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Abstract

Equivariant networks capture the inductive bias about the symmetry of the learning
task by building those symmetries into the model. In this paper, we study how
equivariance relates to generalization error utilizing PAC Bayesian analysis for
equivariant networks, where the transformation laws of feature spaces are deter-
mined by group representations. By using perturbation analysis of equivariant
networks in Fourier domain for each layer, we derive norm-based PAC-Bayesian
generalization bounds. The bound characterizes the impact of group size, and mul-
tiplicity and degree of irreducible representations on the generalization error and
thereby provide a guideline for selecting them. In general, the bound indicates that
using larger group size in the model improves the generalization error substantiated
by extensive numerical experiments.

1 Introduction

Equivariant networks are widely believed to enjoy better generalization properties than their fully-
connected counterparts by including an inductive bias about the invariance of the task. A canonical
example is a convolutional layer for which the translation of the input image (over R2) leads to
translation of convolutional features. This construction can be generalized to actions of other groups
including rotation and permutation. Intuitively, the inductive bias about invariance and equivariance
helps to focus on features that matter for the task, and thereby help the generalization. Recently, many
works provide theoretical support for this claim mainly for general equivariant and invariant models.
In this work, however, we focus on a class of equivariant neural networks built using representation
theoretic tools. As in Shawe-Taylor and Wood [1996], Cohen and Welling [2016b], Weiler et al.
[2018a], this approach can build general equivariant networks using irreducible representations of a
group. An open question is about how to design feature spaces and combine representations. Besides,
the question of impact of these choices on generalization remain. On the other hand, while it is rather
well understood how to build a G equivariant model when G is finite, the choice of the group G to
consider is not always obvious. Indeed, using a subgroup H < G smaller than G is usually sufficient
to achieve significant improvements over a non-equivariant baseline. Moreover, the symmetries G
of the data are often continuous, which means G-equivariance can not be built into the model using
a group convolution design as in Cohen and Welling [2016a]. In such cases, the most successful
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approaches approximate it with a discrete subgroup H < G, e.g. see Weiler and Cesa [2019] for the
G = O(2) case. In addition, the choice of the equivariance group H can affect either the complexity
or the expressiveness of the model and, therefore, its generalization capability, depending on how
the architecture is adapted. For instance, if one can not freely increase the model size, using a larger
group H only increases the parameters sharing but reduces the expressiveness of the model. For this
reason, using the whole group G might not be beneficial even when feasible. In that line, we consider
how the choice of group size affects generalization.

Contributions In this paper, we utilize PAC Bayes framework to derive generalization bounds on
equivariant networks. Our focus is on equivariant networks built following Weiler et al. [2018a],
Cohen and Welling [2016b]. We combine the representation theoretic framework of Weiler and
Cesa [2019] with PAC-Bayes framework of Neyshabur et al. [2018] to get generalization bounds
on equivariant networks as a function of irreducible representations (irreps) and their multiplicities.
Different from previous PAC-Bayes analysis, we derive the perturbation analysis in Fourier domain.
Without this approach, as we will show, the naive application of Neyshabur et al. [2018] lead to
degenerate bounds. As part of the proof, we derive a tail bound on the spectral norm of random
matrices characterized as direct sum of irreps. Note that for building equivariant networks, we
need to work with real representations and not complex ones, which are conventionally studied in
representation theory. The obtained generalization bound provide new insights about the effect of
design choices on the generalization error verified via numerical results. To the best of our knowledge,
this is the first generalization bound for equivariant networks with an explicit equivariant structure.
We conduct extensive experiments to verify our theoretical insights, as well as some of the previous
observations about neural networks.

2 Related Works

Equivariant networks. In machine learning, there has been many works on incorporating symme-
tries and invariances in neural network design. This class of models has been extensively studied
from different perspectives Shawe-Taylor [1993, 1989], Kondor and Trivedi [2018], Cohen et al.
[2018], Mallat [2012], Dieleman et al. [2016], Cohen and Welling [2016a,b], Worrall et al. [2017],
Weiler et al. [2018b,a], Thomas et al. [2018], Bekkers et al. [2018], Weiler and Cesa [2019], Bekkers
[2020], Defferrard et al. [2019], Finzi et al. [2020], Weiler et al. [2021], Cesa et al. [2022] to mention
only some. Indeed, the most recent developments in the field of equivariant networks suggest a
design which enforces equivariance not only at a global level Laptev et al. [2016] but also at each
layer of the model. An interesting question is how a particular choice for designing equivariant
networks affect its performance and in particular generalization. A related question is whether
including this inductive bias helps the generalization. The authors in Sokolić et al. [2017a] consider
general invariant classifiers and obtain robustness based generalization bounds, as in Sokolić et al.
[2017b], assuming that data transformation changes the inputs drastically. For finite groups, they
reported a scaling of generalization error with 1/

p
|H| where |H| is the cardinality of underlying

group. In Elesedy [2022], the gain of invariant or equivariant hypotheses was studied in PAC learning
framework, where the gain in generalization is attributed to shrinking the hypothesis space to the
space of orbit representatives. A similar argument can be found in Sannai et al. [2021], where it is
shown that the invariant and equivariant models effectively operate on a shrunk space called Quotient
Feature Space (QFS), and the generalization error is proportional to its volume. They generalize
the result of Sokolić et al. [2017a] and relax the robustness assumption, although their bound shows
suboptimal exponent for the sample size. Similar to Sokolić et al. [2017a], they focus on scaling
improvement of the generalization error with invariance and do not consider computable architecture
dependent bounds. The authors in Lyle et al. [2020] use PAC-Bayesian framework to study the effect
of invariance on generalization, although do not obtain any explicit bound. Bietti and Mairal [2019]
studies the stability of models equivariant to compact groups from a RKHS point of view, relating
this stability to a Rademacher complexity of the model and a generalization bound. The authors in
Elesedy and Zaidi [2021] provided the generalization gain of equivariant models more concretely and
reported VC-dimension analysis. Subsequent works also considered the connection of invariance and
generalization Zhu et al. [2021]. In contrast with these models, we consider the equivariant networks
with representation theoretic construction. Beyond generalization, we are interested in getting design
insights from the bound.
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Generalization error for neural networks. A more general study of generalization error in neural
networks, however, has been ongoing for some time with huge body of works on the topic. We
refer to some highlights here. A challenge for this problem was brought up in Zhang et al. [2017],
where it was shown using the image-net dataset with random labels, that the generalization error
can be arbitrarily large for neural networks, as they achieve small training error but naturally cannot
generalize because of random labels of images. Therefore, any complexity measure for neural
networks should be consistent with the above observation. As a result, uniform complexity measures
like VC-dimension do not satisfy this requirement as they provide a uniform measure over the whole
hypothesis space.

In this light, recent works related the generalization errors to quantities like margin and different
norms of weights for example in, among others, Wei and Ma [2019], Sokolić et al. [2017b], Neyshabur
et al. [2018], Arora et al. [2018], Bartlett et al. [2017], Golowich et al. [2018], Dziugaite and Roy
[2018a], Long and Sedghi [2019], Vardi et al. [2022], Ledent et al. [2021], Valle-Pérez and Louis
[2020]. Some of these bounds are still vacuous or dimension-dependent (see Jiang et al. [2020] for
detailed experimental investigation and Nagarajan and Kolter [2019], Koehler et al. [2021], Negrea
et al. [2021] for follow-up discussions on uniform complexity measures). Class of convolutional
neural networks are particularly relevant as they can be considered as a special case of equivariant
models. These models are discussed in Pitas et al. [2019], Long and Sedghi [2019], Vardi et al. [2022],
Ledent et al. [2021]. We choose PAC Bayesian framework for deriving generalization bounds. There
are many works on PAC Bayesian bounds for neural networks Neyshabur et al. [2018], Biggs and
Guedj [2022], Dziugaite and Roy [2017, 2018b,a], Dziugaite et al. [2020] ranging from randomized
and deterministic bounds to choosing priors for non-vacuous bounds. Our method combines the
machinery of Neyshabur et al. [2018] with representation theoretic tools.

3 Background

3.1 Preliminaries and notation

We fix some notations first. We consider a classification task with input space X and output space
Y . The input is assumed to be bounded in `2-norm by B. The data distribution, over X ⇥ Y , is
denoted by D. The hypothesis space, H, consists of all functions realized by a L-layer general neural
network with 1-Lipschitz homogeneous activation functions3. The network function, fW(·) with
fixed architecture, is specified by its parameters W := (W1, . . . ,WL). The operations on W are
extended from the underlying vector spaces of weights. For any function f(·), the k’th component
of the function is denoted by f(x)[k] throughout the text. For a loss function L : H⇥ X ⇥ Y ! R,
the empirical loss is defined by L̂(f) := 1

m

P
m

i=1 L(f, (xi, yi)) and the true loss is defined by
L(f) = E(x,y)⇠D[L(f, (x, y))]. For classification, the margin loss is given by

L�(fW) = P(x,y)⇠D

✓
fW(x)[y]  � +max

j 6=y

fW(x)[j]

◆
. (1)

The true loss of a given classifier is then given by L(fW) = L0(fW). The empirical margin loss
is similarly defined and denoted by L̂� . In this work, we consider invariance with respect to
transformations modeled as the action of a compact group G. See Supplementary 7 for a brief
introduction to group theory and the concepts that we will use throughout this paper.

3.2 Equivariant Neural networks

We provide a concise introduction to equivariant networks here with more details given in Supple-
mentary 8. We adopt a representation theoretic framework for building equivariant models.

Example. Consider a square integrable complex valued function f with bandwidth B defined on
2D-rotation group SO(2) and represented using its Fourier series as f(✓) =

P
B

n=0 ane
in✓. Consider

an equivariant linear functional of f mapping it to another function on SO(2). In Fourier space, the
linear transformation is given by Wa with a as the Fourier coefficient vector a = (a0, . . . , aB).
The action of rotation group on the input and output space is simply given by f(✓) ! f(✓ � ✓0)
with ✓0 as the rotation angle, or equivalently in Fourier space as a linear transformation a ! ⇢(✓0)a

3The function �(·) is homogeneous if and only if for all x and � 2 R, we have �(�x) = ��(x).
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Figure 1: An equivariant layer maps the coefficients corresponding to each frequency (irrep)  
to a new set of coefficients based on the matrix cWl( ), which include blocks of cWl( , i, j) with
i 2 [ml�1, ] and j 2 [ml, ].

with ⇢(✓0) = diag (1, e�i✓0 . . . e�iB✓0). Since it holds for all a, Equivariance condition means
W ⇢(✓0) = ⇢(✓0)W for all ✓0, which implies that W should be diagonal. A general feature
space can be built by stacking multiple linear transformations W , and more flexibly, by letting the
transformations acting only on some of the frequencies (for example, a transformation that acts only
on aB for frequency B). This machinery can be generalized to represent equivariant networks with
respect to any compact group, by using irreducible representations (irreps) of the group in place of
complex exponential ein✓ of this example. The key is to notice that ein✓’s are irreps of SO(2).

General Model. Consider an Multi-Layer Perceptron (MLP) with L layers with the layer l 2 [L]
given by the matrix Wl 2 R

cl⇥cl�1 . The action of the group H on layer l is determined by a linear
transformation ⇢l, which is called the group representation on R

cl (see section 8 for more details).
A group element h 2 H linearly transforms the layer l by the matrix ⇢l(h). The matrix Wl is
equivariant w.r.t. the representations ⇢l and ⇢l�1 acting on its input and output if and only if for all
h 2 H , we have:

Wl⇢l�1(h) = ⇢l(h)Wl .

Representation theory provides a way of characterizing equivariant layers using Maschke’s theorem
and Schur’s lemma. The key step is to start from characterizing the irreducible representations (irreps)
{ } of the group H . As we will see, irreps are closely related to generalization of Fourier analysis
for functions defined on H . Maschke’s theorem implies that the representation ⇢l decomposes into
direct sum of irreps as ⇢l = Ql

⇣L
 

Lml, 

i=1  
⌘
Q�1

l
, where ml, is the number of times the irrep  

is present in the representation ⇢l, that is, its multiplicity. Each  is a dim ⇥ dim matrix, and the
direct sum is effectively a block diagonal matrix with matrix irreps  on the diagonal. Through this
decomposition, we can parameterize equivariant networks in terms of irreps, that is in Fourier space.
Defining cWl = Q�1

l
WlQl�1, the equivariance condition writes as

cWl

0

@
M

 

ml�1, M

i=1

 

1

A =

0

@
M

 

ml, M

i=1

 

1

A cWl.

The block diagonal structure of
⇣L

 

Lml, 

i=1  
⌘

induces a similar structure on cWl (see Figure 6).

By cWl( 2, j, 1, i) denote the block in cW that relates i’th instance of  1 to j’th instance of  2,
with i 2 [ml�1, 1 ] and j 2 [ml, 2 ], as:

8h, cWl( 2, j, 1, i) 1(h) =  2(h)cWl( 2, j, 1, i).

Schur’s lemma helps us to characterize the equivariant kernels. Note for neural network implemen-
tation, we need to work with a version of Schur’s lemma for real-valued representations given in
Supplementary 8. Schur’s lemma implies that if  1 6=  2, the block needs to be zero to guarantee
equivariance. Otherwise, it needs to have one of the three forms in Supplementary 8, depending on
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the type of  1. To simplify the notation, we write cWl( , j, , i) as cWl( , j, i). As it is shown in
Supplementary 8, the matrix cWl( , j, i) can be written as the linear sum

cWl( , j, i) =

c X

k=1

[wl,i,j( )kBl, ,i,j,k (2)

where {[wl,i,j( )k}
c 

k=1 are learnable parameters with fixed matrices Bl, ,i,j,k. The value of c 
is either 1,2 or 4. The structure of Bl, ,i,j,k changes according to each type c . Each layer is
parameterized by the matrices cWl( ), which include c parameters [wl,i,j( ) 2 R

c with i 2
[ml�1, ] and j 2 [ml, ]. Therefore, for each layer, there will be

P
 
ml, ml�1, c parameters

with the width of the layer l given as cl =
P
 
ml, dim . Note that, if xl = Wlxl�1, then

bxl = cWlbxl�1, where bxl = Q�1
l

xl. The non-linearities should satisfy equivariance condition to have
full end-to-end equivariance. An important question is which representation ⇢l of H should be used
for each layer. For the input, the representation is fixed by the input space and its structure. However,
the intermediate layers can choose ⇢l by selecting irreps and their multiplicity. We explain how this
choice impacts generalization bounds. We consider a general equivariant network denoted by fW
with the parameters of l’th layer given by [wl,i,j( ) for all irreps  , i 2 [ml�1, ] and j 2 [ml, ].

4 PAC-Bayesian bound

We derive PAC-Bayes bounds for equivariant networks fW presented in the previous section. Although
the proof follows a similar strategy as in Neyshabur et al. [2018], it differs in two important aspects.
First, the weights of equivariant MLPs have specific structure requiring reworking proof steps.
Second, we carry out the analysis in Fourier domain. In Supplementary 11, we also show that naively
applying norm-bounds of Neyshabur et al. [2018] cannot explain the generalization behaviour of
equivariant networks. A simple version of our result is given below.
Theorem 4.1 (Homogeneous Bounds for Equivariant Networks). For any equivariant network, with

high probability we have:

L(fW)  L̂�(fW) + Õ

0

BB@

vuuuut
Q

l
kWlk22
�2m⌘

 
LX

l=1

p
M(l, ⌘)

!2
0

B@
X

l

P
 ,i,j

���cWl( , i, j)
���
2

F

/ dim 

kWlk22

1

CA

1

CCA

where ⌘ 2 (0, 1) and

M(l, ⌘) := log

 P
L

l=1

P
 
ml, 

1� ⌘

!
max
 

(5ml�1, ml, c ) . (3)

The complete version of the theorem is given in Theorem 9.1.

We comment briefly on the proof steps. PAC-Bayesian generalization bounds start with defining
a prior P and posterior Q over the network parameters. The network is drawn randomly using Q,
which is also used to evaluate the average loss and generalization error. The PAC-Bayesian bound
provides a bound on the average generalization error of networks randomly drawn from Q (Section
4.1). The next step is to de-randomize the bound and to obtain the generalization error for a specific
instance fW 2 H. Among different strategies, we follow the perturbation based method of Neyshabur
et al. [2018]. The main idea is to carefully define a posterior Q, such that the networks randomly
drawn from Q have small distance with the specific fW, and therefore the loss averaged over Q can
be used to bound the loss of fW. One way to choose Q is to define a Gaussian distribution around the
parameters W and choose the variance to control the output perturbation (Section 4.2).

In what follows we provide more details about these steps.

4.1 PAC-Bayesian Bounds for Randomized Networks

The starting point is the PAC-Bayes theorem Langford and Shawe-taylor [2002], McAllester [1998],
which provides a generalization bound on randomized classifiers. If the function is chosen randomly
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from a distribution Q, then define the average losses as L(Q) = Ef⇠QL(f) and L̂(Q) = Ef⇠QL̂(f).
We use the following version from Germain et al. [2009].
Lemma 4.2. For any hypothesis space H, let P be a probability distribution on H. Then for all

� 2 (0, 1], with probability 1� �, for all Q on H, we have:

L(Q)  L̂(Q) +

r
D(QkP ) + log(⇠(m)/�)

2m
. (4)

where ⇠(m) :=
P

m

k=0

�
m

k

�
(k/m)k(1� k/m)m�k

.

In PAC-Bayes vernacular, the distributions P and Q are called a prior and a posterior distribution
on H. This indicates that the distribution P and Q are chosen independently with Q typically
chosen based on the training data and the obtained model, and P chosen independently based on
any information available before training. Choosing an appropriate prior plays a central role in
getting non-vacuous bounds. For instance in Dziugaite and Roy [2017], the prior P is chosen
using a separate dataset not used during training. Lemma 4.2 provides immediately a generalization
bound for randomized equivariant classifiers. The hypothesis space is parameterized by the network
parameters W, which contains kernel parameters [wl,i,j( ). We choose a prior distribution P as
zero-mean normal with covariance matrix �2I over the parameters. The posterior Q is chosen as
normal distribution with the final parameters [wl,i,j( ) as mean value and the same covariance matrix
�2I . The KL-divergence in the PAC-Bayesian theorem is then given by:

D(QkP ) =

P
l, ,i,j

��[wl,i,j( )
��2
2

2�2
. (5)

The generalization bound depends on the sum of the norm of kernels. In the next step, we de-
randomize the bound to get a bound on the generalization error of fW.

4.2 De-Randomization and Perturbation Bounds

Our de-randomization technique follows closely that of Neyshabur et al. [2018]. We provide the
sketch of derivations here, and the full proof is relegated to the supplementary materials. To de-
randomize the previous bound, a common step is to choose Q such that the probability of margin
violation is controlled. Let SW be defined as:

SW := {h 2 H : kh� fWk1  �/4}. (6)

Any function on this set can change the margin of fW at most by �/2. Therefore, for any h,
L(fW)  L�/2(h), which implies L(fW)  L�/2(Q) if Q is supported only on this set. Similarly
L̂�/2(Q)  L̂�(fW). To choose Q, first, we characterize the output perturbation of equivariant
networks for a given input perturbation. Next, we determine the variance � such that the output
perturbation is bounded by �/4 with probability4 1/2. The first step is the perturbation analysis.
Lemma 4.3 (Perturbation Bound). For a neural network fW(·) with input space of `2-norm bounded

by B, and for any weight perturbations U = (U1, . . . ,UL), we have:

kfW+U(x)� fW(x)k2  eB

 
LY

i=1

kWik2

!
LX

i=1

kUik2
kWik2

. (7)

For equivariant networks, where the weights are parameterized as in eq. 2, the spectral norm of the

perturbation Ul is bounded as

kUlk2 

vuutmax
 

max
1iml�1, 

ml�1, 
1

dim 

ml, X

j=1

���cUl( , j, i)
���
2

F

(8)

The first inequality is already given in Neyshabur et al. [2018]. The inequality 8 will be shown in
supplementary materials.

4This value can be changed to any probability with proper adjustments. See the supplementary materials.
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The perturbation bound already suggests the benefit of equivariant Kernels. As it will be shown in
Supplementary materials, the equivariant kernels w.r.t.  satisfy

kW k2 =
1p
dim 

kW k
F
, (9)

which is the smallest possible norm (compare with general relation for dim ⇥ dim matrices:

kW k2 � 1p
dim 

kW k
F

). Therefore, the term 1
dim 

���cUl( , j, i)
���
2

F

in the perturbation bound is

already tight.

The perturbation bound helps defining a posterior Q by adding zero-mean Gaussian perturbations
[ul,i,j( )k of variance �2 to the learnable parameters [wl,i,j( )k. The output perturbation is given by
the above theorem in terms of norm of Ui. The following lemma controls the norm of this random
matrix, and thereby the output perturbation.
Lemma 4.4. Consider a random equivariant matrix Ul defined by i.i.d. Gaussian N(0,�2) choice

of [ul,i,j( )k in eq. 2. We have:

P

 
kUlk2 � �

r
max
 

(5ml�1, ml, c t)

!


0

@
X

 

ml, 

1

A e�t (10)

The proof is given in supplementary materials. With Lemma 4.4, we can choose the variance �2 such
that the output perturbation does not violate the intended margin. Using an union bound over all
layers, one finds that by choosing t = log

⇣
2
P

l

P
 
ml, 

⌘
, with probability at least 1

2 the following
inequality holds for every layer l 2 [L]:

kUlk2 < �
q
max
 

5ml�1, ml, c 

vuuutlog

0

@2
X

l

X

 

ml, 

1

A (11)

We can use this bound jointly with the perturbation bound eq. 7 to choose � such that the margin
is below �/4 with high probability. Note that the � chosen in this way is a function of learned
weights. This cannot be the case because of the prior P should be fixed prior to learning. A
trick for circumventing this issue is to select many priors that can adequately cover the space of
possible weights, and take the union bound over it. The complete proof of the theorem is given
in Supplementary 9, where we also consider special cases of this generalization bound for group
convolutional networks Cohen and Welling [2016a].

Remarks on the generalization error from the theory. The generalization error of Theorem 4.1
contains multiple terms. First, the term ⌘ is a hyperparameter, which will be fixed to 1/2 for the
rest. The term M(l, ⌘) encodes the multiplicity and type of used irreps and their impact on the
generalization error. Let the hidden layer dimension cl =

P
 
dim ml, be fixed to a constant.

For Abelian groups, all real irreps are at most 2-dimensional, therefore, restricting the network to
2-dimensional irreps, we have:

M(l, ⌘) = log

 P
L

l=1 cl
2(1� ⌘)

!
max
 

(5ml�1, ml, c ) .

The bound can be controlled further by appropriate choice of ml�1, ,ml, , c , which favors smaller
multiplicity and type c . Therefore, the bound favors using different irreps instead of repeating them.
For non-abelian cases, irreps can have larger dim , which keeping the layer dimension cl fixed,
amounts to smaller multiplicity. This can improve the sum

P
L

l=1

P
 
ml, in M(l, ⌘) and indicates

a potential improved generalization for non-abelian groups. For dihedral groups, which is in general
non-abelian, the real irreps are also at most two dimensional, however, of type c = 1. Note that for
finite groups, there is a connection between irrep degrees and group order |H| =

P
 
dim2

 
/c . The

impact of group size manifests itself in the whole generalization error term. We numerically verify
this in the experimental results. The inverse dependence on margin � is expected and similar to other
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Figure 2: Comparison between the bound in Theorem 4.1 (1st row) and the one in Supplementary 11
(2nd row) on the synthetic O(2) datasets with different frequencies. The bound from Supplemen-
tary 11 clearly does not capture the effect of group equivariance.

works for instance Neyshabur et al. [2018]. The rest of the terms contain different norms of neural
network kernels. We discuss them more in connection with Neyshabur et al. [2018].

Comparison to Neyshabur et al. [2018]. There are two main differences with the
bound in Neyshabur et al. [2018]. First, their bound has a norm dependence of
Õ
⇣
(
Q

l
kW k22)(

P
l
kW k2

F
/ kW k22)

⌘
, while in our result, the Frobenius norm includes an ad-

ditional scaling of 1/ dim in
���cWl( , i, j)

���
2

F

/ dim . This term is strictly smaller in our bound for

dim > 1. The second difference is the term (
P

l
M(l, ⌘))2, which is replaced with L2h ln(Lh)

where h is the layer width. In our case, the layer width is cl =
P
 
dim ml, . Choosing all

layer widths cl equal to h, we recover the ln(Lh) term from Neyshabur et al. [2018] in our bound.
The remaining term is O

⇣�P
l

p
ml�1, ml, c 

�2⌘. As an example, assume the same multiplicity
ml, = ml and same dimension dim = dim for all irreps, that is, h = N dimml with N being the
number of used irreps. Then, we get a term as O

�
h2L2/(N dim)2

�
. As long as the multiplicity ml

is smaller than N dim, i.e. number of used irreps times their dimension, our bound is strictly tighter.
Intuitively, this means that using more diverse irreps leads to better generalization. See Section 11 for
more detailed discussions.

5 Experiments

In this section, we also validate the theoretical insights derived in the previous section. More
experiments and discussions are included in Supplementary 12.

We have used datasets based on natural images and synthetic data. In all experiments, we consider
data symmetries G which are subgroups of the group O(2) of planar rotations and reflections. This
includes a number of finite/continuous and commutative/non-commutative groups, in particular
CN (N rotations), DN (N rotations and reflections), SO(2) (continuous planar rotations) and O(2)
itself (see Supplementary 7). Moreover, all models are based on group convolution over a finite
subgroup H < G Cohen and Welling [2016a]. This means that the features of the layer l have shape
|H| ⇥ cH

l
, that is, cH

l
channels of dimension |H|. For each layer l, we keep the total number of

features (approximatively) constant when changing the group H . Models are trained until 99% of the
training set is correctly classified with at least a margin �. We used � = 10 in the synthetic datasets
and � = 2 in the image ones.

First, we compare our result with the bound derived in Supplementary 11 using naive application of
Neyshabur et al. [2018]. In Fig. 2 and Fig. 3, we compare these two bounds on 6 synthetic datasets
with O(2) and SO(2) symmetries (one per column). Each dataset lives on high dimensional tori
and O(2) (or SO(2)) rotates the circles composing them, with different frequencies. We consider
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Figure 3: Comparison between Theorem 4.1 (1st row) and the one in Supplementary 11 (2nd row) on
the synthetic SO(2) datasets.

different maximum frequencies F 2 {1, 2, . . . , 6} in the experiments. For example, in Fig. 2, the
first plot on the left corresponds to a synthetic dataset with O(2) symmetry generated only using
frequency 1. See Supplementary 12.1 for more details and visualization of the synthetic data.

The results in Fig. 2 and 3 indicate that the bound built using the strategy from Neyshabur et al. [2018]
cannot explain the effect of equivariance on generalization. Conversely, the bound in Theorem 4.1,
which uses the parametrization in the Fourier domain, correlates with the measured generalization
error, suggesting that it can account for the effect of different groups on generalization. In addition,
note that it also correlates with the saturation effect observed when using larger discrete groups H to
approximate the continuous group G = O(2). Indeed, on low frequency datasets, the bound tends to
saturate faster as we increase the group size |H|. Conversely, on high frequency datasets, choosing a
larger group H results in larger improvements in the estimated bound.
Remark 5.1. As it can be seen in our experiments in Fig 2 and 3, our bound is larger that the one in
Neyshabur et al. [2018]. This is partially due to coarse approximation of Frobenius norm and the
presence of the term h2 in our bound. This dependency could be alleviated if we increase the number
of used irreps in the group convolutional network, namely the larger group size. It is an interesting
research direction to explore the optimal dependency on the width for equivariant networks.

In Fig. 4, we perform a larger study on the transformed MNIST datasets to investigate the simultaneous
effect of the group size |H|, data augmentation and training set size m. For each training data size,
the generalization error improves with larger equivariance group H .

We study the relation between the term
P

l

p
M(l, ⌘) and the generalization error observed. Note

that this term depends only on the architecture design, i.e. it is data and training agnostic. In Fig. 5,
we show the correlation between these two quantities for two synthetic datasets. Both datasets have
G = O(2) symmetry, but the data rotates with frequencies up to F = 1 in the first case and F = 6
in the second. We observe that the term

P
l

p
M(l, ⌘) correlates strongly with the generalization

in the high-frequency dataset (F = 6), where the generalization benefits from increasing the size
of the equivariance group. Conversely, in the low-frequency case (F = 1), we observe a saturation
of the performance, as increasing the group size does not improve generalization. In this setting,
the term

P
l

p
M(l, ⌘) is only a weak predictor of generalization. From these observations, we

interpret this term as an indicator of the expressiveness of a model. Particularly, when the irreps are
chosen compatible with the dataset symmetries, the term

P
l

p
M(l, ⌘) provides a good guideline

for the architecture choice. However, similar to general neural networks, the generalization error is
dependent on other factors as well, which can be for example norms of network weights.

6 Conclusion

We provided learning theoretic frameworks to study the effect of invariance and equivariance on
the generalization error and provide guidelines for design choices. The obtained bounds provide
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(a) H=CN , G=SO(2) (b) H=CN , G=O(2) (c) H=DN , G=O(2)

(d) H=CN ,G=SO(2)(augment) (e) H=CN , G=O(2) (augment) (f) H=DN , G=O(2) (augment)

Figure 4: Generalization Error (GE) of different H-equivariant models (H = CN or H = DN ) on
different G-MNIST datasets (G = SO(2) or G = O(2)) for different training set sizes m.

(a) G = O(2), Frequency F = 1 (b) G = O(2), Frequency F = 6

Figure 5: Correlation between the term
P

l

p
M(l, ⌘) and the Generalization Error (GE) of different

H-equivariant models (H = CN or H = DN ) on the synthetic O(2) dataset with frequency F = 1
and F = 6, with a training set size m = 3200.

useful insights and guidelines for understanding these architectures. As limitation of our work, we
show experimentally in supplementary materials that the obtained bounds do not decrease with larger
training sizes m as expected. Nevertheless, for a fixed training set, the trend of the generalization
bound correlates with the generalization error.
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Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel Rodrigues. Robust Large Margin Deep
Neural Networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, August 2017b.
ISSN 1053-587X. doi: 10.1109/TSP.2017.2708039.

Nathaniel Thomas, Tess Smidt, Steven M. Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational

mathematics, 12(4):389–434, 2012.

Guillermo Valle-Pérez and Ard A. Louis. Generalization bounds for deep learning, December 2020.
URL http://arxiv.org/abs/2012.04115. arXiv:2012.04115 [cs, stat].

Gal Vardi, Ohad Shamir, and Nathan Srebro. The Sample Complexity of One-Hidden-Layer Neural
Networks. arXiv:2202.06233 [cs, stat], February 2022. URL http://arxiv.org/abs/2202.

06233.

Colin Wei and Tengyu Ma. Improved Sample Complexities for Deep Networks and Robust Classifi-
cation via an All-Layer Margin. arXiv:1910.04284 [cs, stat], October 2019. arXiv: 1910.04284.

Maurice Weiler and Gabriele Cesa. General E(2)-Equivariant Steerable CNNs. In Conference on

Neural Information Processing Systems (NeurIPS), 2019.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S. Cohen. 3D steerable
CNNs: Learning rotationally equivariant features in volumetric data. In Conference on Neural

Information Processing Systems (NeurIPS), 2018a.

Maurice Weiler, Fred A. Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant CNNs. In Conference on Computer Vision and Pattern Recognition (CVPR), 2018b.

Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. Coordinate Independent Convolu-
tional Networks–Isometry and Gauge Equivariant Convolutions on Riemannian Manifolds. arXiv

preprint arXiv:2106.06020, 2021.

Jeffrey Wood and John Shawe-Taylor. Representation theory and invariant neural networks. Discrete

Applied Mathematics, 69(1):33 – 60, 1996. ISSN 0166-218X. doi: https://doi.org/10.1016/
0166-218X(95)00075-3.

13

http://arxiv.org/abs/2012.04115
http://arxiv.org/abs/2202.06233
http://arxiv.org/abs/2202.06233


Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow. Harmonic
networks: Deep translation and rotation equivariance. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In ICLR 2017, 2017.

Sicheng Zhu, Bang An, and Furong Huang. Understanding the Generalization Benefit of Model
Invariance from a Data Perspective. In Advances in Neural Information Processing Systems, 2021.

14



Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] The code and
the data are proprietary

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We have scatter plots of points from each run.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15


