥ t− 1), (5)

and a similar identity holds with p replaced by p′.

Denote by r = q1p = (q1p1, . . . , q1pn), and r′ = q1p
′ = (q1p

′
1, . . . , q1p

′
n), so that ri and r′i are

the probabilities that v1 has an edge to ui and u′i in respectively Ip,q and Ip′,q. As p � p′, also
r � r′. In particular, we can write 1− r′i = (1− si)(1− ri) for some si ∈ [0, 1]. For i ∈ [n], we
let Xi and Yi be independent Bernoulli variables with P[Xi = 1] = ri and P[Yi = 1] = si. Let
furthermore Zi be the Bernoulli variable which is 1 if either Xi = 1 or Yi = 1, and zero otherwise.
Then P[Zi = 1] = r′i. We now let N = {i ∈ [n] | Xi = 1} and N ′ = {i ∈ [n] | Zi = 1}, noting
that N ⊆ N ′. For any T ⊆ [n] we can then write

P
p′

(NT ) = P[N ′ = T ] =
∑
S⊆T

P[N = S]P[N ′ = T | N = S] =
∑
S⊆T

P
p
(NS)∆(S, T ),
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where we have put P[N ′ = T | N = S] = ∆(S, T ). We note for later use that for any S ⊆ [n], it
holds that

∑
T⊇S ∆(S, T ) = 1. Indeed, conditioned onN = S, it holds that S ⊆ N ′ with probability

1. Combining this with (5), we can write the probability of MPD exceeding size t on the graphs
parameterized by p′ as

P(A0(Ip′,q) ≥ t) = P
p′

(N∅)P(A0(Ip′,q∗) ≥ t) +
∑

T⊆[n],T 6=∅

P
p′

(NT )P(A0(Ip′(A0,T ),q∗) ≥ t− 1)

= P
p′

(N∅)P(A0(Ip′,q∗) ≥ t)+∑
T⊆[n],T 6=∅

∑
S⊆T

P
p
(NS)∆(S, T )P(A0(Ip′(A0,T ),q∗) ≥ t− 1)

=P
p
(N∅)∆(∅, ∅)P(A0(Ip′,q∗) ≥ t)+

P
p
(N∅)

∑
T⊆[n],T 6=∅

∆(∅, T )P(A0(Ip′(A0,T ),q∗) ≥ t− 1)+

∑
S⊆[n],S 6=∅

P
p
(NS)

∑
T⊇S

∆(S, T )P(A0(Ip′(A0,T ),q∗) ≥ t− 1), (6)

where the final steps follows by interchanging summations in the second term, and splitting into the
cases S = ∅ and S 6= ∅.
Note that if S is non-empty and S ⊆ T , then by the MPD rule, p′(A0, S) � p′(A0, T ) as the
minimum degree within the set of neighbors cannot be larger in T than in S. Moreover, it is
readily checked that the assumption p � p′ implies that p(A0, S) � p′(A0, S) (after an appropriate
permutation). Using the induction hypothesis, we get that for S 6= ∅ and T ⊇ S,

P(A0(Ip′(A0,T ),q∗) ≥ t− 1) ≥ P(A0(Ip(A0,S),q∗) ≥ t− 1), (7)

and that

P(A0(Ip′,q∗) ≥ t) ≥ P(A0(Ip,q∗) ≥ t). (8)

Moreover, an application of Lemma 5.2 and the induction hypothesis gives that

P(A0(Ip′(A0,T ),q∗) ≥ t− 1) ≥ P(A0(Ip′,q∗) ≥ t) ≥ P(A0(Ip,q∗) ≥ t). (9)

Plugging the bounds of (7),(8), and (9) into (6), it follows that

P(A0(Ip′,q) ≥ t) ≥P
p
(N∅)∆(∅, ∅)P(A0(Ip,q∗) ≥ t)+

P
p
(N∅)

∑
T⊆[n],T 6=∅

∆(∅, T )P(A0(Ip,q∗) ≥ t)+

∑
S⊆[n],S 6=∅

P
p
(NS)

∑
T⊇S

∆(S, T )P(A0(Ip(A0,S),q∗) ≥ t− 1).

Now combining the first two terms above and using that
∑
T⊇S ∆(S, T ) = 1 for any S ⊆ [n], we

obtain that

P(A0(Ip′,q) ≥ t) ≥P
p
(N∅)P(A0(Ip,q∗) ≥ t) +

∑
S⊆[n],S 6=∅

P
p
(NS)P(A0(Ip(A0,S),q∗) ≥ t− 1)

=P(A0(Ip,q) ≥ t),

where the final equality follows from (5). This is the desired result.

C The Proof of Theorem 5.1

In this appendix, we provide the proof of Theorem 5.1. As in Appendix B, for subsets of offline
nodes S ⊆ [n], we let Pp(NS) denote the probability that the first online node’s neighborhood is
exactly the set S in Ip,q .
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Proof of Theorem 5.1. We will prove the theorem by induction over m. For the base case, m = 0,
the inequality holds with equality as both algorithms yield empty matchings.

For the inductive case, let m > 0 and assume the inequality holds with m − 1 online nodes. Let
q∗ = (q2, . . . , qm). Let RA ⊆ P([n]) be set of subsets of [n] s.t. for any S ∈ RA, p(A,S) = p, i.e.
algorithm A matches no edges if the set of neighbors of the current online node is S. Consider the
probability of algorithm A attaining a matching with size at least t. By the induction hypothesis,

P(A(Ip,q) ≥ t) =
∑
S∈RA

P
p
(NS)P(A(Ip,q∗) ≥ t) +

∑
S⊆[n],S /∈RA

P
p
(NS)P(A(Ip(A,S),q∗) ≥ t− 1)

≤
∑
S∈RA

P
p
(NS)P(A0(Ip,q∗) ≥ t) +

∑
S⊆[n],S /∈RA

P
p
(NS)P(A0(Ip(A,S),q∗) ≥ t− 1).

Now if S ∈ RA, then p(A,S) � p(A0, S). Thus, by applying Lemma 5.2 to the first term and
Lemma 5.3 to the second term above,

P(A(Ip,q) ≥ t) ≤P
p
(N∅)P(A0(Ip,q∗) ≥ t) +

∑
S∈RA\{∅}

P
p
(NS)P(A0(Ip(A0,S),q∗) ≥ t− 1)+

∑
S⊆[n],S /∈RA

P
p
(NS)P(A0(Ip(A0,S),q∗) ≥ t− 1)

=P
p
(N∅)P(A0(Ip,q∗) ≥ t) +

∑
S⊆[n],S 6={∅}

P
p
(NS)P(A0(Ip(A0,S),q∗) ≥ t− 1)

=P(A0(Ip,q∗ ≥ t),
completing the proof.

D MPD with Noisy Predictions

In Section 5, we show that given expected degrees as predictions, MPD is the optimal algorithm on
CLV-B graphs. Here, we extend that analysis to show that even if the predictor is noisy, MPD can
still return a large matching.

Consider two degree predictors σ and σ′ (or more generally, two orderings of the offline nodes). Let
∆(σ, σ′) denote the minimum number of offline nodes which must be removed such that σ and σ′
induce the same ordering over the remaining nodes.
Theorem D.1. For any graph G = (U ∪V,E), the matching returned by MPD with degree predictor
σ has at most ∆(σ, σ′) more edges than the matching returned by MPD with degree predictor σ′.

On CLV-B graphs, let p[σ] be the array of offline weights ordered by σ. So, if σ∗ returns the expected
degrees, p[σ∗] is in sorted order. Let LIS(p) denote the size of the longest increasing subsequence
of p. Note that ∆(σ∗, σ) = n − LIS(p). Then, as a corollary to Theorem D.1, we can bound the
performance of a noisy degree predictor compared to the performance of MPD with expected degrees.
Corollary D.2. On CLV-B graphs, the expected size of the matching returned by MPD with degree
predictor σ has at most n− LIS(p[σ]) fewer nodes than the expected size of the matching returned
by MPD given the expected degrees.

As MPD with expected degrees is the optimal online algorithm for CLV-B graphs, this implies that as
long as n− LIS(p[σ]) is small, MPD is still near-optimal. Note that n− LIS(p[σ]) is equal to the
minimum number of offline nodes that would need to be removed s.t. the offline weights are in sorted
order. This quantity is clearly upper bounded by the number of mispredicted nodes as removing each
mispredicted node will leave a remaining sequence which is sorted.

In order to prove the theorem, we will use the following lemmas.
Lemma D.3 (Corollary of Lemma 2 of [8]). Consider any graph G = (U ∪ V,E), offline node
u ∈ U , and degree predictor σ. MPD with degree predictor σ when run on G′ = (U \ {u} ∪ V,E)
will produce a matching with at most one fewer edge than when run on G.

This follows by [8] as these two matchings will differ by at most one alternating path, which can
reduce the matching size by at most one.
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Lemma D.4. Consider any graph G = (U ∪ V,E), offline node u ∈ U , and degree predictor σ.
MPD with degree predictor σ when run on G′ = (U \ {u}∪V,E) will produce a matching no bigger
than when run on G.

Proof. Let NG(v) be the neighborhood of a node v ∈ V in the graph G, only including unmatched
offline nodes at the point that v arrives. We will prove via induction that for any online node v,
NG′(v) ⊆ NG(v). For the base case, consider the first online node v1. In this case, if u /∈ NG(v1),
NG′(v1) = NG(v1). Otherwise NG′(v1) = NG(v1) \ {u}.
Now, consider the inductive case for some online node vi for i > 1. Assume that for all j < i,
NG′(vj) ⊆ NG(vj). Assume, for the sake of contradiction, that there exists some u′ s.t. u′ ∈ NG′(vi)
but u′ /∈ NG(vi). This can only happen if at some point previously, u′ was matched by MPD running
on G but was never matched by MPD running on G′. Let v′ be the online node that matched with u′
when run on G. Note that as u′ ∈ NG′(vi), it must be the case that u′ ∈ NG′(v′) as MPD running on
G′ has not yet matched u′ and u′ was in NG(v′). Let u∗ be the node that v′ matched with in G′. As
MPD had the choice to match v′ with u′ or u∗ onG′, it must be the case that σ(u∗) < σ(u′) (breaking
ties arbitrarily but consistently). On the other hand, by the inductive hypothesis, u′, u∗ ∈ NG(v′),
so MPD run on G chose to match v′ with u′ over u∗, so σ(u′) < σ(u∗), and we have reached a
contradiction.

To complete the proof, note that for MPD (or any greedy algorithm), the size of the matching is
exactly m minus the number of times an online node has no available neighbors. The inductive
statement implies that for all online nodes v, |NG′(v)| ≤ |NG(v)|. Therefore, the number of times
an online node will have no available neighbors is at least as large for MPD when run on G′ as on
G.

Proof of Theorem D.1. Let S ⊂ U be the ∆(σ, σ′) online nodes which, if removed, would leave the
remaining offline weights in sorted order. Let Aσ(G) refer to size of matching returned by MPD with
degree predictor σ on graph G. Let G−S = ((U \ S) ∪ V,E).

By repeated invocation of Lemma D.4,

Aσ′(G) ≥ Aσ′(G−S)

as removing an offline node never increases the size of the matching returned by MPD. By repeated
invocation of Lemma D.3,

Aσ(G) ≤ Aσ(G−S) + ∆(σ, σ′)

as removing an offline node can decrease the size of the matching returned by MPD by at most 1.

To combine these bounds, note that Aσ(G−S) = Aσ′(G−S) as σ and σ′ induce the same ordering
after removing the offline nodes in S. Therefore,

Aσ′(G) ≥ Aσ(G)−∆(σ, σ′),

completing the proof.

E Worst-Case Bound and Failure Modes

In the worst-case, MinPredictedDegree achieves a competitive ratio of 1/2. When σ gives arbitrary
predictions, MinPredictedDegree is equivalent to the simple greedy algorithm for online bipartite
matching which achieves a competitive ratio of 1/2 [31, 41]. Even if σ is the perfect degree predictor
where σ(u) = deg(u) for all u ∈ U , MinPredictedDegree is still (1/2)-competitive in the worst-case.

As MinPredictedDegree forms a maximal matching, the matching it returns is always at least half the
size of the maximum matching. For the matching upper bound on the competitive ratio in the perfect
predictor case, consider the graph G = (U ∪ V,E) where n = m = 6 with the following adjacency
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list:

{u1 : v1, v2, v3},
{u2 : v1, v2, v3},
{u3 : v1, v2, v3},
{u4 : v1, v4},
{u5 : v2, v5},
{u6 : v3, v6}.

The first half of the offline and online nodes form a complete bipartite subgraph while the second
half of the offline nodes each connect to one online node in the first half and one online node
in the second half. MinPredictedDegree with a perfect degree predictor will return the matching
M = {{u4, v1}, {u5, v2}, {u6, v3}}, matching the first half of the online nodes with their lower
degree neighbors in the second half of the offline nodes, therefore leaving the first half of the offline
nodes unmatched.

More generally, MinPredictedDegree can perform poorly if the degree predictor is arbitrary or if high
degree nodes have poor edge expansion compared to low degree nodes (making it disadvantageous to
always prioritize low degree nodes as seen in the example above). However, often these adversarial
structures do not appear in practice and matching low degree nodes first leads to better results. In
fact, the hard instance given in the seminal paper by Karp, Vazirani, and Vazirani [31] that introduced
the online bipartite matching problem and the Ranking algorithm relies on the fact that algorithms
with no extra information on the graph (e.g. no degree predictions) must often mistakenly match high
degree left nodes rather than low degree left nodes when given a choice.

Better worst-case algorithms with degree predictions? As demonstrated in [31], no algorithm
for the online matching problem has a competitive ratio better than 1− 1/e. It is however a natural
question whether an algorithm with access to the offline degrees can obtain a better worst-case
competitive ratio. We answer this question in the negative by modifying the example in [31] to show
that no algorithm with knowledge of the true offline degrees has a competitive ratio of more than
1− 1/e. The hard example in [31] is an n by n bipartite graph with offline nodes U = {u1, . . . , un}
and online nodes V = {v1, . . . , vn}. Node vi has an edge to each node in {uj : i ≤ j ≤ n}. The
maximum matching clearly has size n but it is shown in [31] that if the online nodes arrive in a
random order, then no algorithm matches more than (1− 1/e+ o(1))n nodes in expectation. Note
that given the true offline degrees as predictions, MPD will actually achieve the maximum matching
for this example.

We augment this result in a black box manner to construct a bad example even when the offline
degrees are known to the algorithm. Assume with no loss of generality that n is a square. Let
U1, . . . , U√n and V1, . . . , V√n be disjoint vertex sets each of size

√
n. Let the offline nodes be

U =
⋃
i≤
√
n Ui and the online nodes be V =

⋃
i≤
√
n Vi. For each 1 ≤ i ≤

√
n− 1, we let (Ui, Vi)

form an instance of the hard graph from [31] (as described above) with
√
n online/offline nodes.

Moreover, (U√n, V
√
n) form a complete bipartite graph. Finally, for each offline node u ∈ U , we add√

n− deg(u) edges from u to V√n. Then all of the offline degrees are the same (they are all
√
n), so

the degree oracle is of no use. If we sequentially for 1 ≤ i ≤
√
n− 1 let the nodes of Vi arrive in a

random order (and finally the nodes from V√n in any order), it follows from the result in [31] that the
expected size of the produced matching is at most

(
√
n− 1)(1− 1/e+ o(1))

√
n+
√
n = n(1− 1/e+ o(1))

As the maximum matching has size n, the upper bound on the competitive ratio follows.

F Additional Competitive Ratio Results

Using the equations derived in Section 6, in Figure 6 we plot the competitive ratio for symmetric
CLV-B graphs with expected offline degrees following Zipf’s Law (at n = m = 1000, this setup
corresponds to the experiment shown in Figure 3). Across all choices of the exponent other than
α = 1, MPD’s performance relative to the size of the maximum matching increases as the size of the
graph grows. Further, for larger graphs, in many settings MPD achieves a ratio close to 1 and even
for smaller graph achieves ratios above 0.9 for almost all settings.
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Figure 6: Ratio of MPD’s expected matching size and the expected maximum matching size on
symmetric CLV-B random graphs with offline expected degrees following Zipf’s Law with exponent
α. The ith offline node has expected degree di = Ci−α with C = m/2.

Notably, at α = 1, the ratio plateaus around 0.955, and at α = 0.8, the ratio decreases from n = 10
to n = 100 before rising again as n increases. At α = 1 across all values of n as well as at α = 0.8
with n = 100, a large fraction of the offline nodes have expected degree close to one. Many of
these nodes will have actual degree 1 and many will have actual degree ≥ 2. MPD has no way of
distinguishing between these two types of nodes as it only uses expected degrees and will mistakenly
not match some offline nodes that only appear once. While there is always a discrepancy between
actual and expected degrees, the issue of prioritizing a node with actual degree ≥ 2 over a node with
actual degree 1 is most detrimental, leading to worse performance when there are many offline nodes
with expected degree close to one.

G Solution to System of Differential Equations in Equation 3

Recall the system of differential equations from Equation 3:

dzd(t)

dt
= kd

(
1− ezd(t)

) ∏
d′<d

ezd′ (t) (10)

for all unique expected degrees d in d.

The solution to the system of differential equations is given by the following equations. Let {δi}`i=1
be the ordered set of unique expected degrees and let fd be the number of offline nodes with expected
degree d. We will define the auxiliary functions αδi(t) for i ∈ {2, . . . , `} and variables Cδi for
i = {1, . . . , `} as follows:

αδ2(t) = Cδ1 + ekδ1 t

αδi(t) = (αδi−1
(t))kδi−1

/kδi−2 + Cδi−1
(for i ≥ 3)

where

Cδ1 = ekδ1fδ1 − 1

Cδi = (αδi(0))kδi/kδi−1 (ekδifδi − 1) (for i ≥ 2).

Then,

zδ1(t) = − log(Cδ1e
−kδ1 t + 1)

zδi(t) = − log(Cδi(αδi(t))
−kδi/kδi−1 + 1) (for i ≥ 2).

(11)

In the rest of this section, we show that Equation 11 give the correct solutions to the differential
equations in Equation 3.

Lemma G.1. For i ∈ {2, 3, . . . , `},

d
dt (αδi(t))

kδi−1
αδi(t)

=

i−1∏
j=1

ezδj (t). (12)
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Proof. We will prove the lemma by induction. Consider the base case of i = 2:
d
dt (αδ2(t))

kδ1αδ2(t)
=

kδ1e
kδ1 t

kδ1(Cδ1 + ekδ1 t)

=
1

Cδ1e
−kδ1 t + 1

= ezδ1 (t).

Now consider the inductive case of i > 2 under the assumption that
d
dt (αδi−1

)

kδi−2
αδi−1

=
∏i−2
j=1 e

zδj :

d
dt (αδi(t))

kδi−1
αδi(t)

=

kδi−1

kδi−2
α

(kδi−1
/kδi−2

)−1

δi−1

d
dt (αδi−1)

kδi−1(α
kδi−1

/kδi−2

δi−1 + Cδi−1)

=
α
kδi−1

/kδi−2

δi−1

α
kδi−1

/kδi−2

δi−1 + Cδi−1

·
d
dt (αδi−1

)

kδi−2αδi−1

=
1

Cδi−1α
−kδi−1

/kδi−2

δi−1
+ 1
·
i−2∏
j=1

ezδj (t)

=

i−1∏
j=1

ezδj (t).

This completes the proof.

Lemma G.2. The expressions for zδi(t) in Equation 11 give a solution to system of differential
equations in Equation 3 with initial conditions zδi(0) = −kδ1fδi .

Proof. We will split the proof into two cases for δ1 and for δi with i ≥ 2. Starting with i = 1, recall
that

zδ1(t) = − log(Cδ1e
−kδ1 t + 1).

First, we will show that this function has the correct derivative.
dzδ1(t)

dt
= − 1

Cδ1e
−kδ1 t + 1

(Cδ1)(−kδ1)e−kδ1t

= kδ1
Cδ1e

−kδ1 t

Cδ1e
−kδ1 t + 1

= kδ1

(
1− ezδ1 (t)

)
It remains to be shown that zδ1(0) = −kδ1fδ1 :

zδ1(0) = − log(Cδ1 + 1)

= − log(ekδ1fδ1 )

= −kδ1fδ1 .

Now, consider the case where i ≥ 2. Then,
dzδi(t)

dt
=

d

dt

(
− log(Cδi(αδi(t))

−kδi/kδi−1 + 1)
)

= −
Cδi

−kδi
kδi−1

(αδi(t))
−kδi/kδi−1

−1

Cδi(αδi(t))
−kδi/kδi−1 + 1

d

dt
(αδi(t))

= kδi
Cδi(αδi(t))

−kδi/kδi−1

Cδi(αδi(t))
−kδi/kδi−1 + 1

d
dt (αδi(t))

kδi−1
αδi(t)

= kδi

(
1− ezδi (t)

) i−1∏
j=1

ezδj(t) .
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The last step makes use of Lemma G.1. Finally, we must show that zδi(0) = −kδifδi :
zδi(0) = − log(Cδiαδi(0)−kδi/kδi−1 + 1)

= − log(ekδifδi − 1 + 1)

= −kδifδi .
Thus, the given solution to the system of differential equations is correct.

H Proof of Theorem 6.1

We give the proof of Theorem 6.1 which states that the solution to the differential equations models
the size of the matching returned by MinPredictedDegree.

Proof of Theorem 6.1. The proof of Theorem 6.1 follows a direct application of Theorem 1 in Luby
et al. [38]. We must show three conditions are satisfied: (i) that |Zt+1

d − Ztd| is bounded, (ii) that
dzd(t)
dt = E[Zt+1

d − Ztd|Ht] (where Ht is the history up to time t, and (iii) that dzd(t)
dt satisfies a

Lipschitz condition when zd(t) ≤ 0 (recall that Ztd is always nonpositive as Y td is always nonnegative).

If these conditions hold, then the solution to the system of differential equations gives the asymptotic
expected behavior of the variables Ztd and thus the asymptotic expected behavior of the variables Y td ,
which govern the size of the matching returned by MinPredictedDegree.

It remains to show that these three conditions are met. Condition (i) is satisfied as the number of
nodes of a given expected degree can change by at most one per timestep, so |Zt+1

d − Ztd| ≤ kd.
Condition (ii) is satisfied by construction in Equation 3. Finally, Condition (iii) is satisfied as dzd(t)

dt is
comprised of a product of several terms resembling C1 · e−C2x for nonnegative constants C1, C2 and
with x nonnegative. Therefore, dzd(t)

dt has constant bounded first derivatives when zd(t) ≤ 0.

I Upper Bound on Expected Maximum Matching Size

I.1 Overview

To analyze the maximum matching size within this model, we rely on a upper bound based on the
matching version of Hall’s marriage theorem [23]. We first state the classic theorem.
Theorem I.1 (Hall’s Theorem). Let G = (U ∪ V,E) be a bipartite graph. For any subset of nodes
S, let N(S) be the set of neighbors of the nodes in X . Then, G has a perfect matching if and only if
for all S ⊂ U and T ⊂ V , |S| ≤ |N(S)| and |T | ≤ |N(T )|.

Intuitively, if there is any subset S with few neighbors, then only |N(S)| of the members of S can
possibly be matched. Let µ(G) correspond to the size of the maximum matching in G. For any
bipartite graph G = (U ∪ V,E) and S ⊂ U ,

µ(G) ≤ n− (|S| − |N(S)|) (13)
as out of all of the nodes in S, only |N(S)| can be matched. Therefore, if we can calculate the
expected size of |S| and |N(S)| for some subset of a random symmetric CLV-B graph G, we
immediately get an upper bound on the expected size of the maximum matching in G.

Our upper bound involves constructing a specific subset S∗ of the offline nodes that makes use of
our focus on power law graphs to provide a useful bound that is easy to evaluate. We empirically
test how good of a bound Equation 13 gives using S∗ and find that for symmetric CLV-B random
graphs with offline degrees following a power law distribution, the upper bound on µ(G) given by
n− (|S∗| − |N(S∗)|) is close to maximum matching size (often achieving the same value and in all
trials was less than 2% greater than the true value). In addition to providing a good bound, we show
that we can evaluate E[|S|] and E[|N(S)|] in Equations 14, 15, 16. By linearity of expectation, this
directly gives us an upper bound on the expected size of the maximum matching.

In Appendix M, we show that on symmetric CLV-B random graphs with power law distributed
degrees, our bound on the maximum matching size is concentrated about its expectation. Combined
with Theorem L.1, this implies that our analytic results on the ratio of the expected sizes in Section 6
are closely related to the competitive ratio.
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I.2 Construction

Let S∗ be the subset of U constructed as follows. Let U1 be the set of degree 1 nodes in U (here
degree 1 referring to the actual degree of the node rather than the expected degree in the CLV-B
model). Then, S∗ is the maximal set of nodes in U s.t. N(S∗) ⊆ N(U1). In other words, S∗ is the
maximal subset of nodes in U whose neighbors completely overlap with the neighbors of the degree
1 nodes of U .

As n−(|S∗|−|N(S∗)|) gives an upper bound on the maximum matching size, E[n−(|S∗|−|N(S∗)|)]
gives an upper bound on the expected maximum matching size. The expected sizes of S∗ and N(S∗)
in a CLV-B random graph with expected degrees d are given by the following equations. The expected
size of N(S∗) is simply the sum over all online nodes v ∈ V of the probability that v has at least one
degree 1 neighbor. The expected size of S∗ is broken down as the sum over all offline nodes u ∈ U
of the probability that u has actual degree ∆ and then the probability that all ∆ of u’s neighbors
are members of N(S∗). Let S∗∆ be the subset of nodes in S∗ whose actual (as opposed to expected)
degree are ∆ and let β∆

i for ∆ ∈ {0, ...,m} and i ∈ {1, ..., n} be defined as

β0
i = β1

i = 1

β∆
i = 1 +

∆∑
r=1

(−1)r
(

∆

r

)∏
i′ 6=i

[
1− r

(
di′

m

)(
1− di′

m

)m−1
]

(for ∆ ≥ 2).

β∆
i represents the probability of ui ∈ S conditioned on ui having actual degree ∆. Then,

E[|N(S∗)|] = m

(
1−

n∏
i=1

[
1− di

m

(
1− di

m

)m−1
])

(14)

and

E[|S∗|] =

m∑
∆=0

E[|S∗∆|] (15)

where

E[|S∗∆|] =

n∑
i=1

(
m

∆

)(
di
m

)∆(
1− di

m

)m−∆

β∆
i . (16)

In the rest of this section, we show that the equations for the expected size of |S∗| and |N(S∗)| are
correct by showing their derivations.

First, consider E[|N(S∗)|]. Recall that N(S∗) is the set of online nodes that have a neighbor with
actual degree 1. Therefore, the expected size of N(S∗) is m minus the expected number of online
nodes that have no degree one neighbors. For any online node v ∈ V , the probability that v has no
degree 1 neighbors is ∏

u∈U
P(u is not a deg 1 nbr of v)

=
∏
u∈U

[1− P(u nbr of v)P(u has no other nbrs)]

=
∏
u∈U

[
1− du

m

(
1− du

m

)m−1
]
.

By linearity of expectation,

E[|N(S)|] = m

(
1−

∏
u∈U

[
1− du

m

(
1− du

m

)m−1
])

.

Now, we will deal with E[|S∗∆|]. Recall that S∗∆ is the set of offline nodes with actual degree ∆ with
all of their online neighbors having at least one offline neighbor with actual degree 1. For a given
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offline node u ∈ U with expected degree du, the probability of u being in S∗∆ is the product of the
probability of u having actual degree ∆ and the conditional probability of all of u’s neighbors having
a degree 1 neighbor given u having actual degree ∆. We will call the first event Au,∆ and the second,
conditional event Bu,∆|Au,∆. The probability of Au,∆ occurring corresponds to a Binomial random
variable with size parameter m and probability parameter du/m taking on value ∆:

P(Au,∆) =

(
m

∆

)(
du
m

)∆(
1− du

m

)m−∆

.

The probability of Bu,∆|Au,∆ equals 1 if ∆ = 0 or ∆ = 1 as either u has no neighbors or u is
itself a degree 1 neighbor of its neighbors, respectively. If ∆ ≥ 2, then P(Bu,∆|Au,∆) is equal
to the complement of the event that at least one of u’s neighbors has no degree 1 neighbor. Let
Cu,∆,r|Au,∆ be the event that any subset of r of u’s ∆ neighbors have no degree 1 neighbor given
Au,∆. P(Cu,∆,r|Au,∆) can be expressed as(

∆

r

) ∏
u′ 6=u

[
1− r

(
du′

m

)(
1− du′

m

)m−1
]

where the term within the product represents the probability of no offline nodes (excluding u) being
degree one neighbors of a specific set of r online nodes (similarly to when expressing E[|N(S∗)|]
above). By the inclusion-exclusion rule,

P(Bu,∆|Au,∆) = 1 +

∆∑
r=1

(−1)r P(Cu,∆,r|Au,∆),

thus completing the derivation of Equations 14, 15, and 16.

J Analysis on CLV-B random graphs in asymptotic case

In this section, we give slight modifications of the Equation 11 and Equations 14, 15, 16 in the
case where n,m→∞ to allow us to evaluate the equations to produce the results in Table 1. The
model will change slightly when considering the asymptotic case: we will describe the set of offline
expected degrees d by a set of unique degrees {δi}`i=1 and corresponding fractions {λi}`i=1 where a
λi fraction of the offline nodes have expected degree δi.

Importantly for the asymptotic results in Table 1, while there are offline nodes with expected degree
approaching infinity, a finite number of unique expected degrees account for all but an exponentially
small fraction of the offline nodes, allowing us to evaluate the equations up to negligible error. In the
following calculations, we will consider both ` as well as all δi for i = {1, ..., `} to be finite.

J.1 Asymptotic analysis of MinPredictedDegree

To start, we will replace fd with m · λd and we will replace t with τ = t/m. Recall kd =

− log(1− d/m). The Taylor expansion of log(1− x) at x = 0 is −
∑∞
n=1

xn

n . Within Equation 11,
kd appears in terms kd/kd′ and kd ·fd = kd ·m ·λd. In the asymptotic case, we will use the following
substitutions for those terms:

lim
m→∞

kd/kd′ = d/d′.

and
lim
m→∞

kd ·m · λd = −d · λd.

In both cases, we use the fact that as m→∞, the first term in the Taylor series (d/m) dominates.

Using these substitutions, we can rewrite the equations for MinPredictedDegree as follows.

αδ2(τ) = Cδ1 + eδ1τ

αδi(τ) = (αδi−1
(τ))δi−1/δi−2 + Cδi−1

(for i ≥ 3)

where

Cδ1 = eδ1λδ1 − 1

Cδi = (αδi(0))δi/δi−1(eδiλδi − 1) (for i ≥ 2).
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Then,

zδ1(τ) = − log(Cδ1e
−δ1τ + 1)

zδi(τ) = − log(Cδi(αδi(τ))−δi/δi−1 + 1) (for i ≥ 2).
(17)

Recall that the expected number of offline nodes with expected degree d is given by −zd(τ)/kd
evaluated when t = m. Then, in the asymptotic case, the expected fraction of offline nodes matched
is ∑̀

i=1

λi + zδi(1)/δi (18)

where zδi(τ) are given by Equation 17.

J.2 Asymptotic analysis of maximum matching

For the equations for the upper bound on the expected maximum matching size, the key fact we
will use is limx→0(1 + x) = ex. Therefore, we can replace all terms of (1− d

m )m−C with e−d. In

addition, we can replace all terms of
(
m
C

) (
d
m

)C
with dC

C! . These substitutions give the following
equations.

β0 = β1 = 1

β∆ = 1−
∆∑
r=1

(−1)r
(

∆

r

)∏̀
i=1

[
1− r

(
δi
m

)
e−δi

]m∗λi
= 1−

∆∑
r=1

(−1)r
(

∆

r

)∏̀
i=1

e−rδiλie
−δi

( for ∆ ≥ 2).

Note that the β∆ terms are no longer indexed by i as conditioning on the actual degree of a single
node makes no difference on the probability in the asymptotic case. Then,

E
[
|N(S∗)|
m

]
=

(
1−

∏̀
i=1

e−δiλie
−δi

)
(19)

and

E
[
|S∗|
m

]
≥

C∑
∆=0

E
[
|S∗∆|
m

]
(20)

where

E
[
|S∗∆|
m

]
=
∑̀
i=1

λi
(δi)

∆

∆!
e−δiβ∆

i . (21)

K Analysis of MPD for Erdős-Rényi Random Bipartite Graphs

We here analyze the performance of MPD on CLV-B instances, Ip,1, where p = (p, . . . , p) ∈ [0, 1]n

and 1 = (1, . . . , 1) ∈ [0, 1]m. Such an instance is an Erdős-Rényi bipartite random graph where all
edges appear with the same probability p. In particular, the expected degrees of the offline vertices
are the same and equal to d := mp. Note that in this case, MPD is equivalent to any other greedy
algorithm. Letting c = m/n, we show that for a wide range of the parameters m,n, and p, the

expected fraction of matched offline vertices is 1 + c− c ln(ed+ed/c−1)
d up to a small additive error.

Combining this bound, with the asymptotic upper bound on the maximum matching of Appendix J,
we obtain that for these graphs, the asymptotic competitive ratio of MPD is at least 0.831 which
is significantly better than the 0.7299 bound from [11]. We conjecture that Erdős-Rényi random
bipartite graphs are in fact worst-case instances for MPD, in the sense that a lower bound on the
competitive ratio of MPD for Erdős-Rényi random graphs, also holds for general CLV-B random
graphs.
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Theorem K.1. Let p ∈ [0, 1] and n,m ∈ N. Assume that4 n1−o(1) ≤ m ≤ n1+o(1), p = o(log n)/m,
and p ≥ 1/n1+o(1). Let p = (p, . . . , p) ∈ [0, 1]n, and q = (1, . . . , 1) ∈ [0, 1]m. Let M be the size of
the matching output by any greedy algorithm A on input Ip,q. Let c = m/n. Then

E[M ]

n
= 1 + c− c ln(ed + ed/c − 1)

d
± n−1/2+o(1).

Moreover, |M − E[M ]| = O(
√
m log n) with high probability in n.

Proof. Let Fi denote the σ-algebra generated by the neighborhoods of the first i arriving online
nodes. Defining Xi = E[M | Fi], we have that (Xi)

m
i=0 is a martingale with X0 = E[M ] and

Xn = M . It is easy to check that |Xi − Xi−1| ≤ 1 for 1 ≤ i ≤ m, so it follows from Azuma’s
inequality that for any t > 0,

P[|M − E[M ]| ≥ t] ≤ exp

(
−t2

2m

)
In particular, |M − E[M ]| = O(

√
m log n) with high probability, say at least 1− n−10 as claimed

in the theorem. Moreover, the assumption pm = o(log n) implies that E[M ] ≤ n(1− n−o(1)). This
is clear when m ≤ n/2. On the other hand when m > n/2, the probability that any given offline
node is never picked by an online node is (1 − p)m = e−o(logn) = n−o(1), using the assumption
pm = o(log n).

For 0 ≤ j ≤ n − 1, we let Tj denote the number of online vertices v such that when v arrives,
the matching found by A so far has size j. Then Tj is geometrically distributed with parameter
1− (1− p)n−j , and so, E[Tj ] = 1

1−(1−p)n−j . Moreover, Tj = O( logn
1−(1−p)n−j ) with high probability.

Define n∗ = bE[M ]c. Let L1 = n(1− n−o(1)) be such that max(M,E[M ]) ≤ L1 with probability
at least 1− n−10 and let A1 be the event that max(M,E[M ]) > L1. Note that when j ≤ L1, then

E[Tj ] ≤
1

1− (1− p)n1−o(1) ≤
1

1− exp(−pn1−o(1))
=

1

1− exp(−n−o(1))
= no(1).

We can therefore pick L2 = no(1) such that max(T1, . . . , TL1
) ≤ L2 with probability at least

1− n−10 and we let A2 be the event that max(T1, . . . , TL1) > L2. Finally, let L3 = O(
√
m log n)

be such that |M − E[M ]| ≤ L3 with probability at least 1 − n−10 and let A3 be the event that
|M − E[M ]| > L3

If neither A1, A2, or A3 occur, which happens with probability at least 1− 3n−10, then∣∣∣∣∣∣m−
∑
i≤n∗

Ti

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣m−

∑
i≤M

Ti

∣∣∣∣∣∣+ L2L3 ≤ L2 + L2L3 = n1/2+o(1).

From this, it particularly follows that∣∣∣∣∣∣m− E
∑
i≤n∗

Ti

∣∣∣∣∣∣ ≤ n1/2+o(1). (22)

Let n0 be minimal such that
∑
j<n0

E[Tj ] ≥ m. Since Ti ≥ 1 for every i, it follows from (22)
that |n0 − n∗| ≤ n1/2+o(1), and in particular that |n0 − E[M ]| ≤ n1/2+o(1). To finish the proof, it
therefore suffices to show that n0/n satisfies the bound in the theorem.

For this, we first note that

m ≤
∑
j<n0

E[Tj ] =
∑
j<n0

1

1− (1− p)n−j
≤
∑
j<n0

1

1− e−p(n−j)
≤
∫ n0

0

1

1− e−p(n−x)
dx.

=n0 −
1

p

(
ln(1− ep(n0−n))− ln(1− e−pn)

)
4Here, o(1) → 0 as n→ ∞
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The right hand side is an increasing function of n0 vanishing at 0 and turning to infinity as n0 → n.
Solving for n0 then gives that

n0 ≥ n+m− ln(epm + epn − 1)

p
,

so that

n0/n ≥ 1 +m/n− ln(epm + epn − 1)

pn
= 1 + c− c ln(ed + ed/c − 1)

d

which yields the lower bound in the proof of the theorem upon dividing by n.

For the upper bound, we use the inequality (1 + x
n )n ≥ ex(1− x2

n ) holding for n ≥ 1 and |x| ≤ n,
from which it follows that

E[Tj ] ≥
1

1− e−p(n−j)(1− (n− j)p2)
≥ 1

1− e−p(n−j)a
,

where we have put a = 1− np2. Note that by the definition of n0,
∑
j<n0−1 E[Tj ] < m, and so it

follows similarly to above that

m0 := m+ E[Tn0−1 + Tn0
] ≥

∑
j≤n0

E[Tj ] ≥
∫ n0

0

1

1− e−p(n−x)a
dx

≥ n0 −
1

p

(
ln(1− aep(n0−n))− ln(1− ae−pn)

)
.

The right hand side is again an increasing function of n0, so solving for n0 gives that

n0 ≤m0 + n− ln(epn + aepm − a)

p
= m0 + n− ln(epn + epm − 1− p2n(epm − 1))

p

=m0 + n− ln(epn + epm − 1)

p
+O(pnepm) = m+ n− ln(epn + epm − 1)

p
+ 2no(1).

The desired result follows after dividing by n.

Competitive ratio of MPD with uniform expected degree sequence. We now demonstrate how
to combine the bound of Theorem K.1 with the upper bounds on the maximum matching of Ap-
pendix J, to obtain the better bound of 0.831 on the asymptotic competitive ratio of MPD for
Erdős-Rényi bipartite random graph. We start with the following lemma that allows us to focus on
the case where both c = m/n and d = pm are constants, d, c = Θ(1).

Lemma K.2. There exists an ε > 0, so that if (c, d) ∈ [ε, 1/ε]2, and n is sufficiently large, then
the competitive ratio of MPD on instance Ip,q is at least 0.99. Here, p = (p, . . . , p) ∈ [0, 1]n, and
q = (1, . . . , 1) ∈ [0, 1]m.

Proof (sketch). Let S1 denote the set of non-isolated offline nodes, S2 the set of non-isolated online
nodes,M∗ the maximum matching, andM the matching found by MPD. First of all, it is easy to check
that there exists ε1 > 0, so that if if c < ε1 and n is large enough, then both |1 − E[|M∗|]

E[|S2|] | <
1

1000

and |1 − E[|M |]
E[|S2|] | <

1
1000 . The first bound follows from observing that for c small, nearly every

non-isolated online node can be matched: Even if, we just consider a single random edge leaving
each of the non-isolated online nodes, the number of pair of such edges that are both incident to the
same offline node is O(|S2|2/n) = O(c|S2|), and thus the matching has size at least |S2|(1−O(c)).
The second bound follows by observing that for each arriving non-isolated online node, MPD will
match it with probability at least 1−m/n = 1− c.
Similarly to above, there exists ε2 > 0, such that if c > 1/ε2, and n is large enough, then |1 −
E[|M∗|]
E[|S1|] | <

1
1000 . Moreover, we can choose ε2 such that if c > 1/ε2, and n is large enough, it also

holds that |1− E[|M |]
E[|S1|] | <

1
1000 . Indeed, if d ≤ 10, and ε2 is small enough, then an 1− 10/ε2 fraction

of the nodes in S1, will have a degree one neighbor, and therefore be matched, and the case d ≥ 10
reduces to the case d = 10.
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Combining the above bounds it follows from some calculations that if we choose ε3 = min(ε1, ε2),
then if c /∈ [ε3, 1/ε3], and n is large enough, the competitive ratio of MPD is at least 0.99.

We next assume that c ∈ [ε3, 1/ε3]. Using this assumption on c, we can then choose ε4 > 0 such
that if d < ε4, then 99% of the edges (u, v) of the instance, will satisfy that the vertices u and v have
degree 1. As MPD includes all those edges, and the total number of edges of the graph is an upper
bound on |M∗|, it follows that in this case, the competitive ratio is at least 0.99. Finally, it is easy to
check by splitting into the cases m ≤ n and m > n that we can choose ε5 > 0, such that if d ≥ 1/ε5,
then |1− E[|M |]

min(n,m) | <
1

1000 . As |M∗| ≤ min(m,n), this gives that the competitive ratio in this case
is at least 0.99. Setting ε = min(ε3, ε4, ε5), we obtain the desired result.

Next, we show how to use the techniques of Appendix J to obtain an upper bound on the maximum
matching size in the case of Erdős-Rényi random bipartite graphs in the case that d, c = Θ(1).

Lemma K.3. Let c, d be given with c, d = Θ(1). Define

A(c, d) = 1− e−cde
−d
, and B(c, d) = e−d(e−dA(c,d) + d(1−A(c, d)))

For instances Ip,q, where p = (p, . . . , p) ∈ [0, 1]n, and q = (1, . . . , 1) ∈ [0, 1]m, the expected
fraction of matched offline vertices is at least (1 ± o(1))C(c, d) as n → ∞, where C(c, d) =
1 + cA(c, d)−B(c, d).

Proof. Let N(S) denote the set of nodes of V with at least one degree one neighbor in U , and let S
denote the nodes of U whose neighborhood is fully contained in N(S). The suggestive notation is
justified as N(S) is indeed the neighborhood of S. As we saw in the Appendix J, for v ∈ V ,

P[v ∈ N(S)] = 1−

(
1− d

n

(
1− d

n

)m−1
)n

= (1± o(1))
(

1− e−cde
−d
)

= (1± o(1))A(c, d),

where we have used the approximation ex for 1 + x which is sharp enough to get the bound above,
since d = Θ(1) and m = Θ(n) with the assumptions on c and d. Next for a fixed node u ∈ U , we let
Ak denote the event that u has degree k. Then for any ∆,

P[u ∈ S] ≥
∆∑
k=0

P[u ∈ S ∩Ak].

Assuming that ∆ = O(1) and 2 ≤ k ≤ ∆, we can approximate

P[u ∈ S ∩Ak] = (1± o(1))

(
m

k

)(
d

m

)k (
1− d

m

)m−k
A(c, d)k = (1± o(1))e−d

(A(c, d)d)k

k!
.

Moreover, P[u ∈ S ∩A0] = P[A0] and P[u ∈ S ∩A1] = P[A1], so we can bound

P[u ∈ S ∩A0] = (1± o(1))e−d and P[u ∈ S ∩A1] = (1± o(1))de−d.

Now for any constant ∆, we can upper bound the expected fraction of matched offline vertices by

1− P[u ∈ S] + cP[v ∈ N(s)] ≤ 1−

(
∆∑
k=0

P[u ∈ S ∩Ak]

)
+ cP[v ∈ N(s)]

=1− (1± o(1))e−d

(
1 + d+

∆∑
k=2

(A(c, d)d)k

k!

)
+ (1± o(1))cA(c, d)

Since this bound holds for any constant ∆, and the series converges, it also holds in the limit. Thus,
we can conclude that as n→∞, the expected fraction of matched offline nodes is at most

(1±o(1))
(

1− e−d(eA(c,d)d + d(1−A(c, d))) + cA(c, d)
)

= (1±o(1))(1−B(c, d)+cA(c, d)) = (1±o(1))C(c, d),

as desired.
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Remark When bounding the size of the maximum matching, with Lemma K.3, we can switch
the roles of m and n. Letting d′ = pn and c′ = n/m, it holds that c′ = 1/c and d′ = d/c, and
we can use Lemma K.3, to conclude that the expected fraction of matched online nodes is at most
(1± o(1))C(1/c, d/c) as n→∞. In particular, we can upper bound the expected fraction of offline
nodes in a maximum matching by (1± o(1))D(c, d), where

D(c, d) = min(C(c, d), cC(1/c, d/c))

We next show that for Erdős-Rényi bipartite random graph, the asymptotic competitive ratio of MPD
is at least 0.831.
Lemma K.4. Let Ip,q, where p = (p, . . . , p) ∈ [0, 1]n, and q = (1, . . . , 1) ∈ [0, 1]m be an Erdős-
Rényi bipartite random graph. The asymptotic competitive ratio of MPD on Ip,q as n→∞ is at least
0.831.

Proof. By Lemma K.2, we can assume that (c, d) ∈ [ε, 1/ε]2 for some small enough constant, as
otherwise, the competitive ratio of MPD is at least 0.99. Then we are in position to apply Theorem K.1
and Lemma K.3 (in fact the remark following the lemma). Letting E(c, d) = 1 + c− c ln(ed+ed/c−1)

d ,
we conclude that the asymptotic competitive ratio of MPD is at most E(c,d)

D(c,d) . Using some calculus, it

can be checked that in any region [ε, 1/ε]2, where ε is sufficiently large, E(c,d)
D(c,d) has a unique minimum

attained at (c0, d0), where c0 = 1 and d0 ≈ 2.7997. Moreover, E(c0,d0)
D(c0,d0) ≈ 0.83105 ≥ 0.831.

L Concentration of MinPredictedDegree

In this section, we prove that MinPredictedDegree’s performance on CLV-B random graphs is
concentrated about its expectation.
Theorem L.1. Let G be a symmetric CLV-B random graph with expected offline degrees d and let
X be the random variable corresponding to the size of the matching returned by MPD. Then,

P(|X − E[X]| ≥ 2
√
m logm) ≤ 2

m
. (23)

Proof. Let Hj represent the state of MinPredictedDegree after it has processed the jth online node,
and let Yj = E[X|Hj ] be the expectation of the size of the returned matching conditioned on the
history of the algorithm up to time j. Then {Yj}mj=0 form a Doob martingale. We will proceed by
bounding |Yj − Yj−1|.
If an offline node i was matched with online node j, then the conditional expectation of the final
matching size increases by 1 − P(i matched|Hj−1). For each unmatched offline node that is not
matched with online node j, the conditional expectation decreases by the sum over all such nodes i′
of P(i′ matched with j|Hj−1). As both the increment and decrement are bounded in magnitude by 1,
the martingale has bounded differences |Yj − Yj−1| ≤ 1.

Applying the standard Azuma’s inequality bounds, we get the concentration result:

P(|Ym − Y0| ≥ 2
√
m logm) ≤ 2

m
.

As Y0 = E[X] and Ym = X , this completes the proof.

M Concentration of the Upper Bound on Maximum Matching Size

In this section, we show that our upper bound on the size of a maximum matching in CLV-B random
graphs with power law distributed degrees is concentrated about its expectation.
Theorem M.1. Let G be a CLV-B random graph with n = m and with expected offline degrees
following a power law distribution with exponent α > 3, and let X be the random variable corre-
sponding to the difference |S∗| − |N(S∗)| where S∗ and N(S∗) are the subsets of the nodes in G
described in Section I. Then, there exists some constant C s.t.

P(|X − E[X]| ≥ C
√
n log n) ≤ 1

n
. (24)
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Proof of Theorem M.1. Let Ht represent the t offline nodes with the smallest degrees (ties broken
arbitrarily) as well as their incident edges and let Yt = E[(|S∗| − |N(S∗)|) |Ht] be the expected
difference in the sizes of S∗ and N(S∗) given knowledge of Ht. Note that here we are using true
degrees and not expected degrees. Then, {Yt}nt=0 form a Doob martingale.

Let ut be the offline node with the tth smallest degree and let deg(ut) be the its degree. We will
proceed by cases to show that the martingale has bounded differences.

1. Assume deg(ut) > 1. Then, from Ht−1 we know N(S∗) as all degree one nodes have already
been seen. Therefore, the contribution of ut to the difference (|S∗| − |N(S∗)|) is independent of
any subsequent offline nodes. Specifically, if ut ∈ S∗, Yt − Yt−1 = 1− P(ut ∈ S∗|Ht−1), and if
ut /∈ S∗, Yt − Yt−1 = −P(ut ∈ S∗|Ht−1) where

P(ut ∈ S∗|Ht−1) = E
deg(ut)|Ht−1

deg(ut)−1∏
k=0

(
N(S∗)− k

m

) . (25)

In any case, |Yt − Yt−1| ≤ 1.

2. Assume deg(ut) ≤ 1. In this case, we have to deal with the fact that ut can affect N(S∗) as well
as S∗. Part of the difference Yt − Yt−1 is due to the inclusion of ut in S∗ and the subsequent
possibility that ut contributes a node to N(S∗) if deg(ut) = 1 and its neighbor is not already in
N(S∗). This part of the difference is bounded in magnitude by one as these events change the
difference S∗ −N(S∗) by at most one.

The other part of the difference Yt − Yt−1 is due to whether ut increments the size of N(S∗) via
its neighbor, affecting the probabilities P(ut′ ∈ S∗) for t′ where deg(ut′) > 1 as in Equation 25.
As the expected size of N(S∗) can change by at most one, the change in P(ut′ ∈ S∗) for each t′
where deg(ut′) > 1 is at most

deg(ut′ )−1∏
k=0

(
t′ − k
m

)
−
deg(ut′ )−1∏

k=0

(
t′ − k − 1

m

)
. (26)

The factors of t′ in the numerators come from the fact that N(S∗) ≤ t′ if deg(ut′) > 1. As both
parts of the difference contain many of the same terms, we can simplify Expression 26 as

deg(ut′)

m

deg(ut′ )−1∏
k=1

(
t′ − k
m

)
≤ deg(ut′)

m
. (27)

As we assume that the expected degrees are distributed according to a power law distribution
with exponent α > 3, the expectation and variance of the degree of a given node u will be
constant. Thus, with high probability, the sum over all offline degrees

∑
u deg(u) = O(m). The

contribution to Yt − Yt−1 by Expression 27 is thus bounded by
∑
u
deg(u)
m = O(1). Overall, with

high probability, |Yt − Yt−1| = O(1).

As in both cases, the martingale has constant bounded differences (with high probability), Azuma’s
inequality directly gives us the theorem.

N Additional Experiments

Figure 7 shows additional experiments on Real World graphs from the known i.i.d. model (based on the
methodology of [9]). Overall, the results are very similar to those in Section 7, MinPredictedDegree
does very well compared to the other online baselines (depicted in light blue) despite making relatively
little use of the type graph information. Additionally, augmenting the known i.i.d. baselines with
MinPredictedDegree (e.g. using the MinPredictedDegree rule when the base algorithm does not match
the current online node even though it has unmatched neighbors) often improves the performance
over the baseline algorithm and the greedy augmentation.

Figure 8 shows the degree distribution of the Oregon and Caida 2004 datasets as well as the `2
prediction error (square root of the sum of the squared error of the degree prediction for each offline
node in the current graph) over time of using the first days degrees as a prediction for future degrees.
As the prediction quality degrades, the performance of MinPredictedDegree slowly declines.
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Figure 7: Additional comparison of empirical competitive ratios on Real World graphs. Algorithms
depicted in gray are not online algorithms (they use extra information or multiple passes). Algorithms
in green are augmented with MPD.
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Figure 8: Degree distribution (left) and `2 prediction error over time (right) for the Oregon and Caida
2004 datasets.

31


	Introduction
	Preliminaries
	Related Work
	Algorithm
	Optimality of MPD on CLV-B graphs
	Competitive ratio of MPD on symmetric CLV-B random graphs
	Competitive ratios on power law graphs
	Differential equation analysis of MPD

	Experiments
	The Proof of Lemma 5.2
	The Proof of Lemma 5.3
	The Proof of Theorem 5.1
	MPD with Noisy Predictions
	Worst-Case Bound and Failure Modes
	Additional Competitive Ratio Results
	Solution to System of Differential Equations in Equation 3
	Proof of Theorem 6.1
	Upper Bound on Expected Maximum Matching Size
	Overview
	Construction

	Analysis on CLV-B random graphs in asymptotic case
	Asymptotic analysis of MinPredictedDegree
	Asymptotic analysis of maximum matching

	Analysis of MPD for Erdos-Rényi Random Bipartite Graphs
	Concentration of MinPredictedDegree
	Concentration of the Upper Bound on Maximum Matching Size
	Additional Experiments

