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Abstract

Multi-agent reinforcement learning (MARL) has emerged as a useful approach
to solving decentralised decision-making problems at scale. Research in the field
has been growing steadily with many breakthrough algorithms proposed in recent
years. In this work, we take a closer look at this rapid development with a focus on
evaluation methodologies employed across a large body of research in cooperative
MARL. By conducting a detailed meta-analysis of prior work, spanning 75 papers
accepted for publication from 2016 to 2022, we bring to light worrying trends
that put into question the true rate of progress. We further consider these trends
in a wider context and take inspiration from single-agent RL literature on similar
issues with recommendations that remain applicable to MARL. Combining these
recommendations, with novel insights from our analysis, we propose a standardised
performance evaluation protocol for cooperative MARL. We argue that such a
standard protocol, if widely adopted, would greatly improve the validity and
credibility of future research, make replication and reproducibility easier, as well
as improve the ability of the field to accurately gauge the rate of progress over
time by being able to make sound comparisons across different works. Finally, we
release our meta-analysis data publicly on our project website for future research
on evaluation 3 accompanied by our open-source evaluation tools repository4.

1 Introduction

Empirical evaluation methods in single-agent reinforcement learning (RL)5 have been closely scruti-
nised in recent years (Islam et al., 2017; Machado et al., 2017; Henderson, 2018; Zhang et al., 2018;
Henderson et al., 2018; Colas et al., 2018a, 2019; Chan et al., 2020; Jordan et al., 2020; Engstrom
et al., 2020; Agarwal et al., 2022). In this context, the impact of a lack of rigour and methodological
standards has already been observed. Fortunately, just as these issues have arisen and been identified,
they have also been accompanied by suggested solutions and recommendations from these works.

∗Equal contribution. Corresponding author: r.gorsane@instadeep.com
†Work done during an internship at InstaDeep.
3https://sites.google.com/view/marl-standard-protocol
4https://github.com/instadeepai/marl-eval
5In this paper, we use the term "RL" to exclusively refer to single-agent RL, as opposed to RL as a field of

study, of which MARL is a subfield.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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Multi-agent reinforcement learning (MARL) extends RL with capabilities to solve large-scale de-
centralised decision-making tasks where many agents are expected to coordinate to achieve a shared
objective (Foerster, 2018; Oroojlooyjadid and Hajinezhad, 2019; Yang and Wang, 2020). In this
cooperative setting, where there is a common goal and rewards are shared between agents, sensi-
ble evaluation methodology from the single-agent case often directly translates to the multi-agent
case. However, despite MARL being far less developed and entrenched than RL, arguably making
adoption of principled evaluation methods easier, the field remains affected by many of the same
issues as found in RL. Implementation variance, inconsistent baselines, and insufficient statistical
rigour still affect the quality of reported results. Although work specifically addressing these issues
in MARL have been rare, there have been recent publications that implicitly observe some of the
aforementioned issues and attempt to address their symptoms but arguably not their root cause (Yu
et al., 2021; Papoudakis et al., 2021; Hu et al., 2022). These works usually attempt to perform new
summaries of performance or look into the code-level optimisations used in the literature to provide
insight into the current state of research.

In this paper, we argue that to facilitate long-term progress in future research, MARL could benefit
from the literature found in RL on evaluation. The highlighted issues and recommendations from RL
may serve as a guide towards diagnosing similar issues in MARL, as well as providing scaffolding
around which a standardised protocol for evaluation could be developed. In this spirit, we survey key
works in RL over the previous decade, each relating to a particular aspect of evaluation, and use these
insights to inform potential standards for evaluation in MARL.

For each aspect of evaluation considered, we provide a detailed assessment of the corresponding
situation in MARL through a meta-analysis of prior work. In more detail, our meta-analysis involved
manually annotating MARL evaluation methodologies found in research papers published between
2016 to 2022 from various conferences including NeurIPS, ICML, AAMAS and ICLR, with a focus
on deep cooperative MARL (see Figure 1). In total, we collected data from 75 cooperative MARL
papers accepted for publication. Although we do not claim our dataset to comprise the entire field
of modern deep MARL, to the best of our knowledge, our data includes all popular and recent deep
MARL algorithms and methodologies from seminal papers. We believe this dataset is the first of its
kind and we have made it publicly available for further analysis.
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Figure 1: Recorded papers by year in the meta-analysis
on evaluation methodologies in cooperative MARL.

By mining the data on MARL evaluation from
prior work, we highlight how certain trends, wor-
rying inconsistencies, poor reporting, a lack of
uncertainty estimation, and a general absence of
proper standards for evaluation, is plaguing the
current state of MARL research, making it dif-
ficult to draw sound conclusions from compara-
tive studies. We combine these findings with the
earlier issues and recommendations highlighted
in the literature on RL evaluation, to propose
a standardised performance evaluation protocol
for cooperative MARL research.

In addition to a standardised protocol for evalu-
ation, we expose trends in the use of benchmark
environments and suggest useful standards for
environment designers that could further improve the state of evaluation in MARL. We touch upon
aspects of environment bias, manipulation, level/map cherry picking as well as scalability and compu-
tational considerations. Our recommendations pertain to designer specified standards concerning the
use of a particular environment, its agreed upon settings, scenarios and version, as well as improved
reporting by authors and preferring the use of environments designed to test generalisation.

There are clear parallels between RL and MARL evaluation, especially in the cooperative setting.
Therefore, we want to emphasise that our contribution in this work is less focused on innovations in
protocol design (of which much can be ported from RL) and more focused on data-driven insights on
the current state of MARL research and a proposal of standards for MARL evaluation.
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Figure 2: Inconsistencies in performance reports and a lack of ablation studies. (a) MARL algorithms ranked
by popularity. (b) Historical performance of QMIX on different SMAC maps across papers. (c) Performance
of QMIX on the MMM2 SMAC map as reported in different papers. (d) A count of papers over the years
containing any type of ablation study as part of their evaluation of a newly proposed algorithm.

2 From RL to MARL evaluation: lessons, trends and recommendations

In this section, we provide a list of key lessons from RL that are applicable to MARL evaluation. We
highlight important issues identified from the literature on RL evaluation, and for each issue, provide
an assessment of the corresponding situation and trends in MARL. Finally, we conclude each lesson
with recommendations stemming from our analysis and the literature.

2.1 Lesson 1: Know the true source of improvement and report everything

Issue in RL – Confounding code-level optimisations and poor reporting: It has been shown empiri-
cally that across some RL papers there is considerable variance in the reported results for the same
algorithms evaluated on the same environments (Henderson et al., 2018; Jordan et al., 2020). This
variance impedes the development of novel algorithmic developments by creating misleading perfor-
mance comparisons and making direct comparisons of results across papers difficult. Implementation
and code-level optimisation differences can have a significant impact on algorithm performance and
may act as confounders during performance evaluation (Engstrom et al., 2020; Andrychowicz et al.,
2020). It is rare that these implementation and code-level details are reported, or that appropriate
ablations are conducted to pinpoint the true source of performance improvement.

The situation in MARL – Similar inconsistencies and poor reporting but a promising rise in
ablation studies: There already exist some work in MARL showing the effects of specific code-
level optimisations on evaluation performance (Hu et al., 2021). Employing different optimisers,
exploration schedules, or simply setting the number of rollout processes to be different, can have
a significant effect on algorithm performance. To better understand the variance in performance
reporting across works in MARL, we focused on QMIX (Rashid et al., 2018), the most popular
algorithm in our dataset (as shown in Figure 2 (a)). In Figure 2 (b), we plot the performance of
QMIX tested on different maps from the StarCraft multi-agent challenge (SMAC) environment
(Samvelyan et al., 2019), a popular benchmark in MARL. On several maps, we find wildly different
reported performances with large discrepancies across papers. Although it is difficult to pin down the
exact source of these differences in reports, we zoom in with our analysis to only consider a single
environment, in this case MMM2. We find that some of the variance is explained by differences in
the environment version as well as the length of training time, as shown in Figure 2 (c). However,
even when both of these aspects are controlled for, as well as any implementation or evaluation
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details mentioned in each paper, differences in performance are still observed (as seen by comparing
orange and blue circles, respectively). This provides evidence that unreported implementation details,
or differences in evaluation methodology account for some of the observed variance and act as
confounders when comparing performance across papers (similar inconsistencies in other maps are
shown in the Appendix). We finally consider studying the explicit attempts in published works
at understanding the sources of algorithmic improvement through the use of ablation studies. We
find that very few of these studies were performed in the earlier years of MARL (see Figure 2 (d)).
However, even though roughly 40% of papers in 2021 still lacked any form of ablation study, we
find a promising trend showing that ablation studies have become significantly more prevalent in
recent years.

Recommendations – Report all experimental details, release code and include ablation studies:
Henderson et al. (2018) emphasise that for results to be reproducible, it is important that papers report
all experimental details. This includes hyperparameters, code-level optimisations, tuning procedures,
as well as a precise description of how the evaluation was performed on both the baseline and novel
work. It is also important that code be made available to easily replicate findings and stress test claims
of general performance improvements. Furthermore, Engstrom et al. (2020) propose that algorithm
designers be more rigorous in their analysis of the effects of individual components and how these
impact performance through the use of detailed ablation studies. It is important that researchers
practice diligence in attributing how the overall performance of algorithms and their underlying
algorithmic behavior are affected by different proposed innovations, implementation details and
code-level optimisations. In the light of our above analysis, we argue that the situation is no different
in MARL, and therefore suggest the field adopt more rigorous reporting and conduct detailed ablation
studies of proposed innovations.

2.2 Lesson 2: Use standardised statistical tooling for estimating and reporting uncertainty

Issue in RL – Results in papers do not take into account uncertainty: We have discussed how different
implementations of the same algorithm with the same set of hyperparameters can lead to drastically
different results. However, even under such a high degree of variability, typical methodologies often
ignore the uncertainty in their reporting (Colas et al., 2018a, 2019; Jordan et al., 2020; Agarwal
et al., 2022). Furthermore, most published results in RL make use of point estimates like the mean or
median performance and do not take into account the statistical uncertainty arising from only using a
finite number of testing runs. For instance, Agarwal et al. (2022) found that the current norm of using
only a few runs to evaluate the performance of an RL algorithm is insufficient and does not account
for the variability of the point estimate used. Furthermore, Agarwal et al. (2022) also revealed that the
manner in which point estimates are chosen varies between authors. This inconsistency invalidates
direct comparison between results across papers.

The situation in MARL – A lack of shared standards for uncertainty estimation and concerning
omissions in reporting: In Figure 3 (a)-(c), we investigate the use of statistical aggregation and
uncertainty quantification methods in MARL. We find considerable variability in the methods used,
with little indication of standardisation. Perhaps more concerning is a complete absence of proper
uncertainty quantification from one third of published papers. On a more positive note, we observe an
upward trend in the use of standard deviation as an uncertainty measure in recent years, particularly
in 2021. Furthermore, it has become fairly standard in MARL to evaluate algorithms at regular
intervals during the training phase by conducting a certain number of independent evaluation runs in
the environment using the current set of learned parameters. This procedure is then followed for each
independent training run and results are aggregated to assess final performance. In our analysis, we
find that key aspects of this procedure are regularly omitted during reporting, as shown in Figure 3
(d)-(e). Specifically, in (d), we find many papers omit details on the exact evaluation interval used,
and in (e), a similar trend in omission regarding the exact number of independent evaluation runs
used. Finally, in Figure 3 (f), we plot the number of independent runs used during training, showing
no clear standard. Given the often high computational requirements of MARL research, it is not
surprising that most works opt for a low number of independent training runs, however this remains
of concern when making statistical claims.

Recommendations – Standardised statistical tooling and uncertainty estimation including detailed
reporting: As mentioned before, the computational requirements in MARL research often make it
prohibitively difficult to run many independent experiments to properly quantify uncertainty. One
approach to make sound statistical analysis more tractable, is to pool results across different tasks
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Figure 3: Trends in performance aggregation, uncertainty quantification and omissions in reporting on key
aspects of evaluation methodology. (a) Distribution of performance aggregation metrics. None means that the
aggregation metric was not specified in the paper. (b) Distribution of uncertainty methods: α% confidence
interval (CI), standard deviation (STD) and interquartile range (IQR). (c) Trends in uncertainty quantification
over time. (d) Reporting of the evaluation interval used. (e) Reporting on the number of evaluation runs used. (f)
Number of independent runs used in published work.

using the bootstrap (Efron, 1992). In particular, for RL, Agarwal et al. (2022) recommend computing
stratified bootstrap confidence intervals, where instead of only using the original set of data to
calculate confidence intervals, the data is resampled with replacement from M tasks, each having N
runs. This process is repeated as many times as needed to approximate the sampling distribution of
the statistic being calculated. Furthermore, when making a summary of overall performance across
tasks it has been shown that the mean and median are insufficient, the former being dominated by
outliers and the latter having higher variance. Instead, Agarwal et al. (2022) propose the use of the
interquartile mean (IQM) which is more robust to outlier scores than the mean and more statistically
efficient than the median. Finally, Agarwal et al. (2022) propose the use of probability of improvement
scores, sample efficiency curves and performance profiles, which are commonly used to compare the
performance of optimization algorithms (Dolan and Moré, 2001). These performance profiles are
inherently robust to outliers on both ends of the distribution tails and allow for the comparison of
relative performance at a glance. In the shared reward setting, where it is only required to track a
single return value, we argue that these tools fit the exact needs of cooperative MARL, as they do in
RL. Furthermore, in light of our analysis, we strongly recommend a universal standard in the use, and
reporting of, evaluation parameters such as the number of independent runs, evaluation frequency,
performance metrics and statistical tooling, to make comparisons across different works easier and
more fair.

2.3 Lesson 3: Guard against environment misuse and overfitting

Issue in RL – Over-tuning algorithms to perform well on a specific environment: As early as 2011
issues with evaluation in RL came to the foreground in the form of environment overfitting. Whiteson
et al. (2011) raised the concern that in the context of RL, researchers might over-tune algorithms to
perform well on a specific benchmark at the cost of all other potential use cases. More specifically,
Whiteson et al. (2011) define environment overfitting in terms of a desired target distribution. When
an algorithm performs well in a specific environment but lacks performance over a target distribution
of environments, it can be deemed to have overfit that particular environment.

The situation in MARL – One environment to rule them all – on the use and misuse of SMAC: The
StarCraft multi-agent challenge (SMAC) (Samvelyan et al., 2019) has quickly risen to prominence as
a key benchmark for MARL research since it’s release in 2019, rivaled only in use by the multi-agent
particle environment (MPE) introduced by Lowe et al. (2017) (see Figure 4 (a)). SMAC and its
accompanied MARL framework PyMARL (introduced in the same paper), fulfills several desirable
properties for benchmarking: offering multiple maps of various difficulty that test key aspects of
MARL algorithms and providing a unified API for running baselines as well as state-of-the-art
algorithms on SMAC. Unfortunately, the wide-spread adoption of SMAC has also caused several
issues, relating to environment overfitting and cherry picking of results, putting into question the
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Figure 4: Environment popularity, usage trends in papers and potential evidence of overfitting on SMAC. (a) En-
vironment adoption over time. (b) Number of environments used in papers. (c) Number of scenarios/tasks/maps
used in papers. (d) Distribution of task difficulty of SMAC maps used in papers. (e) Performance trends on
popular SMAC maps: Aggregation is the aggregate function used for the different reported values.

credibility of claims made while using it as a benchmark.
To illustrate the above point, we start by highlighting that many MARL papers use only a single
environment (e.g. SMAC or MPE) for evaluation, as shown in Figure 4 (b). This is often deemed
acceptable since both SMAC and MPE provide many different tasks, or maps. For instance, in SMAC,
there are 23 different maps providing a wide variety in terms of the number of agents, agent types and
game dynamics. However, there is no standard, or agreed upon set of maps to use for benchmarking
novel work, which makes it easy for authors to selectively subsample maps post-experiment based
on the outcomes of their proposed algorithm. As shown in Figure 4 (c), although environments like
SMAC and MPE offer many different testing scenarios, it is typical for papers to only use a small
number of these in their reported experiments.

To concretely expose the potential danger in this author map selection bias, we redo the original
analysis performed by Samvelyan et al. (2019), using the authors’ exact experimental data that was
made publicly available6, containing five independent runs for IQL (Tampuu et al., 2015), COMA
(Foerster et al., 2018), VDN (Sunehag et al., 2017) and QMIX (Rashid et al., 2018) on 14 SMAC
maps.7 The top row of Figure 5 shows the results of this analysis performed using the statistical
tools recommended by Agarwal et al. (2022), including the probability of improvement between
algorithms, performance profiles and sample efficiency curves. The results support the original claims
made by Samvelyan et al. (2019), namely that QMIX is a superior algorithm to that of VDN, COMA
and IQL, both in terms of performance and sample efficiency. However, by simply sampling a smaller
set of two easy, medium and hard maps (a common spread in the literature, see Figure 4 (d)), from
the original 14, giving 6 maps in total (a reasonable number according to prior work, see Figure 4
(c)), we are able to change the outcome of the analysis in support of no difference in performance
between VDN and QMIX, as well as finding VDN to be more sample efficient. This is shown in the
bottom row of Figure 5 and highlights the danger of a lack of standards regarding which fixed set of
maps should be used for benchmarking.

We end our investigation into SMAC (and refer the reader to the Appendix for additional discrepancies
uncovered), by looking at historical performance trends. In Figure 4 (e), we show the top win rate
achieved by an algorithm in a specific year for 14 of the most popular maps used in prior work. We
find that by 2021, most of these maps have converged to a win rate close or equal to 100%, while
only a few maps are still situated around 80-90%. Given that many of these maps repeatedly feature

6We applaud the authors for making their raw evaluation data publicly available. This data can be found here:
https://github.com/oxwhirl/smac.

7The maps chosen were: 1c3s5z, 2c_vs_64zg, bane_vs_bane, MMM2, 10m_vs_11m, 27m_vs_30m,
5m_vs_6m, 2s3z, 2s_vs_1sc, s5z, 3s_vs_5z, 6h_vs_8z, 3s5z_vs_3s6z and corridor
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Figure 5: Reanalysis of original SMAC experiments conducted by Samvelyan et al. (2019) including probability
of improvement, performance profiles and sample efficiency curves. Top row: All 14 SMAC maps used in the
original analysis. Bottom row: Subset of 6 maps, including 2 easy, 2 medium and 2 hard: 2s_vs_1sc, 3s_vs_5z,
bane_vs_bane, 5m_vs_6m, 6h_vs_8z and corridor

across papers, and will likely be used in future work, it begs the question to what extent the MARL
community has already overfit to SMAC as an evaluation benchmark.

Recommendations – Standardised environment sets and testing for generalisation: To solve the
issue of environment overfitting, Whiteson et al. (2011) propose the use of a generalised evaluation
methodology. In this approach, environments (for tuning algorithms) are freely sampled from some
generalised environment set. Separately, algorithm evaluation is performed on a second set of sampled
environments from the same generalised environment set, acting as a test set analogous to that used
in supervised learning. Recent work in this direction include benchmarks such as Procgen (Cobbe
et al., 2020), which use procedural generation to implicitly construct a distribution from which to
sample test tasks. In SMAC and other environments, it is common practice to only evaluate on the
exact map the algorithm was trained on, under that exact same conditions, and to not specifically test
for generalisation across unseen tasks. However, many MARL algorithms are still highly sensitive to
small changes in the environment and often fail to generalise to new unseen tasks (Carion et al., 2019;
Zhang et al., 2020; Mahajan et al., 2022). This calls for more work on MARL generalisation and we
recommend a stronger focus on benchmarks designed specifically to test generaliation. However, it
has been noted that procedurally generated benchmarks may reduce the precision of research (Kirk
et al., 2021), making it more difficult to track progress. Furthermore, MARL exibits several unique
and challenging difficulties when it comes to building algorithms able to generalise, likely requiring
many years of future work to surmount (Mahajan et al., 2022). Therefore, in certain cases, it might
make more sense for researchers to take smaller and more precise steps towards key innovations in
algorithm design by still relying on traditional environment sets. In this setting, we strongly advocate
using fixed environment sets, where ideally these are selected by the designers of each environment
and are accompanied by exact instruction for their configuration, so as to be consistent across papers.

3 Towards a standardised evaluation protocol for MARL

In this section, we pool together the observations and recommendations from the previous section to
provide a standardised performance evaluation protocol for cooperative MARL. We are realistic in our
efforts, knowing that a single protocol is unlikely to be applicable to all MARL research. However,
echoing recent work on evaluation (Ulmer et al., 2022), we stress that many of the issues highlighted
previously stem from a lack of standardisation. Therefore, we believe a default "off-the-shelf"
protocol that is able capture most settings, could provide great value to the community. If widely
adopted, such a standardised protocol would make it easier and more accurate to compare across
different works and remove some of the noise in the signal regarding the true rate of progress in
MARL research. A summarised version of our protocol is given in the blue box at the end of this
section and a concrete demonstration of its usage can be found in the Appendix.
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Benchmarks and Baselines. Before giving details on the proposed protocol, we first briefly
comment on benchmarks and baselines used in experiments. These choices often depend on the
research question of interest, the novel work being proposed and key algorithmic capabilities to
be tested. However, as alluded to in our analysis, we recommend that environment designers take
full ownership regarding how their environments are to be used for evaluation. For example, if
an environment has several available static tasks, the designers should specify a fixed compulsory
minimum set for experiments to avoid biased subsampling by authors. It could also be helpful if
designers keep track of state-of-the-art (SOTA) performances on tasks from published works and
allow authors to submit these for vetting. We also strongly recommend using more than a single
environment (e.g. SMAC) and preferring environments that test generalisation. Regarding baselines,
we recommend that at minimum the published SOTA contender to novel work should be included.
For example, if the novel proposal is a value-based off-policy algorithm for discrete environments, at
minimum, it must be compared to the current SOTA value-based off-policy algorithm for discrete
environments. Finally, all baselines must be tuned fairly with the same compute budget.
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Figure 6: Top: Evaluation methodologies in papers: how
frequent and for how many runs to do evaluation. “E”
refers to episode and “T” to timestep. Bottom: Number
of total training timesteps used in papers (left) and win
rates per training timesteps on 2s3z (right).

Evaluation parameters. In Figure 6, we
show the evaluation parameters for the num-
ber of evaluation runs, the evaluation interval
(top) and the training time (bottom left) used
in papers. We find it is most common to use
32 evaluation episodes at every 10000 timesteps
(defined as the steps taken by agents when act-
ing in the environment) and to train for 2 million
timesteps in total. We note that these numbers
are skewed towards earlier years of SMAC evalu-
ation and that recent works have since explored
far longer training times. However, we argue
that these longer training times are not always
justified (e.g. see the bottom right of Figure
6). Furthermore, SMAC is one of the most ex-
pensive MARL environments (Appendix A.7
in Papoudakis et al. (2021)) and for the future
accessibility of research in terms of scale and
for fair comparisons across different works, we
recommend the above commonly used values
as reasonable starting defaults and support the
view put forward by Dodge et al. (2019) that results should be interpreted as a function of the
compute budget used. We of course recognise that these evaluation parameters can be very specific
to the environment, or task, and again we urge environment designers to play a role in helping the
community develop and adopt sensible standards.

Performance and uncertainty quantification. To aggregate performance across evaluation intervals,
we recommend using the absolute performance metric proposed by Colas et al. (2018b), computed
using the best average (over training runs) joint policy found during training. Typically, practitioners
checkpoint the best performing policy parameters to use as the final model, therefore it makes sense
to do evaluation in a similar way. However, to account for not averaging across different evaluation
intervals, Colas et al. (2018b) recommend increasing the number of independent evaluation runs
using the best policy by a factor of 10 compared to what was used at other intervals. To quantify
uncertainty, we recommend using the mean with 95% confidence intervals (CIs) at each evaluation
interval (computed over independent evaluation runs), and when aggregating across tasks within an
environment, we recommend using the tools proposed by Agarwal et al. (2022), in particular, the
inter-quartile mean (IQM) with 95% stratified Bootstrap CIs.

Reporting. We strongly recommend reporting all relevant experimental details including: hyper-
parameters, code-level optimisations, computational requirements and frameworks used. Taking
inspiration from model cards (Mitchell et al., 2019), we provide templates for reporting in the Ap-
pendix. Furthermore, we recommend providing experimental results in multiple formats, including
plots and tables per task and environment as well as making all raw experimental data and code
publicly available for future analysis and easy comparison. Finally, we encourage authors to include
detailed ablation studies in their work, so as to be able to accurately attribute sources of improvement.
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A Standardised Performance Evaluation Protocol for Cooperative MARL

Input: Environments with tasks t from a set T . Algorithms a ∈ A, including baselines and novel work.

1. Evaluation parameters – defaults
• Number of training timesteps, T = 2 million.

• Number of independent training runs, R = 10 (from Agarwal et al. (2022))

• Number of independent evaluation episodes per interval, E = 32.

• Evaluation intervals, i ∈ I, at every 10000 timesteps.

2. Performance and uncertainty quantification
1. Performance metric: Always use returns G (applicable to all environments), and the environ-

ment specific metric (e.g. Win rate).

2. Per task evaluation: Compute the mean Ga
t over E episodes at each evaluation interval i,

where Ga
t is the return of algorithm a on task t, with 95% CI, for all a.

3. Per environment evaluation:

• Compute the normalised absolute return (Colas et al., 2018b) as the mean return of
10×E = 320 evaluation episodes using the best joint policy found during training and
normalising the return to be in the range [0, 1] using (Ga

t −min(Gt))/(max(Gt) −
min(Gt)), where Gt is the return for all algorithms on task t.

• For each algorithm a, form an evaluation matrix with shape (R, |T |) where each entry
is the normalised absolute return for a specific training run on a specific task.

• Compute the IQM and optimality gap with 95% stratified Bootstrap CIs, probability
of improvement scores and performance profiles, to compare the algorithms, using the
tools proposed by Agarwal et al. (2022).a Sample efficiency curves can be computed by
using normalised returns at each evaluation interval.

3. Reporting
• Experiments: All hyperparameters, code-level optimisations, computational requirements and

framework details.

• Plots: All task and environment evaluations as well as ablation study results.

• Tables: Normalised absolute performance per task with 95% CI for all tasks, IQM with 95%
stratified Bootstrap CIs per environment for all environments.

• Public repository: Raw evaluation data and code implementations.

aThese can be found in the rliable library: https://github.com/google-research/rliable

4 Conclusion and future work

In this work, we argue for the power of standardisation. In a fast-growing field such as MARL, it
becomes ever more important to be able to dispel illusions of rapid progress, potentially misleading
the field and resulting in wasted time and effort. We hope to break the spell by proposing a sensible
standardised performance evaluation protocol, motivated in part by the literature on evaluation in
RL, as well as by a meta-analysis of prior work in MARL. If widely adopted, such a protocol could
make comparisons across different works much faster, easier and more accurate. However, certain
aspects of evaluation are better left standardised outside of the control or influence of authors, such as
protocols pertaining to the use of benchmark environments. We believe this is an overlooked issue
and an important area for future work by the community, and specifically environment designers,
to jointly establish better standards and protocols for evaluation and environment use. Finally, we
encourage the community to move beyond the use of only one or two environments with static task
sets (e.g. MPE and SMAC) and focus more on building algorithms, environments and tools for
improving generalisation in MARL.

A clear limitation of our work is our focus on the cooperative setting. Interesting works have
developed protocols and environments for evaluation in both the competitive and mixed settings
(Omidshafiei et al., 2019; Rowland et al., 2019; Leibo et al., 2021). We find this encouraging and
argue for similar efforts in the adoption of proposed standards for evaluation.
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