
A Data collection and annotation methodology

This section outlines the search methodology and data recording practices used to collect the dataset
of algorithm performance and evaluation methodologies for the field of cooperative MARL.1 The
dataset used in the main body of this paper reflects the algorithm evaluation practices of published
cooperative MARL papers only. We note that the original data collection was not restricted to
accepted publications and cooperative MARL, as it instead attempts to incorporate all prominent
and contemporary deep MARL algorithms and approaches from all available studies. This is
reflected in this appendix, where we refer to data collected from all recorded papers (published,
rejected, unknown, and non-cooperative) as all papers. Similarly, we refer to the data collected from
cooperative published papers (which were used in the main body of this work) as the main papers.
The non-published papers and non-cooperative published papers are referred to as the other papers.

A.1 Paper search strategy

2016 2017 2018 2019 2020 2021 2022
Year

0

5

10

15

20

25

N
um

be
r o

f p
ap

er
s

Type of paper
Main
Other

Figure 1: Recorded papers by year

In order to gather data on MARL algorithm performance evaluation, we gathered relevant MARL
research papers which were published between the years 2016 and 2022. To identify relevant
studies, searched for relevant research key terms, such as “Multi-agent RL”, “MARL evaluation” and
“Benchmarking MARL”. We searched the arXiv website for these terms in different combinations of
the title, abstract and keywords. Additionally, several papers were included from the reference list
of other papers. Although we do not claim to have a dataset comprised of all modern deep MARL
algorithms, we strive to collect data on at least all of the most widely used deep MARL algorithms.
To our knowledge, all major deep MARL algorithms are represented in our dataset and this dataset
is the first of its kind. The search queries were finalized on the 8th of April 2022. The published
research papers that we recorded can be found in Table 1, where these were published at various
conferences including ICML, NeurIPS, ICLR, and others.

A.2 Filtering data to find relevant studies

Following the initial data collection, the dataset was refined to ensure relevance using the following
criteria:

• The papers must be either peer review conference or journal papers, and published in the
English language.

• Papers were restricted to only those which focus exclusively on the cooperative MARL case.

1Meta-analysis dataset on MARL evaluation https://bit.ly/3Lp4pHx

1

https://bit.ly/3Lp4pHx

Table 1: Published cooperative MARL research papers collected and manually annotated for data
analysis of algorithm performance evaluation methods.
Title Authors Conference

Learning Multiagent Communication with Backpropagation Sukhbaatar et al. (2016) NeurIPS
Learning to Communication in Deep Multi-Agent Reinforcement Learning Foerster et al. (2016) NeurIPS
Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability Omidshafiei et al. (2017) ICML
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments Lowe et al. (2017) NeurIPS
Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning Foerster et al. (2017) ICML
MultiAgent Soft-Q Learning Wei et al. (2018) AAAI
Counterfactual Multi-Agent Policy Gradients Foerster et al. (2018) AAAI
Value-Decomposition Networks For Cooperative Multi-Agent Learning Based On Team Reward Sunehag et al. (2018) AAMAS
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning Rashid et al. (2018) ICML
Learning when to Communicate at Scale in Multiagent Cooperative and Competitive Tasks Singh et al. (2019) ICLR
Actor-Attention-Critic for Multi-Agent Reinforcement Learning Iqbal and Sha (2019) ICML
Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control Zhang et al. (2019) NeurIPS
MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning Malysheva et al. (2019) IEEE
Modelling the Dynamic Joint Policy of Teammates with Attention Multi-agent DDPG Mao et al. (2019) AAMAS
The StarCraft Multi-Agent Challenge Samvelyan et al. (2019) AAMAS
Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning Jaques et al. (2019) ICML
LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning Du et al. (2019) NeurIPS
MAVEN: Multi-Agent Variational Exploration Mahajan et al. (2019) NeurIPS
Multi-Agent Common Knowledge Reinforcement Learning Schroeder de Witt et al. (2019) NeurIPS
A Structured Prediction Approach for Generalization in Cooperative Multi-Agent Reinforcement Learning Carion et al. (2019) NeurIPS
TarMAC: Targeted Multi-Agent Communication Das et al. (2019) ICML
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning Son et al. (2019) ICML
Influence-Based Multi-Agent Exploration Wang et al. (2020a) ICLR
Multi-Agent Game Abstraction via Graph Attention Neural Network Liu et al. (2020a) AAAI
Feudal Multi-Agent Hierarchies for Cooperative Reinforcement Learning Ma and Wu (2020) AAMAS
PIC: Permutation Invariant Critic for Multi-Agent Deep Reinforcement Learning Liu et al. (2020b) CoRL
Action Semantics Network: Considering the Effects of Actions in Multiagent Systems Wang et al. (2020b) ICLR
Succinct and Robust Multi-Agent Communication With Temporal Message Control Zhang et al. (2020) NeurIPS
Learning Multi-Agent Coordination for Enhancing Target Coverage in Directional Sensor Networks Xu et al. (2020) NeurIPS
Learning Nearly Decomposable Value Functions Via Communication Minimization Wang et al. (2020c) ICLR
Promoting Coordination through Policy Regularization in Multi-Agent Deep Reinforcement Learning Roy et al. (2020) NeurIPS
Shapley Q-value: A Local Reward Approach to Solve Global Reward Games Wang et al. (2020d) AAAI
Deep Coordination Graphs Boehmer et al. (2020) ICML
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning Long et al. (2020) ICLR
Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning Christianos et al. (2020) NeurIPS
SMIX(λ): Enhancing Centralized Value Functions for Cooperative Multi-Agent Reinforcement Learning Wen et al. (2020) AAAI
Learning Transferable Cooperative Behavior in Multi-Agent Teams Agarwal et al. (2020) AAMAS
Comparative Evaluation of Cooperative Multi-Agent Deep Reinforcement Learning Algorithms Papoudakis et al. (2020) AAMAS
Learning Individually Inferred Communication for Multi-Agent Cooperation Ding et al. (2020) NeurIPS
Simplified Action Decoder for Deep Multi-Agent Reinforcement Learning Hu and Foerster (2020) ICLR
Learning Implicit Credit Assignment for Cooperative Multi-Agent Reinforcement Learning Zhou et al. (2020) NeurIPS
Variational Automatic Curriculum Learning for Sparse-Reward Cooperative Multi-Agent Problems Chen et al. (2021a) NeurIPS
Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL Chen et al. (2021b) NeurIPS
Deep Implicit Coordination Graphs for Multi-agent Reinforcement Learning Li et al. (2021) AAMAS
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-
Learning Sun et al. (2021) ICML
Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing Christianos et al. (2021) ICML
Towards Understanding Cooperative Multi-Agent Q-Learning with Value Factorization Wang et al. (2021a) NeurIPS
Investigation of Independent Reinforcement Learning Algorithms in Multi-Agent Environments Lee et al. (2021) NeurIPS
Celebrating Diversity in Shared Multi-Agent Reinforcement Learning Chenghao et al. (2021) NeurIPS
RODE: Learning Roles to Decompose Multi-Agent Tasks Wang et al. (2021b) ICLR
Local Advantage Actor-Critic for Robust Multi-Agent Deep Reinforcement Learning Xiao et al. (2021) IEEE MRS
MMD-MIX: Value Function Factorisation with Maximum Mean Discrepancy for Cooperative Multi-Agent
Reinforcement Learning Xu et al. (2021) IJCNN
The Emergence of Individuality Jiang and Lu (2021) ICML
QVMix and QVMix-Max: Extending the Deep Quality-Value Family of Algorithms to Cooperative Multi-
Agent Reinforcement Learning Leroy et al. (2021) AAAI
Weighted QMIX: Expanding Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement
Learning Rashid et al. (2021) NeurIPS
Value-Decomposition Multi-Agent Actor-Critics Su et al. (2021) AAAI
Regularized Softmax Deep Multi-Agent Q-Learning Pan et al. (2021) NeurIPS
Cooperative Exploration for Multi-Agent Deep Reinforcement Learning Liu et al. (2021) ICML
Domain-Aware Multiagent Reinforcement Learning in Navigation Saeed et al. (2021) IJCNN
Evaluating Generalization and Transfer Capacity of Multi-Agent Reinforcement Learning Across Variable
Number of Agents Guresti and Ure (2021) AAAI
Episodic Multi-agent Reinforcement Learning with Curiosity-driven Exploration Zheng et al. (2021) NeurIPS
Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks Papoudakis et al. (2021) NeurIPS
Centralizing State-Values in Dueling Networks for Multi-Robot Reinforcement Learning Mapless Navigation Marchesini and Farinelli (2021) IROS
QPLEX: Duplex Dueling Multi-Agent Q-Learning Wang et al. (2021c) ICLR
Settling the Variance of Multi-Agent Policy Gradients Kuba et al. (2021) NeurIPS
FACMAC: Factored Multi-Agent Centralised Policy Gradients Peng et al. (2021) NeurIPS
Multi-Agent Incentive Communication via Decentralized Teammate Modeling Yuan et al. (2022) AAAI
LIGS: Learnable Intrinsic-Reward Generation Selection for Multi-Agent Learning Mguni et al. (2022) ICLR
ToM2C: Target-oriented Multi-agent Communication and Cooperation with Theory of Mind Wang et al. (2022) ICLR
Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning Kuba et al. (2022) ICLR
Reinforcement Learning for Location-Aware Warehouse Scheduling Stavroulakis and Sengupta (2022) ICLR
Multi-agent Transfer Learning in Reinforcement Learning-based Ride-sharing Systems Castagna and Dusparic (2022) ICAART
Off-Policy Correction For Multi-Agent Reinforcement Learning Zawalski et al. (2022) AAMAS
Local Advantage Networks for Cooperative Multi-Agent Reinforcement Learning Avalos et al. (2022) AAMAS
A Deeper Understanding of State-Based Critics in Multi-Agent Reinforcement Learning Xueguang Lyu (2022) AAAI

2

A.3 Annotations

The collected dataset was manually annotated to record methods of algorithm performance evaluation.
The dataset records the algorithms, environments and tasks used as well as all aspects relating to
the algorithm performance evaluation procedure that was available from the papers. The following
provides further details on the data annotation procedure:

A1. The names and dates of papers are recorded along with the conferences they are published
into and research labs associated with the authors.

A2. The algorithms being evaluated are recorded. In some cases the paper-specific names of algo-
rithms have been appropriately adapted. This is in cases where uniquely named algorithms
have only minor differences from their baselines. Further details of this standardisation
appear in subsection A.3.2. The algorithm libraries used are recorded when applicable (e.g.
EPyMARL Papoudakis et al. (2021)).

A3. We recorded the MARL environments, their sub-tasks/maps/scenarios and the choice of
version used for evaluation. Environment sub-tasks with different names, but which refer to
the identical sub-tasks were given standardised names (e.g. cooperative communication is
the second name for Speaker-Listener task in MPE).

A4. With regard to performance measurement, we recorded the aggregation functions across
runs or episodes (e.g. means) and, the metrics used (e.g. SMAC win rates or max rewards)
along with their measure of spread such as reported confidence interval values or standard
deviations. Additionally, to compare between cases of when win rates or rewards are
recorded, we report the general metric used.

A5. On occasion, data is only provided from performance plots and not from tables. Hence our
dataset records whether data is presented using plots or in tabular form. When data is only
provided by plots, we record the final value for a given metric as shown on a plot. For the
purpose of our records being as accurate as possible, we ensure these values are within 5%
of their true plotted value. Since we cannot exactly determine the confidence bounds from
plots alone we omit recording such values in these cases. However, we do still record the
type of uncertainty measure used, as presented by the author (and where available elsewhere
the uncertainty values).

A6. The evaluation intervals (evaluation frequency) and independent evaluations per interval
(evaluation duration) were also recorded along with their units (e.g. episodes or timesteps).
This includes the number of training runs and number of random seeds used. Here, evaluation
intervals that refer to the same measurement across papers were standardized (e.g. rounds
are changed to episodes).

A7. We record whether reported results are from previous works, i.e. when reported results are
from other cited papers and are not reproduced in the particular paper being recorded.

A.3.1 Environments’ annotations

• All SMAC win rates are reported as percentages (out of 100) and not probabilities (out of 1).
• We record an environment as paper-specific if it is created by the authors of a particular

paper and is not utilized in any other article.

A.3.2 Algorithm annotations

In the process of collecting the data for this paper it came to our attention that several algorithms go by
slightly different names across multiple papers. For the purposes of our analysis we have standardised
these naming choices, based on algorithm descriptions made by authors in their respective papers, to
more standardised naming conventions. IAC-V is first mentioned in the paper that presents COMA
Foerster et al. (2018). Due to the paper emerging very early into the growth of cooperative MARL
naming had not yet been normalised however, IAC-V is described as a standard advantage actor-critic
(AAC) algorithm using parameter sharing and can instead just be referred to as IAC. PSMADDPG
Mao et al. (2019) is a variant of MADDPG that makes use of parameter sharing which is the norm
in many other publications. Interestingly the original MADDPG paper Lowe et al. (2017) does not
make use of this. PSMADDPG can be considered to be MADDPG with a different implementation
choice and is grouped with MADDPG as the underlying algorithm is not altered. Both A3C and A2C

3

are named in the publications used in this analysis Wang et al. (2020b); Jaques et al. (2019). A2C and
A3C refer to the method by which the AAC algorithm is implemented to run using multiple parallel
workers with A2C being the synchronous and A3C being the asynchronous variant Mnih et al. (2016).
Very early MARL papers referred to independent Q learning simply as Deep Q Network Tampuu et al.
(2015). As MARL developed further it became more important to distinguish between independent
and centralised learners and DQN is commonly called IQL. Similarly DDPG can be renamed to
IDDPG to distinguish it as an independent learning algorithm. The centralised AAC algorithm is
also sometimes called a naive critic. Instead we refer to this method as central-V as this is the first
formalised name for this algorithm that we could find Foerster et al. (2016). Finally MAPPO Yu et al.
(2021) is referred to as MAPPO-shared for MAPPO with parameter sharing. However, parameter
sharing if the norm amongst most cooperative MARL publications therefore, MAPPO-shared is
simply renamed to MAPPO.

Table 2: Algorithm annotations
Name from paper Standardised naming Our interpretation

IAC-V (Foerster et al., 2018) IAC IAC-V is the same as IAC.
PSMADDPG (Mao et al. (2019)) MADDPG The PS denotes parameter sharing.
A3C (Wang et al., 2020b) IAC Asynchronous parallelization method for IAC.
A2C (Jaques et al., 2019) IAC Synchronous parallelization method for IAC.
MADQN (Tampuu et al., 2015) IQL Old naming conventions.
Naïve critic (Su et al., 2021) Central-V Naïve critic is the same as central-v.
MAPPO-shared (Lee et al., 2021) MAPPO Parameter sharing is the norm.
MADR (Park et al., 2020) MADDPG MADDPG with recurrency.
DDPG (Lowe et al., 2017) IDDPG Denote as independent learner.
DQN (Tampuu et al., 2015) IQL Denote as independent learner.

4

B Additional Analysis

This section provides additional insights from further analysis on our dataset of performance evalua-
tion for cooperative MARL algorithms.

B.1 Environment

B.1.1 Most used settings

In this section, we are primarily interested in highlighting some of our further findings from the main
papers. We first illustrate some of the most widely used settings for the most popular environments as
illustrated in Table 3. It should be noted that this analysis was conducted over 29 unique environments
with 164 unique scenarios.

Table 3: Most applicable parameters in each environment for the main papers
Environment Metric R. Seed Aggregate Function Independent variable Maps/Tasks Mentions

SMAC Win Rate (83.3%) 5 (41.7%) Median (48.4%) Timestep (97.3%) 39 37
MPE Reward (40%) 5 (34.8%) Mean (85%) Episode (48%) 25 33
Matrix Games Return (100%) 5-10-100 Mean (100%) Timestep (98.7%) - 9
MazeBase Win Rate (87.5%) 5 (80%) Mean (100%) Episode (44.1%) 2 7

StarCraft Multi-Agent Challenge (SMAC): is a partially observable environment, with a diverse set
of sophisticated micro-actions that enable the learning of complex interactions amongst collaborating
agents, the fundamental concept of SMAC is a team of agents battling against another group of units.
SMAC is the most widely used environment in our analysis, since it is employed as the experimental
environment in 37 of the main papers presenting 46.9% of the collected evaluation data. This finding
is not surprising as we have recorded 39 unique SMAC scenarios with varying scales of difficulty.
Moreover, many authors agree that SMAC offers a fair comparison of different algorithms since it
provides an open-source Python-based implementation of numerous fundamental MARL algorithms.

Multi-Agent Particle Environment (MPE): is an environment that can be fully or partially ob-
servable, cooperative or competitive, and allow communication within some of its tasks. In this
environment the agents primarily interact with the landmarks and other entities to achieve various
goals. We discover that 33 of the 75 papers employ MPE for algorithm testing, accounting for
20.3% of the collected evaluation data. MPE, like SMAC, is a diversified environment with 25 tasks;
nevertheless, we observe a disparity in their utilization, with 27.3% of the main papers utilizing
Predator and Prey, followed by Spread which is used in 22.7% of the collected main papers which
use the MPE environment.

B.1.2 Evolution of environment usage in MARL

In the early years of MARL research there was a shortage of established multi-agent environments,
as shown in figure 2 2. Hence most publications tested their algorithms on environments created by
the authors (paper-specific environments) as well as MazeBase. Although MazeBase was developed
for single-agent environments, it is easily adaptable to the multi-agent case and was used to create
the traffic junction combat tasks. This adaptability drove its early adoption. The Figure depicts that,
since 2017, we can observe an increase in the use of MPE tasks like Predator-Prey and Spread, as
well as StarCraft unit micromanagement. MPE was the most used environment in 2019 and, since
2020, we see SMAC dominating the others.

2The plotted environments occur in at least two papers.

5

2016 2017 2018 2019 2020 2021 2022
Year

0

5

10

15

20

25

N
um

be
r o

f p
ap

er
s

Environment:
MazeBase
Custom
Starcraft
MPE
Matrix Games
SMAC
MA-gym
SISL
Hanabi
RWARE
MAMuJoCo
GRF
LBF
Butterfly
Hide-And-Seek

Figure 2: Evolution of environment usage in all the papers

B.2 Algorithms

B.2.1 Training schemes analysis

Independent Learning (IL or DTDE): is a method that extends single-agent RL algorithms to
the multi-agent space. Agents learn an independent policy based on their own local observations
and, in the cooperative case, learn a policy based on a shared global reward. This type of learning
has low convergence guarantees because the learning of other agents causes the environment to
appear non-stationary to each individual agent since the agents’ behavior changes the dynamics of
the environment.

2016 2017 2018 2019 2020 2021 2022
Year

0

20

40

60

80

100

N
um

be
r o

f a
lg

or
ith

m
s

Learning
DTDE
CTDE

Figure 3: Number of algorithms based on learning
schemes by years for all the papers

Centralised Training Decentralised Execu-
tion (CTDE): much like IL, CTDE learns decen-
tralised agent policies where agents act based
on local observations. However, in the CTDE
paradigm we can make use of additional infor-
mation at training time that is normally not avail-
able to agents during execution. Typically this is
done by using a centralised-critic or some mix-
ing network which is allowed to condition on
the global environment state information or, has
access to open communication channels with all
agents. The centralised-critic or mixing network
is only used during training time which aids in
finding better agent polices during training time
without increasing computational overheads dur-
ing execution time.

Is the decline in the use of IL over time a positive or negative sign? CTDE has been demonstrated
to be a powerful approach that outperforms decentralized training in many cases. Nevertheless, we
cannot assume that it is the optimal solution in all cooperative MARL cases, since many studies,
have shown that it is still hard for agents to act cooperatively during execution. This is because
partial observability and stochasticity can easily break the learned cooperative strategy, resulting in
miscoordination. Recently, we observe the increase of communication algorithms. These can make
use of graph neural networks as a communication channel to help agents obtain information during
both training and execution.

B.2.2 Benchmark algorithms

In our analysis, we examine 150 algorithms where 73.3% are used only once over the 75 main papers.
In this section, we provide additional insights from the analysis of our data on the most relevant

6

algorithms. We summarize the use of these algorithms in our dataset in Table 4.

Table 4: Most used algorithms in the main papers
Algorithms Type of agent CTDE Policy Mentions

QMIX (Rashid et al., 2018) Value-based Yes Off 35
MADDPG (Lowe et al., 2017) Actor-critic Yes Off 25
VDN (Sunehag et al., 2018) Value-based Yes Off 23
COMA (Foerster et al., 2018) Actor-critic Yes On 22
IQL (Tampuu et al., 2015) Value-based No Off 20
MAPPO (Yu et al., 2021) Actor-critic Yes On 10
QPLEX (Wang et al., 2021c) Value-based Yes Off 10
QTRAN (Son et al., 2019) Value-based Yes Off 08
IAC (Foerster et al., 2018) Actor-critic No On 08
CommNet (Sukhbaatar et al., 2016) Policy optimization - - 06

We note that one can select approximately five of these widely used algorithms, from Table 4, as
baselines, against which one can evaluate the performance of a novel algorithm. As these algorithms
are well-studied they may provide a meaningful current set for comparison. Athough we list these
baselines, we do not consider this list to be exhaustive and researchers should strive to compare their
algorithms to algorithms that are currently known to have state of the art (SOTA) performance. The
five baselines we choose for discussion encompass both the CTDE and IL paradigm for cooperative
MARL as well as policy gradient (PG) and Q-learning based methods. To meet these requirements
we discuss QMIX (Rashid et al., 2018), MADDPG (Lowe et al., 2017), COMA (Foerster et al.,
2018), IQL (Tampuu et al., 2015) and MAPPO (Yu et al., 2021). Qmix is selected as it introduced
the concept of monotonic value-decomposition which formed the basis for the development of many
of the recent algorithmic developments. As shown by (Hu et al., 2021), fine-tuned implementations
of QMIX can still outperform newer methods that attempt to improve upon the original work. We
discuss MADPPG since it was introduced in the most widely cited MARL algorithm paper with 2070
citation at the time of writing. We also note that MADDPG provides a baseline for algorithms that
are used in mixed and competitive tasks. Although MADDPG was introduced as an algorithm to
be used on environments with continuous action spaces, the algorithm may also be adapted to the
discrete case. We discuss CommNet since it is a widely used algorithm, used in scenarios which
require agent communication in order to find optimal solutions. Furthermore we discuss MAPPO
due to recent work illustrating it’s effectiveness in cooperative MARL tasks (Yu et al., 2021). Lastly,
we discuss COMA since it is a widely used actor-critic algorithm. Moreover, each of the algorithms
mentioned have open sourced code implementations available (Samvelyan et al., 2019; Papoudakis
et al., 2021; Hu et al., 2021) which serve to decrease the amount of time researchers have to spend on
implementing baselines to evaluate against.

QMIX: is a value-based algorithm introduced by (Rashid et al., 2018) following on from the success
of VDN (Sunehag et al., 2018) in cooperative MARL tasks. Similarly to VDN, QMIX makes use
of a factorized joint Q-value function to train all agents. What differentiates QMIX from VDN
is that individual agents’ utilities are joined using a mixing network instead of only summing
them. Furthermore, the mixing network is constrained to having only positive weights, leading to
a monotonic factorisation of individual agent utilities, and is allowed to condition on the global
environment state during training time. QMIX follows the CTDE training paradigm and makes use
of recurrent neural networks for individual agent policies. This enables agents to learn joint policies
in partially observable settings. The initial performance of QMIX was illustrated by (Rashid et al.,
2018) on the SMAC benchmark.

In our analysis of QMIX, variants of QMIX and algorithms building on QMIX feature most promi-
nently in the 2s3z (18), 3s vs 5z (14), 3s5z (14), MMM2 (13) and 6h vs 8z (11) SMAC scenarios.
With numbers in parenthesis denoting the number of papers in which a QMIX variant is benchmarked
on a particular scenario.

CommNet: (Sukhbaatar et al., 2016) seeks to address the issue of effective agent communication in
partially observable cooperative settings. What differentiated CommNet from previous communica-
tion works is that the communication protocol between agents is not fixed, but instead learnt as a

7

neural model alongside agent training. This is possible due to agent communication being modeled
using a continuous, differentiable vector which is output by each agent. We find that CommNET is
used, most widely, on the TrafficJunction suite of environments which we find to be one of the most
widely used communication benchmarks for MARL.

Multi-Agent Deep Deterministic Policy Gradient (MADDPG): introduced by (Lowe et al., 2017),
is a multi-agent extension to the DDPG algorithm introduced by (Lillicrap et al., 2015). MADDPG
is an off-policy actor-critic type of algorithm. By default, each agent has a unique policy network
and Q-value critic network. Each agent’s policy is only allowed to condition on an agent’s partial
observation of the full environment state while, during training time, each critic conditions on the
actions selected by the policy networks of all other agents. MADDPG makes use of standard MLPs
for both the agent policy and critic networks but variations of MADDPG exist which make use of
recurrent neural networks (RNNs) for agent policies. Similarly, variations of MADDPG exist which
make use of weight sharing across agent networks to aid in speedups of algorithm training. An
advantage of MADDPG is that the algorithm is inherently applicable to both competitive, cooperative
and mixed environments. This versatility is displayed in the seminal paper by (Lowe et al., 2017).
In our analysis, MADPPG is most widely used for benchmarking on the multi-agent particle environ-
ment suite (MPE) with the algorithm being most widely used on the Predator-Prey (12), Spread (10)
and Speaker-Listener (5) scenarios.

Multi-Agent Proximal Policy Optimization (MAPPO): is a multi-agent extension to the single-
agent Proximal Policy Optimization (PPO) algorithm and mentioned explicitly by (Yu et al., 2021).
Similarly to PPO, MAPPO makes use of a value function, conditioned on the global environment
state, to serve as a baseline leading to reduced variance in policy-gradient optimization. Furthermore,
MAPPO may be implemented in the CTDE or IL paradigms depending on whether the value function
is allowed to condition on some representation of the global environment state or only on an agent’s
local observation of the environment.
In our analysis, we find that MAPPO is used an equal amount of times (4) on the corridor, (3) MMM2,
5m vs 6m, 3s5z SMAC scenarios as well as on (2) the spread MPE scenario.

Counterfactual Multi-Agent Policy Gradients (COMA): is an actor-critic algorithm the makes
use of the CTDE paradigm by using a centralized critic, which is allowed to condition on the full
environment state, with decentralized actors. This centralized critic is used during training time only
and foregone at execution time. The core contribution of COMA is through addressing the agent
credit assignment issue in MARL by utilizing a counterfactual advantage function that is unique to
each agent. In our analysis we find that COMA is used most frequently in the 2s3z (11), 3s5z (7),
1c3s5z (7) and the 3m (6) SMAC scenarios, as well (6) the Spread scenario from MPE.

B.3 Evaluation Settings

B.3.1 Metric

1 2 4 9
Number of used metrics

0

2

4

6

8

10

12

14

16

18

N
um

be
r o

f e
nv

iro
nm

en
ts

Figure 4: Number of metrics used per environment.

In general, metrics are used to monitor and quan-
tify a model’s performance. Through our anal-
ysis, we identify 25 unique metrics, which after
unifying the data, based on our annotations as
given in A4, we obtain 12 general metrics over
the published papers.

The most common three metrics, referred to in
our data are, Return, Reward and Win Rate
which are in 31.3%, 14.6% and 50% of the main
papers respectively. It is interesting to note that
Win Rate is such a widely used metric, espe-
cially since it is environment specific. We be-
lieve this high percentage is due to the high use
of the SMAC and Traffic junctions environments
which commonly use Win Rate.

We observe dependencies between the choice
of the environment and metrics. Out of the col-
lected SMAC data from the main papers 80.9%

8

use Win Rate as a metric, meanwhile in MPE, out of the 720 rows of collected data related to the
MPE environment, 35% use Return and 25.1% use Reward. Moreover, out of 29 environments over
the main papers, we find 19 use one only metric type.

B.3.2 Independent runs

Independent training runs can take place across different random seeds. In some experiments
multiple runs are completed for each random seed, for a fixed set of random seeds. Fixing the random
seed is an attempt to control some of the experiment’s sources of randomness. The number of runs is
important in determining the reliability of the evaluation. More independent runs provide more data
which allows for authors to report more accurate measures of spread alongside the point estimates of
algorithm performance.
The authors used to employ 10 to 20 runs in the Unit Micromanagement version of the StarCraft
environment, but since StarCraft II (SMAC) emerged, authors tend to use only around 5 independent
runs. This decline may be due to the environment being more computationally expensive to run.
However, we argue, similarly to (Agarwal et al., 2021) for the importance of having 10 independent
training runs for reliable confidence intervals.

B.3.3 Aggregate function

An aggregate function, also known as a measure of central tendency, is a single value that intends to
portray information about multiple results by determining the central position among a group of vari-
ous results. For aggregations over algorithm performance, we differentiate between two aggregation
steps: the first, which we refer to as the local aggregate function, denotes how aggregation is done
across evaluation episodes/evaluation runs in a fixed training run. The second, is the global aggregate
function. This denotes how we aggregate across independent training runs.
The performance of MARL algorithms is often reported using a point estimate of some task perfor-
mance metric, such as the mean and median aggregated over the independent training runs. The
mean is the most frequently used aggregation function, accounting for over 41.7% of all data gathered
from the main papers. It was the only utilized aggregate function in the early years of our recorded
dataset. Since 2019, we have seen the introduction of the median as an aggregate function, with
the launch of SMAC, and it has became one of the most widely used aggregate functions in SMAC,
with some limited use in MPE. The widespread use of the median as an aggregate function can be
attributed to the evaluation guideline proposed by (Samvelyan et al., 2019).

B.3.4 Measure of spread

The measure of spread plays an important role in delivering first hand information about the experi-
ment findings. It expresses how far apart values are in a distribution and it provides a measure of the
variability of values obtained across different random seeds or runs. It also serves as a basic way to
quantify the uncertainty in a reported point estimate.
In our study, we discovered that 26 out of 75 studies did not mention the measure of spread at all. In
some cases this resulted from when performance is only measured over one run, in other cases this is
due to a lack of reported details within a paper. In statistics, there are various fundamental measures
of spread, the following are the most frequently encountered in our MARL dataset:

Standard deviation: is a common measure of dispersion of a set of values from their mean. The
standard deviation will be modest if the values are clustered together. Widely dispersed values will
result in a larger standard deviation.

Confidence interval (CI): These provides an estimated possible range for an unknown value. We
can choose from a variety of confidence limitations, where some of the most frequent are a 95% or a
99.5% confidence interval.

Inter-quartile range: This is a measure of dispersion which has the advantage of not being impacted
by outliers and is important when the researchers want to know where the majority of the findings
fall. It is used in 10 papers out of the main ones and it is commonly used in SMAC presenting 41.1%
of the SMAC collected data over the published cooperative papers.

9

B.3.5 Time Measurement

Independent Variable: The training and evaluation time is a vital feature that must be stated by the
author for a fair comparison of studies. We identified 9 options to define the independent experiment
variable from the main papers, but the most commonly used measure is time-steps, which is employed
in 39 papers, followed by episodes, which accounts for 18 studies. We discover an imbalance where
the independent variable being used is strongly related to the environment, with 88.3% of SMAC
collected data using time-steps as an independent variable and 39.2% of MPE collected data using
episodes.

Evaluation intervals (evaluation frequency): is generally associated with the SMAC evaluation
protocol. It refers to the fixed number of time-steps T, after which training is suspended, to be able
to evaluate an algorithm for a fixed number of runs/epsiodes E. During these evaluation runs agents
are usually only allowed to act greedily and in a decentralized manner. The test win rate is the
percentage of episodes e, in E, for which the agents defeat all enemy units within the time limit.
Although this is predominantly employed in SMAC experiments, occurring in 13 out of the 37 main
papers that use SMAC, this evaluation approach is also used in the MPE and Level-Based Foraging
(LBF) environments, with 6 and 2 papers adopting this methodology in these cases, respectively. The
evaluation frequency must ideally be associated with a duration E which we record as the evaluation
duration.

Number of independent evaluations per interval (evaluation duration): as the name indicates,
this is the amount of evaluations that are performed at each evaluation interval. This detail is required
if an evaluation frequency is given, but it may also be provided by itself in the case evaluation is
performed of the entire duration of an experiment.

10

B.4 Evaluation procedure, best practices and guideline

In this section, we summarize, in Table 5, the number of papers that abide by the key practices that
are recommended in the main body of this paper. We also show what percentage of the main papers
and other papers include each specific practice in their evaluation and reporting protocol.

Table 5: Number and percentage of papers recorded that follow the details of the recommended
evaluation guideline.

Evaluation and Implementation details The main papers The other papers
Yes No % Yes No %

Experiment details
Evaluate on multiple Environments 38 37 50.7% 18 19 48.6%
Evaluate on multiple Scenarios 65 10 86.7% 36 01 97.3%
Evaluation procedure details
Report the training time 65 10 86.7% 26 11 70.3%
Report the independent runs 53 22 70.7% 26 11 70.3%
Report the global aggregate function 54 21 72.0% 30 07 81.1%
Report the measure of spread 49 26 65.3% 21 16 56.7%
Report the evaluation interval (evaluation frequency) 20 55 26.7% 09 28 24.3%
Report the number of evaluation runs (evaluation duration) 26 49 34.7% 16 11 43.2%
Use statistical tests 01 74 01.3% 00 37 -
Guideline & Best practices
Training for 2M timesteps 20 55 26.7% 07 30 18.9%
Train on-policy for 20M and off-policy for 2M timesteps 02 73 02.7% 00 37 -
Use independent evaluation episodes per interval with E = 32 04 71 05.3% 01 36 02.7%
Evaluation every 10000 timesteps 04 71 05.3% 03 34 08.1%
Use Mean Return metric 14 61 18.7% 05 32 13.5%
Use Absolute metric 02 73 02.7% 00 37 -
Use 95% CI as a measure of spread 16 59 21.3% 02 35 05.4%
Report plot results 71 04 94.7% 33 04 89.2%
Report tabular results 40 35 53.3% 27 10 73.0%
Ablation study 33 42 44.0% 18 19 48.6%
Same baseline algorithms over all the experiment’s environments 54 21 72.0% 27 10 73.0%
Aggregate over the different maps and/or environments 08 67 10,7% 02 35 05.4%
Public repository 36 39 48.0% 13 24 35.1%

B.5 About SMAC

1 3 4 5 6 7 8 9 14 15 17
Number of used scenarios

0

1

2

3

4

5

6

7

8

N
um

be
r o

f p
ap

er
s

Figure 5: Number of used SMAC scenarios per
paper

In this section we will raise challenges uncov-
ered in our analysis rather than provide answers.
All challenges that are highlighted will be ac-
companied by all of relevant facts, as found in
our dataset, and are from the SMAC benchmark.
We are not attempting to criticize the current
scenarios or the environment itself, but want to
emphasize the need of advocating for the use of
SMAC to be standardized such that algorithm
designers are limited to specified scenarios when
testing their algorithms. The reason for this is
to ensure fair comparison between works.
As we indicated in the environment section,
SMAC is a popular benchmarking environment
and we discovered that 13 publications out of
75 apply only SMAC to prove the trustworthiness of their experiment. We notice that, despite the fact
that SMAC provides many testing scenarios (39 used ones in the published papers), most publications
only employ a few of them in their reported trials, as seen in figure 5.

11

What are the features needed to define the difficulty of a scenario? After analyzing the win
rate distribution under various settings, we discovered that several scenarios that were thought to be
extremely difficult turned out to be simple through using independent learning algorithms. A clear
example of this is illustrated in Figure 6 by the shift in the win rate distribution for CTDE and DTDE
algorithms evaluated on the corridor scenario.

2s
3z

M
M

M
2c

_v
s_

64
zg

ba
ne

_v
s_

ba
ne

M
M

M
2

27
m

_v
s_

30
m

1c
3s

5z
5m

_v
s_

6m
3s

5z
_v

s_
3s

6z
10

m
_v

s_
11

m
1c

3s
8z

_v
s_

1c
3s

9z
2s

_v
s_

1s
c

3s
5z

3s
_v

s_
5z

5s
10

z
6h

_v
s_

8z
7s

7z
C

or
rid

or 3m 8m
2m

_v
s_

1z
2s

_v
s_

1z
3s

_v
s_

3z
15

m
so

_m
an

y_
ba

ne
lin

g
8m

_v
s_

9m
m

ic
ro

_f
oc

us
3h

_v
s_

4z
3c

7z
3c

_v
s_

10
0z

g
1c

3s
5z

_v
s_

1c
3s

6z
M

M
M

3
6z

_v
s_

24
zg

3s
_v

s_
4z

5z
_v

s_
1u

l
1o

10
b_

vs
_1

r
3b

_v
s_

1h
1m

1o
2r

_v
s_

4r

0

20

40

60

80

100

W
in

 ra
te

 (%
)

CTDE

3m 8m

2s
3z

3s
5z

2s
_v

s_
1z

M
M

M

1c
3s

5z

3s
_v

s_
3z

2m
_v

s_
1z

C
or

rid
or

3s
_v

s_
5z

2s
_v

s_
1s

c

M
M

M
2

27
m

_v
s_

30
m

5m
_v

s_
6m

ba
ne

_v
s_

ba
ne

2c
_v

s_
64

zg

10
m

_v
s_

11
m

3s
5z

_v
s_

3s
6z

6h
_v

s_
8z

8m
_v

s_
9m

so
_m

an
y_

ba
ne

lin
g

0

20

40

60

80

100

W
in

 ra
te

 (%
)

DTDE

Figure 6: SMAC win rate distribution based on training schemes from The main papers

12

2s
3z

1c
3s

5z

10
m

_v
s_

11
m

2s
_v

s_
1s

c

3s
5z

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Easy Scenarios

2c
_v

s_
64

zg

ba
ne

_v
s_

ba
ne

5m
_v

s_
6m

3s
_v

s_
5z

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Hard Scenarios

M
M

M
2

27
m

_v
s_

30
m

3s
5z

_v
s_

3s
6z

6h
_v

s_
8z

C
or

rid
or

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Super Hard Scenarios

M
M

M
1c

3s
8z

_v
s_

1c
3s

9z
5s

10
z

7s
7z 3m 8m

2m
_v

s_
1z

2s
_v

s_
1z

3s
_v

s_
3z

15
m

so
_m

an
y_

ba
ne

lin
g

8m
_v

s_
9m

m
ic

ro
_f

oc
us

3h
_v

s_
4z

3c
7z

3c
_v

s_
10

0z
g

1c
3s

5z
_v

s_
1c

3s
6z

M
M

M
3

6z
_v

s_
24

zg
3s

_v
s_

4z
5z

_v
s_

1u
l

1o
10

b_
vs

_1
r

3b
_v

s_
1h

1m
1o

2r
_v

s_
4r

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Other Scenarios

Figure 7: SMAC win rate distribution based on difficulty from The main papers
13

Furthermore, figure 8 emphasizes the importance of training until 2M timesteps. It demonstrates
how the win rate, for even the easiest scenarios, has a wide spread when algorithms are trained for
less than 2 million time steps. It can also be noted that, when algorithms are trained up to 2 million
timesteps or more, that performance convergences to a higher win rates, not only for easy scenarios
but also for hard and even super hard ones.

3m 8m

2s
3z

3s
5z

2m
_v

s_
1z

2s
_v

s_
1z

3s
_v

s_
3z

1c
3s

5z

M
M

M

3s
_v

s_
5z

ba
ne

_v
s_

ba
ne

2s
_v

s_
1s

c

5m
_v

s_
6m

so
_m

an
y_

ba
ne

lin
g

0

20

40

60

80

100
W

in
 ra

te
 (%

)

Under 2M Timesteps

2s
3z

M
M

M

2c
_v

s_
64

zg

ba
ne

_v
s_

ba
ne

M
M

M
2

27
m

_v
s_

30
m

10
m

_v
s_

11
m

1c
3s

5z

1c
3s

8z
_v

s_
1c

3s
9z

2s
_v

s_
1s

c

3s
5z

3s
5z

_v
s_

3s
6z

3s
_v

s_
5z

5m
_v

s_
6m

5s
10

z

6h
_v

s_
8z

7s
7z

C
or

rid
or 8m 3m

3c
_v

s_
10

0z
g

1c
3s

5z
_v

s_
1c

3s
6z

M
M

M
3

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Equal 2M Timesteps

2s
3z

1c
3s

5z

5m
_v

s_
6m

2c
_v

s_
64

zg

M
M

M
2

3s
5z

_v
s_

3s
6z 3m 8m

3s
5z

C
or

rid
or

2s
_v

s_
1s

c

3s
_v

s_
5z

6h
_v

s_
8z

8m
_v

s_
9m

so
_m

an
y_

ba
ne

lin
g

m
ic

ro
_f

oc
us

27
m

_v
s_

30
m

2m
_v

s_
1z

M
M

M

3s
_v

s_
3z

6z
_v

s_
24

zg

3s
_v

s_
4z

5z
_v

s_
1u

l

1o
10

b_
vs

_1
r

3b
_v

s_
1h

1m

1o
2r

_v
s_

4r

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Over 2M Timesteps

Figure 8: SMAC win rate distribution based on training time from The main papers

14

Which scenario to choose? The choice of the scenarios for an algorithm designer is a critical task,
considering the fact that each scenarios itself in SMAC has its own challenges, which can work in
the algorithm’s favor (e.g. IA2C in Corridor) or in its misfortune (e.g. IA2C in MMM2). Moreover,
50% of the scenarios were used in one or two papers only, some of these scenarios were used for
ablation studies or for a specific research direction like communication, nevertheless most of them do
not have prior justification.

MMM2 3s5z Corridor

0

20

40

60

80

W
in

 ra
te

 (%
)

algorithm
COMA
QMIX
IA2C

1c
3s

5z
2s

3z
2s

_v
s_

1s
c

3m
ba

ne
_v

s_
ba

ne 8m 15
m

3s
5z

3s
_v

s_
5z

C
or

rid
or

M
M

M
2

6h
_v

s_
8z

3s
5z

_v
s_

3s
6z

5m
_v

s_
6m

2m
_v

s_
1z

27
m

_v
s_

30
m

8m
_v

s_
9m

m
ic

ro
_f

oc
us

so
_m

an
y_

ba
ne

lin
g

M
M

M
6z

_v
s_

24
zg

3s
_v

s_
4z

7s
7z

5s
10

z
2c

_v
s_

64
zg

1c
3s

8z
_v

s_
1c

3s
9z

10
m

_v
s_

11
m

1o
10

b_
vs

_1
r

1o
2r

_v
s_

4r
3b

_v
s_

1h
1m

5z
_v

s_
1u

l
3c

_v
s_

10
0z

g
M

M
M

3
1c

3s
5z

_v
s_

1c
3s

6z
3s

_v
s_

3z
2s

_v
s_

1z
3h

_v
s_

4z
3c

7z

Scenarios

0

2

4

6

8

10

12

14

16

18

20

N
um

be
r o

f p
ap

er
s

Figure 9: Top: The performance of COMA, QMIX and IA2C in 3 different SMAC scenarios.
Bottom: Number of papers that use each scenario over the main papers

Is the inconsistency in performance inescapable? In Figure 10, we fixed the training steps to be
2 million for all recorded papers that use the bane vs bane, MMM2, 3m and 27m vs 30m SMAC
scenarios. We achieve this by reading algorithm performance from plots produced in all relevant
papers. It is known that the version of SMAC that is used can have an effect on algorithm performance,
but here we see that merely fixing the training time steps across multiple papers leads to even greater
performance discrepancies between papers than the SMAC version being used.

Samvelyan et al. (2
019)

Samvelyan et al. (2
019)

Yao et al. (2
019)

Du et al. (2
019)

Samvelyan et al. (2
019)

Schroeder de Witt e
t al. (2

019)

Wang et al. (2
020)

Leroy et al. (2
020)

Wang et al. (2
020)

Wang et al. (2
020)

Böhmer et al. (2
020)

Wang et al. (2
020)

Wang et al. (2
020)

Wang et al. (2
020)

Rashid et al. (2
020)

Zhou et al. (2
020)

Zheng et al. (2
021)

Xu et al. (2
021)

Chenghao et al. (2
021)

Xu et al. (2
021)

Peng et al. (2
021)

Peng et al. (2
021)

Sun et al. (2
021)

Zheng et al. (2
021)

Sun et al. (2
021)

Pan et al. (2
021)

Peng et al. (2
021)

Zheng et al. (2
021)

Yuan et al. (2
022)

Paper

20

40

60

80

100

W
in

 R
at

e
(%

)

Scenario
bane_vs_bane
MMM2
3m
27m_vs_30m
SMAC Version
SC2.4.6
SC2.4.10
SC2.3.16.1
Unknown

Figure 10: Performance of QMIX on different SMAC scenarios trained for 2M timesteps

15

C Guideline

C.1 Motivation

In the following section, we will demonstrate our evaluation guideline. We follow the steps as
outlined but omit ablation studies in our work since we are not trying to introduce a novel algorithm.
We also have not tuned any hyperparameters for any of the algorithms we consider. We wish to make
the reader purposefully aware that the primary goal of this experiment is to provide an illustration
of how to use our evaluation guideline and our experiment is not focused on the performance of the
chosen algorithms. As such we are not striving to achieve state of the art performance on the flatland
benchmark and will merely illustrate how results may be interpreted by a researcher.

Please note that, following our guideline, we make all raw data of our experiments available. Our
code will be made publicly available soon. We provide a LaTeX template for the proposed reporting
templates 6. We envision that such a template will make it easier for other authors to define and report
all details pertaining to their experiments. These include experimental details, evaluation protocols,
environment settings and all other details that authors wish to report. Of course, it’s up to the author
to choose the set of hyperparameters to be reported according to the algorithm class and its specific
hyperparameters.

C.2 Reporting templates

Here, we present an example of a template that can be used to summarise the important information
required to perform the evaluation of algorithms, see Table 6.

Firstly, we have to list all the set of algorithms we are comparing. For hyperparameters we suggest
listing all tunable parameters which are manually set by the researcher. Some parameters like the
discount factor are fairly consistent throughout published works and can easily be reused across
papers. Other parameters can vary through papers due to computational constraints like batch size
which can be limited by the available RAM of the GPU used in training and sometimes needs to
be adjusted based on compute limitations and, replay buffer size which is limited by the available
RAM of the training computers. Parameters like the target network update period and ϵ schedule are
required to replicate the training scheme used by an algorithm as when mistuned they greatly alter
results Rashid et al. (2021).

Network architecture is also an important consideration for MARL algorithms. QMIX is one of the
most popular value-decomposition methods in cooperative MARL and makes use of hypernetworks
to train the central critic. The parameterisation of these hypernetworks must also be noted as their
configurations have a strong effect on the effectiveness of the central critic. The central critic for
QMIX inspired value-decomposition methods is commonly called a mixing network and is responsible
for performing multi-agent credit assignment during training. The mixing networks can vary across
different methods but, without knowing how they are parameterised it is possible for networks to
have a large variance in their complexity which makes direction comparisons difficult to interpret Hu
et al. (2021)

Additionally not all methods consistently make use of recurrency in their architecture which is
important for achieving high performance in partially observable settings. Parameter sharing is also
unique the cooperative MARL setting and used in most publications however, not all papers make
use of this paradigm.

Code-level optimisations consist of any parameters that can be included in algorithm implementation
but are not core components of the algorithm but can be used to improve performance. Reward
normalisation is when the rewards over the episode are normalised which reduces variance and makes
learning easier Yu et al. (2021). Not all settings make use of normalised rewards but they can be
trivially implemented in a code level. Death masking is important to note as different frameworks
deal with dead agents in different manners which can make direct comparisons difficult. Clipped
updates are used in come papers to prevent exploding gradients and can be trivially implemented in
most deep learning frameworks. Eligibility traces can be used to adjust the variance and bias trade
off for return calculations and are tuned using the λ parameter. Although using TD(λ) returns has
been shown to improve performance for MARL algorithms it is not universally used and must be
taken into account for evaluation. Optimiser choice has also been shown to have a large impact on
the performance of MARL algorithms and cannot be interchanged arbitrarily (Yu et al. (2021)).

16

Computational resources, although not important for algorithmic development are still relevant to
research. Clarity of the resources required for a publication to be replicated provide an indication to
researchers as how feasible replication is and, how similarly optimised their own implementations
are. It also makes it clear where methods may perform better at the cost of compute.

Evaluation protocols need to be made clear in publications so that the results are easy to interpret.
By providing all evaluation in the template details readers do not need to pick through a paper to
determine how to interpret results. The evaluation framework and the version that is being used is
also of importance. Evaluation frameworks are frequently updated and results might be incomparable
in-between versions.

Finally it is important to provide the configurations of the environments being used to train and
evaluate the algorithm. On one hand, in sample evaluation allows to evaluate an algorithm perfor-
mance on an environment configuration similar to the configurations it was trained on. On the other
hand, out-of sample configurations help to test the ability of the algorithm to generalise to a different
configuration of the environment that were not seen in the training. It is obvious that there are many
standardised settings in MARL. There are also cases of publications using custom environments
which are non-standard when compared to existing publications. These non-standard settings require
a full show of specifications to make them easier to understand.

17

Table 6: Proposal for reporting experimental details

Experimental setup Algo 1 Algo 2 Algo 3
Hyperparameters
Discount factor
Batch size
Replay buffer size
Minimum replay buffer size before updating
N steps bootstrapping
Target network update period
ϵ schedule (Decay steps, ϵ start, ϵ min)
Value Network architecture
Value Network initializer
Value Network Layer size
Value Network Layer normalisation
Mixing network (architecture, size, activation)
Hypernetworks (size, activation)
Parameter sharing
Parallel workers
Seed range

Code-level optimisations
Optimiser (type, parameters)
Learning rate
Reward normalisation
Death masking
Clipped updates
Eligibility trace
TD(λ) value

Computational resources
Average Wall-clock time per algorithm
CPUs per experiment
GPU per experiment
RAM per experiment

Evaluation protocol
Total training (timesteps)
Evaluation interval (timesteps)
Independent evaluation episodes
Absolute metric (evaluation episodes, aggregation method)
Local aggregation method
Global aggregation method
Metrics [Environment 1 name]
Metrics [Environment 2 name]
Metrics [Environment 3 name]
Exploration behaviour

MARL Framework name (version)

Environment settings

Environment 1 name (version) Training In sample evaluation configs Out of sample evaluation configs
Env related configs

Environment 2 name (version) Training In sample evaluation configs Out of sample evaluation configs
Env related configs
Environment 3 name (version) Training In sample evaluation configs Out of sample evaluation configs
Env related configs

C.3 Experiment details

Firstly we note the algorithms used for the experiments. For illustration purposes we use IQL which
is an independent learning algorithm, VDN which is a linear value-decomposition method finally
QMIX which is a value-decomposition method that makes use of a central critic. It is important to
note that not all parameters are applicable to all types of algorithm.

18

C.3.1 Environment

An environment can present various factors of variations forming two different context sets: the first
being the set of all supported random seeds which makes use of Procedural Content Generation (PCG)
and the second is the product of multiple factors of variations inside the environment. It has been
noted that procedurally generated environments may reduce the precision of research R. Kirk and
Rocktäschel (2021) while being able to control a factor of variations in an environment offers more
flexibility to create environment configurations that match the evaluation of different algorithmic
strengths. Regardless of the context being used, we strongly advocate that researchers should report
all the environment settings used for training and for evaluation, See Table 6, Environment settings
section as an example for reporting environment settings. Of course, all settings are environment
specific.

For our experiments, we make use of the Flatland benchmark environment Mohanty et al. (2020)
first introduced as a challenge in 2020 to investigate solution to the vehicle rescheduling problem in
railway systems. At a high-level, Flatland is a highly customisable, simplified 2D grid environment
which aims to simulate the routing of trains from one city to another.

Figure 11: Flatland maps varying between consecutive environment episodes.

We particularly choose Flatland as a benchmarking environment due to the fact that the environment
may be set to be non-static allowing it to change after each completed episode during both training
and evaluation. This enables us to test the ability of algorithms to generalize outside of experience
that was encountered during training. Flatland offers a high level of customisability with regards to
this environment regeneration, but we opt for a relatively limited and simple approach. Once a map
has been generated, we keep the rails of the map fixed but we allow the number stations on the map
to be randomly distributed at each new episode. This changes the location on the map where an agent
starts at each episode as well as the destination that each agent must reach. An example of how the
maps might change over 4 episodes is demonstrated in Figure 11.

Observation space. For the observations of each agent, we make use of what the Flatland authors
refer to as tree observations. For these observations, an agent is allowed to construct a tree in four
directions which follows permitted transitions. These trees are allowed to pass a fixed number of
points on the grid where more than one action is allowed with these points being referred to as
switches by the authors. Each agent is then allowed to observe the grid up to a fixed number of
switches (referred to as the maximum permitted tree depth) and then constructs local features based
on the observed tree. These features then inform the agent’s decision making.

For all algorithms, each agent only makes use of its own local tree observation to inform its action
selection. Since Flatland does not return a global state for the entire grid at each training time step on
which QMIX can condition its mixing network during training time, we construct a simple global
state representation which is the concatenation of all agents’ local observations.

Action space. The action space in flatland is discrete(5) and consists of the following actions:

• Move forward,

• Select a left turn,

• Select a right turn,

19

• Halt on the current cell,

• Take no action.

Reward structure. At each environment time step each agent, i receives a reward calculated as:

ri(t) = αril(t) + βrg(t)

Here ril denotes an agent’s local reward which is -1 for all timesteps until an agent reaches its
destination after which it is 0 until episode termination. rg denotes an additional team reward of 1
which is received by all agents when all agents have reached their destination during an episode. α
and β are adjustable parameters which govern agent cooperation.

After an episode is completed each agent receives a return gi which is computed as:

gi =

T∑
t=1

ri(t)

In order to keep track of team performance, we monitor and report the mean team episode return
which may be calculated for N agents as

gt =
1

N

N∑
i

gi

Aside from only keeping track of the team return, we also record the team completion rate which is
the proportion of agents that were able to reach their destination in a given episode.

C.4 Evaluation protocol and experimental procedure

Detailed flatland experiments’ settings are given in Table 7. We perform 10 independent runs, each
with a unique random seed for the initialization of the agent policy networks. For each independent
run we evaluate algorithm performance for 32 episodes at every 10000 environment time steps.
During these evaluation intervals we freeze training such that agent policy network weights remain
fixed and agents are only allowed to act greedily by selecting actions which an agent believes to have
to highest Q-values. In order to report the overall team performance, we report the mean return and
completion over of all agents in the environment at each episode. It should be noted that in Flatland
agents receive their reward at the end of an episode and therefore episode returns and rewards are
equivalent. In order to normalize the episode returns we keep track of the maximum and minimum
return obtained over all evaluation episodes done during training for a given independent run and the
normalize the mean episode return of each evaluation episode according to these global maximum
and minimum values. In order to obtain the per task results, we compute the mean and 95% CI
over all independent runs at each evaluation interval for both the normalised mean returns and the
completion rate. Additionally, for each independent training run, we keep track of both the maximum
mean return and maximum completion rate computed at each evaluation interval and use these values
to checkpoint the agent network parameters where performance for both these metrics are optimal.
Once an independent run is complete we then evaluate the algorithm greedily for 320 episodes using
the best model parameters found for both the mean episode return and completion rate and take the
mean over these roll outs to compute the absolute metrics for both the completion rate and the mean
episode return. In all cases we opt to use the mean instead of the inter-quartile mean since we assume
there to be relatively few outliers due to the fact that all results are generated using the same fixed
policy. For each independent run, we then normalise the absolute metrics across all algorithms that
were being tested such that all absolute metrics fall within the range [0, 1]. In all cases it should be
noted that, since the goal of normalisation is to constrain metrics to lie within the same [0, 1] interval
we omit normalising metrics that inherently lie on such a range, like the completion rate. Since we
have only one task, we then construct a (10× 1) vector per algorithm using the obtained normalised
metrics in order to make use of the tools provided by (Agarwal et al., 2021) and obtain the following
results.

20

Table 7: Reporting Flatland experimental details

Experimental setup IQL QMIX VDN
Hyperparameters
Discount factor 0.99 0.99 0.99
Batch size 32 32 32
Replay buffer size 5000 5000 5000
Minimum replay buffer size before updating 32 32 32
N steps bootstrapping 5 5 5
Target network update period 100 200 200
ϵ schedule (Decay steps, ϵ start, ϵ min) (100000,1.0,0.05) (100000,1.0,0.05) (100000,1.0,0.05)
Value Network architecture Recurrent Recurrent Recurrent
Value Network initializer Variance Scaling Variance Scaling Variance Scaling
Value Network Layer size [64,64] GRU [64,64] GRU [64,64] GRU
Value Network Layer normalisation True True True
Mixing network (architecture, size, activation) - Feedforward,[32], ReLU -
Hypernetworks (size, activation) - [64], ReLU -
Parameter sharing Yes Yes Yes
Parallel workers 8 8 8
Seed range {0..9} {0..9} {0..9}

Code-level optimisations
Optimiser (type, parameters) Adam Adam Adam
Learning rate 1e-4 1e-4 1e-4

Computational resources
Average Wall-clock time per algorithm 9h27m 9h36m 9h16m
CPUs per experiment 20
GPU per experiment 1
RAM per experiment 20 GB

Evaluation protocol
Total training (timesteps) 2000000
Evaluation interval (timesteps) 10000
Independent evaluation episodes 32
Absolute metric (evaluation episodes, aggregation method) 320, Mean with normal 95% CI
Local aggregation method Mean
Global aggregation method IQM with 95% stratified bootstrap CI
Metrics [Flatland] Return, Completion rate, Normalised score
Exploration behaviour Disabled

MARL Framework MAVA (0.1.2)

Environment settings

Flatland (3.0.15) Training 3 In sample evaluation
Number of agents 5 5
Grid size (width x height) 25x25 25x25
Maximum number of cities 4 4
Maximum rails between cities 2 2
Maximum rails in city 3 3
Malfunctioning rate 0 0
Observation (type, depth) TreeObservation, 2 TreeObservation, 2
Shortest Path Predictor max depth 30 30
Grid mode True True
Regenerate schedule on reset True True
Regenerate rail on reset True True
Seed 0 0

21

C.5 Results

All plots that are generated here are made using the tools provided by (Agarwal et al., 2021).

C.5.1 Sample efficiency curves

The sample efficiency curves serve as a way to asses an algorithms efficiency at improving on a
particular metric during training time. For two algorithms that achieve the same final performance on
some metric, the algorithm that does so with less training steps could therefore be considered to be
more sample efficient. We compute the sample efficiency curves by making use of the normalized
mean return at each evaluation interval as well as the mean completion rate achieved at each evaluation
interval.

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of timesteps (Millions)

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

No
rm

al
ize

d
re

tu
rn

IQL
QMIX
VDN

(b)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of timesteps (Millions)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Co
m

pl
et

io
n

ra
te

IQL
QMIX
VDN

Figure 12: Sample efficiency curves for experiments. (a) Normalized return. (b) Completion rate.

From Figure 12 it can be noted that no particular algorithm is more efficient than any other algorithm
and that all algorithms achieve relatively similar final performance. From Figure 12 (a) it can be
noted that IQL and QMIX do reach a slightly higher final mean return than VDN.

C.5.2 Aggregate score performance

All aggregated scores are done using the aggregation functions as shown in Figure 13. One aggregation
function to note is the Optimality Gap which may be thought of as the how far an algorithm is from
optimal performance at a given task. For this reason, a lower score is considered to be desirable. The
confidence intervals shown alongside the point estimates (black bars) are the 95% stratified bootstrap
confidence intervals.

0.2 0.4 0.6 0.8
IQL

QMIX
VDN

Median

0.00 0.25 0.50 0.75

IQM

0.2 0.4 0.6 0.8

Mean

0.2 0.4 0.6 0.8

Optimality Gap

Normalized return

0.08 0.16 0.24
IQL

QMIX
VDN

Median

0.00 0.08 0.16 0.24

IQM

0.08 0.16 0.24

Mean

0.80 0.88 0.96

Optimality Gap

Completion rate

Figure 13: Per task performance on a 25 × 25 flatland grid. (Top) Normalized return. (Bottom)
Completion rate.

One can note from the top and bottom figure in Figure 13 that there is large variance in algorithm
performance for both metrics used and it is hard to distinguish which algorithm has superior perfor-
mance, particularly between VDN and QMIX. A clear outlier is IQL which consistently performs
worse, across all metrics, than VDN and QMIX.

3Using same generator config from https://gitlab.aicrowd.com/flatland/
neurips2020-flatland-baselines/-/blob/flatland-paper-baselines/envs/flatland/
generator_configs/small_v0.yaml

22

https://gitlab.aicrowd.com/flatland/neurips2020-flatland-baselines/-/blob/flatland-paper-baselines/envs/flatland/generator_configs/small_v0.yaml
https://gitlab.aicrowd.com/flatland/neurips2020-flatland-baselines/-/blob/flatland-paper-baselines/envs/flatland/generator_configs/small_v0.yaml
https://gitlab.aicrowd.com/flatland/neurips2020-flatland-baselines/-/blob/flatland-paper-baselines/envs/flatland/generator_configs/small_v0.yaml

C.5.3 Performance profiles

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized return ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

IQL
QMIX
VDN

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Completion rate ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

IQL
QMIX
VDN

Figure 14: Performance profiles for experiments. (a) Normalized return. (b) Completion rate.

From Figure 14 in can be noted that the performance profiles paint a similar picture to the sample
efficiency curves and the aggregated algorithm scores. IQL is consistently outperformed by VDN and
QMIX. The performance profiles also clearly illustrate the no algorithm achieves a particularly high
completion rate, highlighting the poor overall performance of all algorithms on the environment task.

C.5.4 Probability of improvement

Probability of improvement plots should be interpreted as the probability that an algorithm X has
superior performance than algorithm Y with a low score indicating that algorithm Y likely to be
better than algorithm X and vice versa for a high score.

(a)

0.2 0.4 0.6
P(X > Y)

IQL

IQL

VDN

Algorithm X

QMIX

VDN

QMIX

Algorithm Y (b)

0.2 0.4 0.6
P(X > Y)

IQL

IQL

VDN

Algorithm X

QMIX

VDN

QMIX

Algorithm Y

Figure 15: Performance profiles for experiments. (a) Normalized return. (b) Completion rate.

From Figure 15 one can note again that IQL is outperformed by VDN and QMIX using both metrics
considered. It can also be noted again, that the performance of VDN and QMIX are relatively similar.

C.5.5 Tabular Results

We report the IQM aggregated over the task for all algorithms with the 95% stratified bootstrap CI as
well as the mean absolute performance of all algorithms on the task with the 95% CI. These scores
collectively, as well as the sample efficiency curves sketch a full picture of the performance for a given
algorithm. One can, at a glance, see the performance that the the best policy for a particular algorithm
is able to achieve from the tabular results, but one can also get a clear sense of the robustness of a
particular algorithm by considering the sample efficiency curves. This makes for transparent result
reporting.

The tabular results once again confirm all previous results in that IQL has inferior performance on
the task when compared to its value factorisation counterparts and that VDN and QMIX obtain very
similar performance. Due to the larger confidence intervals however, no clear conclusions can be
drawn since the performance of all algorithms overlap when taking the CIs into account. One can
also notice from Tables 8 & 9 that the absolute metric and IQM scores are very similar. The reason
from this is because we only consider a single task in our environment. The true power of the tools
that were used will be better illustrated when multiple tasks are considered.

C.5.6 Overall findings

Due to the large variance in algorithm performance, we cannot draw any strong conclusions regarding
algorithm performance from these experiments, but we have been able to illustrate to use of our
guideline and how it gives a full overview of both the absolute and overall performance of a set

23

Table 8: IQM of absolute metrics for experiments with 95% Stratified Bootstrap CIs
Algorithm Normalized Returns Completion Rate

IQL 0.307 (0.0, 0.799) 0.015 (0.0, 0.083)
QMIX 0.593 (0.189, 0.949) 0.158 (0.019, 0.304)
VDN 0.581 (0.131, 0.949 0.113 (0.035, 0.236)

Table 9: Mean per task absolute metrics with 95% CIs
Algorithm Normalized Returns Completion Rate

IQL 0.384 (0.08, 0.688) 0.048 (0.00, 0.109)
QMIX 0.556 (0.284, 0.828) 0.164 (0.066, 0.263)
VDN 0.548 (0.254, 0.842) 0.134 (0.05, 0.218)

of algorithms on a particular task. We will continually update our demonstration by adding more
flatland tasks, tuning algorithms and, ultimately, adding more environments to this experiment.

24

References
S. Sukhbaatar, a. szlam, and R. Fergus, “Learning multiagent communication with backpropagation,”

in Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016. [Online]. Available:
https://proceedings.neurips.cc/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf

J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning to communicate with deep
multi-agent reinforcement learning,” in Advances in Neural Information Processing Systems,
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29. Curran
Associates, Inc., 2016. [Online]. Available: https://proceedings.neurips.cc/paper/2016/file/
c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf

S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep decentralized multi-task multi-agent
reinforcement learning under partial observability,” in ICML, 2017, pp. 2681–2690. [Online].
Available: http://proceedings.mlr.press/v70/omidshafiei17a.html

R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mor-
datch, “Multi-agent actor-critic for mixed cooperative-competitive environments,”
in NIPS, 2017, pp. 6382–6393. [Online]. Available: http://papers.nips.cc/paper/
7217-multi-agent-actor-critic-for-mixed-cooperative-competitive-environments

J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr, P. Kohli, and S. Whiteson, “Stabilising
experience replay for deep multi-agent reinforcement learning,” in Proceedings of the 34th
International Conference on Machine Learning, ser. Proceedings of Machine Learning Research,
D. Precup and Y. W. Teh, Eds., vol. 70. PMLR, 06–11 Aug 2017, pp. 1146–1155. [Online].
Available: https://proceedings.mlr.press/v70/foerster17b.html

E. Wei, D. Wicke, D. Freelan, and S. Luke, “Multiagent soft q-learning,” in 2018 AAAI Spring
Symposia, Stanford University, Palo Alto, California, USA, March 26-28, 2018. AAAI Press,
2018. [Online]. Available: https://aaai.org/ocs/index.php/SSS/SSS18/paper/view/17508

J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-agent
policy gradients,” in AAAI. AAAI Press, 2018, pp. 2974–2982.

P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zambaldi, M. Jaderberg, M. Lanctot,
N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel, “Value-decomposition networks for cooperative
multi-agent learning based on team reward,” in Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15,
2018, E. André, S. Koenig, M. Dastani, and G. Sukthankar, Eds. International Foundation for
Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM, 2018, pp. 2085–2087.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3238080

T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson, “QMIX:
Monotonic value function factorisation for deep multi-agent reinforcement learning,” in
Proceedings of the 35th International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp.
4295–4304. [Online]. Available: https://proceedings.mlr.press/v80/rashid18a.html

A. Singh, T. Jain, and S. Sukhbaatar, “Learning when to communicate at scale in multiagent
cooperative and competitive tasks,” in International Conference on Learning Representations,
2019. [Online]. Available: https://openreview.net/forum?id=rye7knCqK7

S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement learning,” in Proceedings of
the 36th International Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp.
2961–2970. [Online]. Available: https://proceedings.mlr.press/v97/iqbal19a.html

S. Q. Zhang, Q. Zhang, and J. Lin, “Efficient communication in multi-agent reinforcement
learning via variance based control,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32.
Curran Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/
14cfdb59b5bda1fc245aadae15b1984a-Paper.pdf

25

https://proceedings.neurips.cc/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
http://proceedings.mlr.press/v70/omidshafiei17a.html
http://papers.nips.cc/paper/7217-multi-agent-actor-critic-for-mixed-cooperative-competitive-environments
http://papers.nips.cc/paper/7217-multi-agent-actor-critic-for-mixed-cooperative-competitive-environments
https://proceedings.mlr.press/v70/foerster17b.html
https://aaai.org/ocs/index.php/SSS/SSS18/paper/view/17508
http://dl.acm.org/citation.cfm?id=3238080
https://proceedings.mlr.press/v80/rashid18a.html
https://openreview.net/forum?id=rye7knCqK7
https://proceedings.mlr.press/v97/iqbal19a.html
https://proceedings.neurips.cc/paper/2019/file/14cfdb59b5bda1fc245aadae15b1984a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/14cfdb59b5bda1fc245aadae15b1984a-Paper.pdf

A. Malysheva, D. Kudenko, and A. Shpilman, “Magnet: Multi-agent graph network for deep multi-
agent reinforcement learning,” in 2019 XVI International Symposium "Problems of Redundancy in
Information and Control Systems" (REDUNDANCY), 2019, pp. 171–176.

H. Mao, Z. Zhang, Z. Xiao, and Z. Gong, “Modelling the dynamic joint policy of teammates with
attention multi-agent DDPG,” in AAMAS. International Foundation for Autonomous Agents and
Multiagent Systems, 2019, pp. 1108–1116.

M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. Hung,
P. H. S. Torr, J. N. Foerster, and S. Whiteson, “The starcraft multi-agent challenge,” in AAMAS,
2019, pp. 2186–2188. [Online]. Available: http://dl.acm.org/citation.cfm?id=3332052

N. Jaques, A. Lazaridou, E. Hughes, C. Gulcehre, P. Ortega, D. Strouse, J. Z. Leibo, and N. De Freitas,
“Social influence as intrinsic motivation for multi-agent deep reinforcement learning,” in
Proceedings of the 36th International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15
Jun 2019, pp. 3040–3049. [Online]. Available: https://proceedings.mlr.press/v97/jaques19a.html

Y. Du, L. Han, M. Fang, J. Liu, T. Dai, and D. Tao, “Liir: Learning individual
intrinsic reward in multi-agent reinforcement learning,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019. [Online]. Available:
https://proceedings.neurips.cc/paper/2019/file/07a9d3fed4c5ea6b17e80258dee231fa-Paper.pdf

A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson, “Maven: Multi-agent variational
exploration,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/
f816dc0acface7498e10496222e9db10-Paper.pdf

C. Schroeder de Witt, J. Foerster, G. Farquhar, P. Torr, W. Boehmer, and S. Whiteson,
“Multi-agent common knowledge reinforcement learning,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019. [Online]. Available:
https://proceedings.neurips.cc/paper/2019/file/f968fdc88852a4a3a27a81fe3f57bfc5-Paper.pdf

N. Carion, N. Usunier, G. Synnaeve, and A. Lazaric, “A structured prediction approach for
generalization in cooperative multi-agent reinforcement learning,” in Advances in Neural
Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019. [Online]. Available:
https://proceedings.neurips.cc/paper/2019/file/3c3c139bd8467c1587a41081ad78045e-Paper.pdf

A. Das, T. Gervet, J. Romoff, D. Batra, D. Parikh, M. Rabbat, and J. Pineau, “TarMAC:
Targeted multi-agent communication,” in Proceedings of the 36th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 1538–1546. [Online]. Available:
https://proceedings.mlr.press/v97/das19a.html

K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “QTRAN: Learning to factorize with
transformation for cooperative multi-agent reinforcement learning,” in Proceedings of the 36th
International Conference on Machine Learning, ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 5887–5896.
[Online]. Available: https://proceedings.mlr.press/v97/son19a.html

T. Wang, J. Wang, Y. Wu, and C. Zhang, “Influence-based multi-agent exploration,” in
International Conference on Learning Representations, 2020. [Online]. Available: https:
//openreview.net/forum?id=BJgy96EYvr

Y. Liu, W. Wang, Y. Hu, J. Hao, X. Chen, and Y. Gao, “Multi-agent game abstraction
via graph attention neural network,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 05, pp. 7211–7218, Apr. 2020. [Online]. Available: https:
//ojs.aaai.org/index.php/AAAI/article/view/6211

26

http://dl.acm.org/citation.cfm?id=3332052
https://proceedings.mlr.press/v97/jaques19a.html
https://proceedings.neurips.cc/paper/2019/file/07a9d3fed4c5ea6b17e80258dee231fa-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f816dc0acface7498e10496222e9db10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f816dc0acface7498e10496222e9db10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f968fdc88852a4a3a27a81fe3f57bfc5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3c3c139bd8467c1587a41081ad78045e-Paper.pdf
https://proceedings.mlr.press/v97/das19a.html
https://proceedings.mlr.press/v97/son19a.html
https://openreview.net/forum?id=BJgy96EYvr
https://openreview.net/forum?id=BJgy96EYvr
https://ojs.aaai.org/index.php/AAAI/article/view/6211
https://ojs.aaai.org/index.php/AAAI/article/view/6211

J. Ma and F. Wu, “Feudal multi-agent deep reinforcement learning for traffic signal control,” in
Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems,
ser. AAMAS ’20. Richland, SC: International Foundation for Autonomous Agents and Multiagent
Systems, 2020, p. 816–824.

I.-J. Liu, R. A. Yeh, and A. G. Schwing, “Pic: Permutation invariant critic for multi-agent
deep reinforcement learning,” in Proceedings of the Conference on Robot Learning, ser.
Proceedings of Machine Learning Research, L. P. Kaelbling, D. Kragic, and K. Sugiura,
Eds., vol. 100. PMLR, 30 Oct–01 Nov 2020, pp. 590–602. [Online]. Available:
https://proceedings.mlr.press/v100/liu20a.html

W. Wang, T. Yang, Y. Liu, J. Hao, X. Hao, Y. Hu, Y. Chen, C. Fan, and Y. Gao, “Action semantics
network: Considering the effects of actions in multiagent systems,” in ICLR, 2020. [Online].
Available: https://openreview.net/forum?id=ryg48p4tPH

S. Q. Zhang, Q. Zhang, and J. Lin, “Succinct and robust multi-agent communication with
temporal message control,” in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc.,
2020, pp. 17 271–17 282. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
c82b013313066e0702d58dc70db033ca-Paper.pdf

J. Xu, F. Zhong, and Y. Wang, “Learning multi-agent coordination for enhancing target
coverage in directional sensor networks,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,
vol. 33. Curran Associates, Inc., 2020, pp. 10 053–10 064. [Online]. Available: https:
//proceedings.neurips.cc/paper/2020/file/7250eb93b3c18cc9daa29cf58af7a004-Paper.pdf

T. Wang, J. Wang, C. Zheng, and C. Zhang, “Learning nearly decomposable value functions via
communication minimization,” in International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=HJx-3grYDB

J. Roy, P. Barde, F. Harvey, D. Nowrouzezahrai, and C. Pal, “Promoting coordination through
policy regularization in multi-agent deep reinforcement learning,” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 15 774–15 785. [Online]. Available:
https://proceedings.neurips.cc/paper/2020/file/b628386c9b92481fab68fbf284bd6a64-Paper.pdf

J. Wang, Y. Zhang, T.-K. Kim, and Y. Gu, “Shapley q-value: A local reward approach
to solve global reward games,” in AAAI, 2020, pp. 7285–7292. [Online]. Available:
https://aaai.org/ojs/index.php/AAAI/article/view/6220

W. Boehmer, V. Kurin, and S. Whiteson, “Deep coordination graphs,” in Proceedings of the 37th
International Conference on Machine Learning, ser. Proceedings of Machine Learning Research,
H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 980–991. [Online]. Available:
https://proceedings.mlr.press/v119/boehmer20a.html

Q. Long, Z. Zhou, A. Gupta, F. Fang, Y. Wu, and X. Wang, “Evolutionary population curriculum for
scaling multi-agent reinforcement learning,” in ICLR, 2020.

F. Christianos, L. Schäfer, and S. Albrecht, “Shared experience actor-critic for multi-agent
reinforcement learning,” in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc.,
2020, pp. 10 707–10 717. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf

C. Wen, X. Yao, Y. Wang, and X. Tan, “Smix(λ): Enhancing centralized value functions
for cooperative multi-agent reinforcement learning,” in The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 2020,
pp. 7301–7308. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/6223

27

https://proceedings.mlr.press/v100/liu20a.html
https://openreview.net/forum?id=ryg48p4tPH
https://proceedings.neurips.cc/paper/2020/file/c82b013313066e0702d58dc70db033ca-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c82b013313066e0702d58dc70db033ca-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7250eb93b3c18cc9daa29cf58af7a004-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7250eb93b3c18cc9daa29cf58af7a004-Paper.pdf
https://openreview.net/forum?id=HJx-3grYDB
https://proceedings.neurips.cc/paper/2020/file/b628386c9b92481fab68fbf284bd6a64-Paper.pdf
https://aaai.org/ojs/index.php/AAAI/article/view/6220
https://proceedings.mlr.press/v119/boehmer20a.html
https://proceedings.neurips.cc/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/6223

A. Agarwal, S. Kumar, K. P. Sycara, and M. Lewis, “Learning transferable cooperative behavior in
multi-agent teams,” in AAMAS. International Foundation for Autonomous Agents and Multiagent
Systems, 2020, pp. 1741–1743.

G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht, “Comparative evaluation of
multi-agent deep reinforcement learning algorithms,” vol. abs/2006.07869, 2020. [Online].
Available: https://arxiv.org/abs/2006.07869

Z. Ding, T. Huang, and Z. Lu, “Learning individually inferred communication for multi-
agent cooperation,” in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc.,
2020, pp. 22 069–22 079. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
fb2fcd534b0ff3bbed73cc51df620323-Paper.pdf

H. Hu and J. N. Foerster, “Simplified action decoder for deep multi-agent reinforcement
learning,” in International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=B1xm3RVtwB

M. Zhou, Z. Liu, P. Sui, Y. Li, and Y. Y. Chung, “Learning implicit credit assignment
for cooperative multi-agent reinforcement learning,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33. Curran Associates, Inc., 2020, pp. 11 853–11 864. [Online]. Available:
https://proceedings.neurips.cc/paper/2020/file/8977ecbb8cb82d77fb091c7a7f186163-Paper.pdf

J. Chen, Y. Zhang, Y. Xu, H. Ma, H. Yang, J. Song, Y. Wang, and Y. Wu, “Variational automatic
curriculum learning for sparse-reward cooperative multi-agent problems,” in Advances in Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp. 9681–9693. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/503e7dbbd6217b9a591f3322f39b5a6c-Paper.pdf

M. Chen, Y. Li, E. Wang, Z. Yang, Z. Wang, and T. Zhao, “Pessimism meets invariance:
Provably efficient offline mean-field multi-agent rl,” in Advances in Neural Information
Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 17 913–17 926. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/9559fc73b13fa721a816958488a5b449-Paper.pdf

S. Li, J. K. Gupta, P. Morales, R. Allen, and M. J. Kochenderfer, “Deep implicit coordination graphs
for multi-agent reinforcement learning,” in Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, ser. AAMAS ’21. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2021, p. 764–772.

W.-F. Sun, C.-K. Lee, and C.-Y. Lee, “Dfac framework: Factorizing the value function via
quantile mixture for multi-agent distributional q-learning,” in Proceedings of the 38th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research, M. Meila
and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 9945–9954. [Online]. Available:
https://proceedings.mlr.press/v139/sun21c.html

F. Christianos, G. Papoudakis, M. A. Rahman, and S. V. Albrecht, “Scaling multi-agent
reinforcement learning with selective parameter sharing,” in Proceedings of the 38th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research, M. Meila
and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 1989–1998. [Online]. Available:
https://proceedings.mlr.press/v139/christianos21a.html

J. Wang, Z. Ren, B. Han, J. Ye, and C. Zhang, “Towards understanding cooperative
multi-agent q-learning with value factorization,” in Advances in Neural Information Processing
Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 29 142–29 155. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/f3f1fa1e4348bfbebdeee8c80a04c3b9-Paper.pdf

K. M. Lee, S. G. Subramanian, and M. Crowley, “Investigation of independent reinforcement
learning algorithms in multi-agent environments,” in Deep RL Workshop NeurIPS 2021, 2021.
[Online]. Available: https://openreview.net/forum?id=8MkKGZ2AlmJ

28

https://arxiv.org/abs/2006.07869
https://proceedings.neurips.cc/paper/2020/file/fb2fcd534b0ff3bbed73cc51df620323-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fb2fcd534b0ff3bbed73cc51df620323-Paper.pdf
https://openreview.net/forum?id=B1xm3RVtwB
https://proceedings.neurips.cc/paper/2020/file/8977ecbb8cb82d77fb091c7a7f186163-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/503e7dbbd6217b9a591f3322f39b5a6c-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/9559fc73b13fa721a816958488a5b449-Paper.pdf
https://proceedings.mlr.press/v139/sun21c.html
https://proceedings.mlr.press/v139/christianos21a.html
https://proceedings.neurips.cc/paper/2021/file/f3f1fa1e4348bfbebdeee8c80a04c3b9-Paper.pdf
https://openreview.net/forum?id=8MkKGZ2AlmJ

L. Chenghao, T. Wang, C. Wu, Q. Zhao, J. Yang, and C. Zhang, “Celebrating diversity
in shared multi-agent reinforcement learning,” in Advances in Neural Information Processing
Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 3991–4002. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/20aee3a5f4643755a79ee5f6a73050ac-Paper.pdf

T. Wang, T. Gupta, A. Mahajan, B. Peng, S. Whiteson, and C. Zhang, “Rode:
Learning roles to decompose multi-agent tasks,” in ICLR, 2021. [Online]. Available:
https://openreview.net/forum?id=TTUVg6vkNjK

Y. Xiao, X. Lyu, and C. Amato, “Local advantage actor-critic for robust multi-agent deep reinforce-
ment learning,” in MRS. IEEE, 2021, pp. 155–163.

Z. Xu, D. Li, Y. Bai, and G. Fan, “MMD-MIX: value function factorisation with maximum mean
discrepancy for cooperative multi-agent reinforcement learning,” in International Joint Conference
on Neural Networks, IJCNN 2021, Shenzhen, China, July 18-22, 2021. IEEE, 2021, pp. 1–7.
[Online]. Available: https://doi.org/10.1109/IJCNN52387.2021.9533636

J. Jiang and Z. Lu, “The emergence of individuality,” in Proceedings of the 38th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research, M. Meila
and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 4992–5001. [Online]. Available:
https://proceedings.mlr.press/v139/jiang21g.html

P. Leroy, D. Ernst, P. Geurts, G. Louppe, J. Pisane, and M. Sabatelli, “QVMix and
QVMix-Max: Extending the Deep Quality-Value Family of Algorithms to Cooperative
Multi-Agent Reinforcement Learning,” in Proceedings of the AAAI-21 Workshop on Reinforcement
Learning in Games, 2021. [Online]. Available: https://arxiv.org/abs/2012.12062

T. Rashid, G. Farquhar, B. Peng, and S. Whiteson, “Weighted qmix: Expanding monotonic value
function factorisation for deep multi-agent reinforcement learning.” NeurIPS, 2021.

J. Su, S. C. Adams, and P. A. Beling, “Value-decomposition multi-agent actor-critics,”
in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference
on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on
Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.
AAAI Press, 2021, pp. 11 352–11 360. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/
article/view/17353

L. Pan, T. Rashid, B. Peng, L. Huang, and S. Whiteson, “Regularized softmax deep
multi-agent q-learning,” in Advances in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34. Curran Associates,
Inc., 2021, pp. 1365–1377. [Online]. Available: https://proceedings.neurips.cc/paper/2021/file/
0a113ef6b61820daa5611c870ed8d5ee-Paper.pdf

I.-J. Liu, U. Jain, R. A. Yeh, and A. Schwing, “Cooperative exploration for multi-agent deep
reinforcement learning,” in Proceedings of the 38th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139. PMLR,
18–24 Jul 2021, pp. 6826–6836. [Online]. Available: https://proceedings.mlr.press/v139/liu21j.html

I. Saeed, A. C. Cullen, S. M. Erfani, and T. Alpcan, “Domain-aware multiagent
reinforcement learning in navigation,” in International Joint Conference on Neural Networks,
IJCNN 2021, Shenzhen, China, July 18-22, 2021. IEEE, 2021, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/IJCNN52387.2021.9533975

B. Guresti and N. K. Ure, “Evaluating generalization and transfer capacity of multi-agent
reinforcement learning across variable number of agents,” CoRR, vol. abs/2111.14177, 2021.
[Online]. Available: https://arxiv.org/abs/2111.14177

L. Zheng, J. Chen, J. Wang, J. He, Y. Hu, Y. Chen, C. Fan, Y. Gao, and C. Zhang, “Episodic
multi-agent reinforcement learning with curiosity-driven exploration,” in Advances in Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp. 3757–3769. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/1e8ca836c962598551882e689265c1c5-Paper.pdf

29

https://proceedings.neurips.cc/paper/2021/file/20aee3a5f4643755a79ee5f6a73050ac-Paper.pdf
https://openreview.net/forum?id=TTUVg6vkNjK
https://doi.org/10.1109/IJCNN52387.2021.9533636
https://proceedings.mlr.press/v139/jiang21g.html
https://arxiv.org/abs/2012.12062
https://ojs.aaai.org/index.php/AAAI/article/view/17353
https://ojs.aaai.org/index.php/AAAI/article/view/17353
https://proceedings.neurips.cc/paper/2021/file/0a113ef6b61820daa5611c870ed8d5ee-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/0a113ef6b61820daa5611c870ed8d5ee-Paper.pdf
https://proceedings.mlr.press/v139/liu21j.html
https://doi.org/10.1109/IJCNN52387.2021.9533975
https://arxiv.org/abs/2111.14177
https://proceedings.neurips.cc/paper/2021/file/1e8ca836c962598551882e689265c1c5-Paper.pdf

G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht, “Benchmarking multi-agent
deep reinforcement learning algorithms in cooperative tasks,” in Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021. [Online].
Available: https://openreview.net/forum?id=cIrPX-Sn5n

E. Marchesini and A. Farinelli, “Centralizing state-values in dueling networks for multi-robot
reinforcement learning mapless navigation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2021, Prague, Czech Republic, September 27 - Oct. 1, 2021. IEEE,
2021, pp. 4583–4588. [Online]. Available: https://doi.org/10.1109/IROS51168.2021.9636349

J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang, “{QPLEX}: Duplex dueling multi-agent
q-learning,” in International Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=Rcmk0xxIQV

J. G. Kuba, M. Wen, L. Meng, s. gu, H. Zhang, D. Mguni, J. Wang, and Y. Yang,
“Settling the variance of multi-agent policy gradients,” in Advances in Neural Information
Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 13 458–13 470. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/6fe6a8a6e6cb710584efc4af0c34ce50-Paper.pdf

B. Peng, T. Rashid, C. Schroeder de Witt, P.-A. Kamienny, P. Torr, W. Boehmer, and
S. Whiteson, “Facmac: Factored multi-agent centralised policy gradients,” in Advances in Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp. 12 208–12 221. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf

L. Yuan, J. Wang, F. Zhang, C. Wang, Z. Zhang, Y. Yu, and C. Zhang, “Multi-agent incentive
communication via decentralized teammate modeling,” 2022.

D. H. Mguni, T. Jafferjee, J. Wang, N. Perez-Nieves, O. Slumbers, F. Tong, Y. Li, J. Zhu,
Y. Yang, and J. Wang, “LIGS: Learnable intrinsic-reward generation selection for multi-agent
learning,” in International Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=CpTuR2ECuW

Y. Wang, fangwei zhong, J. Xu, and Y. Wang, “Tom2c: Target-oriented multi-agent communication
and cooperation with theory of mind,” in International Conference on Learning Representations,
2022. [Online]. Available: https://openreview.net/forum?id=2t7CkQXNpuq

J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang, “Trust region policy
optimisation in multi-agent reinforcement learning,” in International Conference on Learning
Representations, 2022. [Online]. Available: https://openreview.net/forum?id=EcGGFkNTxdJ

S. A. Stavroulakis and B. Sengupta, “Reinforcement learning for location-aware warehouse
scheduling,” in ICLR 2022 Workshop on Generalizable Policy Learning in Physical World, 2022.
[Online]. Available: https://openreview.net/forum?id=Bt-gaVaVJ-9

A. Castagna and I. Dusparic, “Multi-agent transfer learning in reinforcement learning-based
ride-sharing systems,” in Proceedings of the 14th International Conference on Agents and Artificial
Intelligence, ICAART 2022, Volume 2, Online Streaming, February 3-5, 2022, A. P. Rocha,
L. Steels, and H. J. van den Herik, Eds. SCITEPRESS, 2022, pp. 120–130. [Online]. Available:
https://doi.org/10.5220/0010785200003116

M. Zawalski, B. Osinski, H. Michalewski, and P. Milos, “Off-policy correction for multi-agent
reinforcement learning,” in AAMAS. International Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS), 2022, pp. 1774–1776.

R. Avalos, M. Reymond, A. Nowé, and D. M. Roijers, “Local advantage networks for cooperative
multi-agent reinforcement learning,” in AAMAS. International Foundation for Autonomous
Agents and Multiagent Systems (IFAAMAS), 2022, pp. 1524–1526.

Y. X. Xueguang Lyu, “A deeper understanding of state-based critics in multi-agent reinforcement
learning,” Proceedings of the AAAI Conference on Artificial Intelligence, 2022. [Online]. Available:
https://par.nsf.gov/biblio/10315765

30

https://openreview.net/forum?id=cIrPX-Sn5n
https://doi.org/10.1109/IROS51168.2021.9636349
https://openreview.net/forum?id=Rcmk0xxIQV
https://proceedings.neurips.cc/paper/2021/file/6fe6a8a6e6cb710584efc4af0c34ce50-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf
https://openreview.net/forum?id=CpTuR2ECuW
https://openreview.net/forum?id=2t7CkQXNpuq
https://openreview.net/forum?id=EcGGFkNTxdJ
https://openreview.net/forum?id=Bt-gaVaVJ-9
https://doi.org/10.5220/0010785200003116
https://par.nsf.gov/biblio/10315765

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” 2016. [Online].
Available: https://arxiv.org/abs/1602.01783

A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and R. Vicente,
“Multiagent cooperation and competition with deep reinforcement learning,” PLOS ONE, vol. 12,
11 2015.

C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The surprising effectiveness of ppo in
cooperative, multi-agent games,” 2021. [Online]. Available: https://arxiv.org/abs/2103.01955

Y. J. Park, Y. J. Lee, and S. B. Kim, “Cooperative multi-agent reinforcement learning with approximate
model learning,” IEEE Access, vol. 8, pp. 125 389–125 400, 2020.

J. Hu, S. Jiang, S. A. Harding, H. Wu, and S. wei Liao, “Rethinking the implementation tricks and
monotonicity constraint in cooperative multi-agent reinforcement learning,” 2021.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare, “Deep reinforcement
learning at the edge of the statistical precipice,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

E. G. R. Kirk, A. Zhang and T. Rocktäschel, “A survey of generalisation in deep reinforcement
learning,” arXiv preprint arXiv:2111.09794, 2021.

S. Mohanty, E. Nygren, F. Laurent, M. Schneider, C. Scheller, N. Bhattacharya, J. Watson, A. Egli,
C. Eichenberger, C. Baumberger et al., “Flatland-rl: Multi-agent reinforcement learning on trains,”
arXiv preprint arXiv:2012.05893, 2020.

31

https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/2103.01955

	Data collection and annotation methodology
	Paper search strategy
	Filtering data to find relevant studies
	Annotations
	Environments' annotations
	Algorithm annotations

	Additional Analysis
	Environment
	Most used settings
	Evolution of environment usage in MARL

	Algorithms
	Training schemes analysis
	Benchmark algorithms

	Evaluation Settings
	Metric
	Independent runs
	Aggregate function
	Measure of spread
	Time Measurement

	Evaluation procedure, best practices and guideline
	About SMAC

	Guideline
	Motivation
	Reporting templates
	Experiment details
	Environment

	Evaluation protocol and experimental procedure
	Results
	Sample efficiency curves
	Aggregate score performance
	Performance profiles
	Probability of improvement
	Tabular Results
	Overall findings

