
A Convergence

Here we give a more detailed explanation of some of the convergence arguments made in the paper.

A.1 Assumptions

The following is a sufficient, self-contained list of all assumptions required for the theorems in the
main text.

1. Let L = {Li : Rd → R | i = 1, ..., N} be a finite set of functions and let x∗
i ∈ Rd be any

global minima of Li.
2. Let U = {Ui : Rd → Rd | i = 1, ..., N} be a set of update functions for Li such that

∃τ > 0 : ∀x ∈ Rd : Li(x)− Li(x+ Ui(x)) ≥ τ (L(x)− L(x∗)) and ∃K > 0 : ∀x ∈
Rd : ||Ui(x)|| ≤ K(L(x)− L(x∗)).

3. Let NNθ : Rm → Rd be differentiable w.r.t. θ with the property that ∃η > 0 : ∀i ∈
1, ..., N ∀xi ∈ Rd ∀ϵ > 0 ∃n ∈ N : ||NNθ

xi
n
(yi) − xi||2 ≤ ϵ where θxn is the sequence of

gradient descent steps with θxn+1 = θxn − η
(
∂NNθ

∂θ

)T
(NNθn − x), η > 0.

Given these assumptions, SIP training with sufficiently many network optimization steps n is
guaranteed to converge to an optimum point or region. In the two special cases mentioned in the
main text, it is guaranteed to converge even for n = 1.

If we are interested in convergence to a global optimum, we may additionally require that L is convex.

A.2 Probable Loss Decrease for the Case n = 1

෤𝑥

𝑥∗

𝑥 𝐼

෤𝑥𝑥

𝐼

(a)

(b)

Figure 8: (a) Convergence vi-
sualization for the probable loss
decrease in the case n = 1.
(b) Zoomed view for small η. All
shown objects are visualized in x
space for one example i.

To show that the loss decreases on average, we require the
the assumption that an update of the neural network weights θ
does not systematically distort the update direction in x. More
formally, we update θ to minimize

L̃ =
1

2
||NNθ

xi
n
(y)− x̃||22,

where x̃ denotes the target in x space which is computed using
U as defined above. This can be done with gradient descent,

∆θ = −η

(
∂NNθ

∂θ

)T

(NNθ − x̃),

or any other method. In fact, recent works have shown that
the Jacobian ∂NNθ

∂θ can be inverted numerically to compute
more precise θ updates [50]. The updated network will predict
a new vector NNθ+∆θ(y) and we will denote the shift in x
space resulting from the update ∆θ as ∆NN ≡ NNθ+∆θ(y)−
NNθ(y). This shift is guaranteed to lie closer to x̃ (within the
blue circle in Fig. 8) as long as we choose η appropriately. We
also know that at x̃ itself, as well as in a small region around
x̃, the loss L is smaller than L(x). We denote the region of
decreased loss I = {x ∈ Rd : L(x) < L(xn)}.

Note that the circle radius ||x̃ − x||2 scales with the step size of the higher-order optimizer since
x̃ = x+ U(x). Factoring out this step size and integrating it into η allows us to arbitrarily scale our
problem in x space. In particular, when choosing η to be small, we can linearly approximate the loss
landscape (Fig. 8b). Its boundary becomes a straight line separating increased and decreased regions
of the loss, and must cut the circle so that more than half of it lies within I . More importantly, the
expectation of L integrated over the circle is smaller than L(x).

Therefore, if ∆NN points towards x̃ on average, i.e. E [∆NN] = λ(x̃− x) with λ ∈ (0, 1], and we
choose η small enough, the loss must decrease on average. While the assumption that updates of θ do
not systematically distort the direction in x may not hold for all problems or network architectures,
we have empirically observed it to be true over a wide range of tests.

15

B Detailed Description of the Experiments

Here, we give a more detailed description of our experiments including setup and analysis. The imple-
mentation of our experiments is based on the ΦFlow (PhiFlow) framework [30] and uses TensorFlow [2]
and PyTorch [44] for automatic differentiation. All experiments were run on an NVidia GeForce
RTX 2070 Super. Our code is open source, available at https://github.com/tum-pbs/SIP.

In all of our experiments, we compare SIP training to standard neural network optimizers. To make
this comparison as fair as possible, we try to avoid other factors that might prevent convergence, such
as overfitting. Therefore, we perform our experiments with effectively infinite training sets, sampling
target observations y∗ on-the-fly. This setup ensures that all optimizers can, in principle, converge to
zero loss. Since a numerical simulation of the forward problem is assumed to be available, unlimited
amounts of synthetic training data can always be generated, further justifying this assumption. To
check for possible biases introduced by this procedure, we also performed our experiments with finite
training sets but did not observe a noticeable change in performance as long as the data set sizes were
reasonable, e.g. 1000 samples for the characterization (sine) experiment.

B.1 Characterization with two-dimensional sine function

In this experiment, we consider the nonlinear process

P(x) =

(
sin(x̂1)

ξ
, ξ · x̂2

)
with xx̂ = γ ·Rϕ · x and Rϕ =

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
where γ denotes a global scaling factor. We set γ = 10 as this value leads to the fastest convergence
when training the network with traditional optimizers like Adam.

The conditioning factor ξ continuously scales any compact solution manifold, elongating it along
one axis and compressing it along the other. Therefore, the range of values required for a solution
manifold scales linearly with ξ, in both x1 and x2 if ϕ ̸= 0. To take this into account, we show the
relative accuracy ||x−x∗||2

ξ in Fig. 5d, as described in the main text. To measure ||x− x∗||2, we find
the true solution x∗ analytically using sin−1 and determining which solution is closest.

Saddle-free Newton For SIP training, we use a variant of Newton’s method. Without modification,
Newton’s method also approaches maxima and saddle points which exist in this experiment. To
avoid these, we project the Newton direction and gradient into the eigenspace of the Hessian, similar
to [14]. There, we can easily flip the Newton update along eigenvectors of the Hessian to ensure that
the update always points in the direction of decreasing loss.

Neural network training We sample target states y∗ = (y∗1 , y
∗
2) uniformly in the range [−1, 1]

each, and feed y∗ to a fully-connected neural network that predicts x = (x1, x2). The network
consists of three hidden layers with 32, 64 and 32 neurons, respectively, and uses ReLU activations.
The final layer has no activation function and outputs two values that are interpreted as x. We always
train the network with a batch size of 100 and chose the best learning rate for each optimizer. We
determined the following learning rates to work the best for this problem: SIP training with Adam
η = 10−3, Adam η = 10−3, SGD η = 10−2/ξ2, Adadelta η = 3 · 10−3, Adagrad η = 3 · 10−3,
RMSprop η = 3 · 10−5. For Fig. 5d and e, we run each optimizer for 10 minutes for each sample
point which is enough time for more than 50k iterations with all traditional optimizers and around
15k iterations with SIP training. We then average the last 10% of recorded distances for the displayed
value.

B.2 Poisson’s equation

We consider Poisson’s equation, ∇2y = x where x is the initial state and y is the output of the
simulator. We set up a two-dimensional simulation with 80 by 60 cubic cells. Our simulator computes
y = P(x) = ∇−2x implicitly via the conjugate gradient method. The inverse problem consists of
finding an initial value x∗ for a given target y∗ such that ∇2y∗ = x∗. We formulate this problem
as minimizing L(x) = 1

2 ||P(x) − y∗||22 = 1
2 ||∇

−2(x − x∗)||22. We now investigate the computed
updates ∆x of various optimization methods for this problem.

16

https://github.com/tum-pbs/SIP

Gradient descent Gradient descent prescribes the update ∆x = −η ·
(
∂L
∂x

)T
= −η · ∇−2 (y − y∗)

which requires an additional implicit solve for each optimization step. This backward solve produces
much larger values than the forward solve, causing GD-based methods to diverge from oscillations
unless η is very small. We found that GD requires η ≤ 2 · 10−5, while the momentum in Adam
allows for larger η. For both GD and Adam, the optimization converges extremely slowly, making
GD-based methods unfeasible for this problem.

SIP Gradients via analytic inversion Poisson’s equation can easily be inverted analytically,
yielding x = ∇2y. Correspondingly, we formulate the update step as ∆x = −η · ∂x

∂y · (y − y∗) =

−η · ∇2 (y − y∗) which directly points to x∗ for η = 1. Here the Laplace operator appears in the
computation of the optimization direction. This is much easier to compute numerically than the
Poisson operator used by gradient descent. Consequently, no additional implicit solve is required
for the optimization and the cost per iteration is less than with gradient descent. This computational
advantages also carries over to neural network training where this method can be integrated into the
backpropagation pipeline as a gradient.

Neural network training We first generate ground truth solutions x∗ by adding fluctuations of
varying frequencies with random amplitudes. From these x∗, we compute y∗ = P(x∗) to form the
set of target states Y . This has the advantage that learning curves are representative of both test
performance as well as training performance. The top of Fig. 9 shows some examples generated
this way. All training methods except for the Fourier neural operators (FNO) use a a U-net [48]
with a total of 4 resolution levels and skip connections. The network receives the feature map y∗ as
input. Max pooling is used for downsampling and bilinear interpolation for upsampling. After each
downsampling or upsampling operation, two blocks consisting of 2D convolution with kernel size of
3x3, batch normalization and ReLU activation are performed. For training with AdaHessian, we also
tested tanh for activation but observed no difference in performance. All of these convolutions output
16 feature maps and a final 1x1 convolution brings the output down to one feature map. The network
contains a total of 37,697 trainable parameters. We use a mini-batch size of 128 for all methods.

For SGD and Adam training, the composite gradient of NN ◦ P is computed with TensorFlow or
PyTorch, enabling an end-to-end optimization. The learning rate is set to η = 10−3 with Adam and
η = 3 ·10−12 for SGD. The extremely small learning rate for SGD is required to balance out the large
gradients and is consistent with the behavior of gradient-descent optimization on single examples
where an η = 2 · 10−5 was required. We use a typical value of 0.9 for the momentum of SGD and
Adam.

For training with AdaHessian [55], we use the implementation from torch-optimizer [43] and
found the best learning rate to be η = 10−6 which, similar to SGD, is much smaller than what
is used on well-conditioned problems. However for η >= 10−4 AdaHessian diverges on the
Poisson equation, independent of which activation function is used. The Hessian power is another
hyperparameter of the AdaHessian optimizer and we set it to the standard value of 0.5 which converges
much better than a value of 1.0.

For training with the Hessian-free optimizer [39], we use the PyTorchHessianFree implementation
from https://github.com/ltatzel/PyTorchHessianFree. We use the generalized Gauss-
Newton matrix to approximate the local curvature because it yields more stable results than the
Hessian approximation in our tests. The optimizer uses a learning rate of η = 1.0 and adaptive
damping during training. On this problem, the Hessian-free optimizer takes between 300 and 1700
seconds to compute a single update step. This is largely due to the CG loop, performing between 50
and 250 iterations for each update. The solution error drops to 900 within the plotted time frame in
Fig. 6b, corresponding to less then 6 iterations. Convergence speed then slows continuously, reaching
a MAE of 500 after about 6 hours.

For the training using Adam with SIP gradients, we compute ∆x as described above and keep
η = 10−3. For each case, we set the learning rate to the maximum value that consistently converges.
The learning curves for three additional random network initializations are shown at the bottom of
Fig. 9, while Fig. 15 shows the computation time per iteration.

Training a Fourier neural operator network [34] on the same task requires a different network
architecture. We use a standard 2D FNO architecture with width 32 and 12 modes along x and y. This
results in a much larger network consisting of 1,188,353 parameters. Despite its size, its performance

17

https://github.com/ltatzel/PyTorchHessianFree

SIP SIP

Iteration Iteration Iteration

x
M

A
E

SIP

Figure 9: Inverse problems involving Poisson’s equation. Top: Three examples from the data set,
from left to right: observed target (y∗), simulated observations resulting from network predictions
(Adam y, SIP y), predicted solutions (Adam x, SIP x), ground truth solution (x∗). Networks were
trained for 12k iterations. Bottom: Neural network learning curves for three random network
initializations, measured as ||x− x∗||1.

18

measured against wall clock time is superior to that of smaller versions we tested. We train the FNO
using Adam with η = 0.003, which yields the best results, converging in a stable manner.

B.3 Heat equation

We consider a two-dimensional system governed by the heat equation ∂u
∂t = ν · ∇2u. Given an initial

state x = u0 at t0, the simulator computes the state at a later time t∗ via y = u∗ = P(x). Exactly
inverting this system is only possible for t · ν = 0 and becomes increasingly unstable for larger t · ν
because initially distinct heat levels even out over time, drowning the original information in noise.
Hence the Jacobian of the physics ∂y

∂x is near-singular. In our experiment we set t · ν = 8 on a domain
consisting of 64x64 cells of unit length. This level of diffusion is challenging, and diffuses most
details while leaving the large-scale structure intact.

We apply periodic boundary conditions and compute the result in frequency space where the
physics can be computed analytically as ŷ = x̂ · e−k2(t∗−t0) where ŷk ≡ F(y)k denotes the
k-th element of the Fourier-transformed vector y. Here, high frequencies are dampened expo-
nentially. The inverse problem can thus be written as minimizing L(x) = 1

2 ||P(x) − y∗||22 =
1
2 ||F

−1
(
F(x) · e−k2(t∗−t0)

)
− y∗||22.

Gradient descent Using the analytic formulation, we can compute the gradient descent update as

∆x = −η · F−1
(
e−k2(t∗−t0)F(y − y∗)

)
.

GD applies the forward physics to the gradient vector itself, which results in updates that are stable
but lack high frequency spatial information. Consequently, GD-based optimization methods converge
slowly on this task after fitting the coarse structure and have severe problems in recovering high-
frequency details. This is not because the information is fundamentally missing but because GD
cannot adequately process high-frequency details.

Stable SIP gradients The frequency formulation of the heat equation can be inverted analytically,
yielding x̂k = ŷk · ek2(t∗−t0). This allows us to define the update

∆x = −η · F−1
(
ek

2(t∗−t0)F(y − y∗)
)
.

Here, high frequencies are multiplied by exponentially large factors, resulting in numerical instabil-
ities. When applying this formula directly to the gradients, it can lead to large oscillations in ∆x.
This is the opposite behavior compared to Poisson’s equation where the GD updates were unstable
and the SIP stable.

The numerical instabilities here can, however, be avoided by taking a probabilistic viewpoint. The
observed values y contain a certain amount of noise n, with the remainder constituting the signal
s = y − n. For the noise, we assume a normal distribution n ∼ N (0, ϵ · y) with ϵ > 0 and for
the signal, we assume that it arises from reasonable values of x so that s ∼ N (0, δ · e−k2

) with
δ > 0. Then we can estimate the probability of an observed value arising from the signal using Bayes’
theorem p(s|y) = p(y | s)·p(s)

p(y | s)·p(s)+p(y |n)·p(n) where we assume the priors p(s) = p(n) = 1
2 . Based on

this probability, we dampen the amplification of the inverse physics which yields a stable inverse.
Gradients computed in this way hold as much high-frequency information as can be extracted given
the noise that is present. This leads to a much faster convergence and more precise solution than any
generic optimization method.

Neural network training For training, we generate x∗ by randomly placing between 4 and 10
hot rectangles of random size and shape in the domain and computing y = P(x∗). For the neural
network, we use the same U-net and FNO architectures as in the previous experiment. We train
all methods with a batch size of 128. A learning rate of η = 10−3 yields the best results for SGD,
Adam, AdaHessian, FNO and SIP training. Unlike the Poisson experiment, where such large learning
rates lead to divergence due to the large gradient magnitudes, the heat equation produces relatively
small and predictable gradients. Larger η can still result in divergence, especially with AdaHessian.
For the Hessian-free optimizer, we use η = 1.0 with adaptive damping during training. Due to the

19

SIP

SIP

SIP SIP

Approx. SIP (L-BFGS-B) Approx. SIP (L-BFGS-B)

Figure 10: Inverse problems involving the heat equation. Top: Two examples from the data set. The
top row shows observed target (y∗) and simulated observations resulting from inferred solutions. The
bottom row shows the ground truth solution (x∗) and inferred solutions. From left to right: ground
truth; gradient descent (GD), L-BFGS-B (BFGS) and inverse physics (Inv.phys.), running for 100
iterations each, starting with x0 = 0; Networks trained for 10k iterations. Bottom: Neural network
learning curves for two random network initializations, measured in terms of ||x− x∗||1.

20

more compute-intensive updates, we plot the running average over 8 mini-batches for Hessian-free in
Fig. 6, instead of the usual 64.

Fig. 10 shows two examples from the data set, along with the corresponding inferred solutions, as
well as the network learning curves for two network initializations. The measured computation time
per iteration is shown in Fig. 15.

We perform additional hyperparameter studies on this experiment to better gauge how SIP training
compares to traditional network optimization in a variety of settings. Fig. 11 shows the learning
curves for a varying learning rate η and batch size b. The best performance of both methods is
achieved at η = 10−3 and b = 128.

Additionally, we evaluate the methods on finite data sets with sizes between 32 and 2048 examples
while also varying the batch size. Fig. 12 shows the performance on both the training and the test set.
Both SIP training and Adam exhibit overfitting under the same conditions. For data set sizes of 128
and less, both methods start to overfit early on. This is especially pronounced for large batch sizes
where less randomness is involved. In the cases where the batch size is equal to or larger than the data
set size, no mini-batching is used. We tile the data set where needed. For very small data sets, SIP
training seems to exhibit stronger overfitting but this can be explained by its superior performance.
The test performance of SIP training always surpasses the Adam variant, even on small data sets.

We also run iterative optimizers on individual examples of the data set. Fig. 13 shows the optimization
curves of gradient descent and L-BFGS-B and compares them to the network predictions. L-BFGS-B
converges faster than gradient descent but both iterative optimizers progress slowly on this inverse
problem due to its ill-conditioned nature. After 500 iterations, L-BFGS-B matches the solution
accuracy of the neural network trained with Adam. We have run both traditional optimizers for 1000
iterations, representing 102 seconds for BFGS and 36 seconds for gradient descent. This is about
1000 times longer than the network predictions, which finish within 64 ms.

B.4 Navier-Stokes equations

Here, we give additional details on the simulation, data generation, SIP gradients and network training
procedure for the fluid experiment.

Simulation details We simulate the fluid dynamics using a direct numerical solver. We adopt the
marker-in-cell (MAC) method [28, 27] which guarantees stable simulations even for large velocities
or time increments. The velocity vectors are sampled in staggered form at the face centers of grid
cells while the marker density is sampled at the cell centers. The initial velocity v0 is specified at cell
centers and resampled to a staggered grid for the simulation. Our simulation employs a second-order
advection scheme [52] to transport both the marker and the velocity vectors. This step introduces
significant amount of numerical diffusion which can clearly be seen in the final marker distributions.
Hence, we do not numerically solve for adding additional viscosity. Incompressibility is achieved via
Helmholz decomposition of the velocity field using a conjugate gradient solve.

Neither pressure projection nor advection are energy-conserving operations. While specialized energy-
conserving simulation schemes for fluids exist [24, 42], we instead enforce energy conservation by
normalizing the velocity field at each time step to the total energy of the previous time step. Here, the
energy is computed as E =

∫
R2 dx v(x)

2 since we assume constant fluid density.

Data generation The data set consists of marker pairs {m0,mt} which are randomly generated
on-the-fly. For each example, a center position for m0 is chosen on a grid of 64x64 cells. m0 is then
generated from discretized noise fluctuations to fill half the domain size in each dimension. The
number of marked cells is random.

Next, a ground truth initial velocity v0 is generated from three components. First, a uniform velocity
field moves the marker towards the center of the domain to avoid boundary collisions. Second, a
large vortex with random strength and direction is added. The velocity magnitude of the vortex falls
off with a Gaussian function depending on the distance from the vortex center. Third, smaller-scale
vortices of random strengths and sizes are added additionally perturb the flow fields. These are
generated by assigning a random amplitude and phase to each frequency making up the velocity field.
The range from which the amplitudes are sampled depends on the magnitude frequency.

21

0 100 200 300
Time (s)

102

103
= 0.01, batch=4

SIP
Adam

0 100 200 300
Time (s)

102

103
= 0.01, batch=32

SIP
Adam

0 100 200 300
Time (s)

102

103
= 0.01, batch=128

SIP
Adam

0 100 200 300
Time (s)

102

103
= 0.001, batch=4

SIP
Adam

0 100 200 300
Time (s)

102

103
= 0.001, batch=32

SIP
Adam

0 100 200 300
Time (s)

102

103
= 0.001, batch=128

SIP
Adam

0 100 200 300
Time (s)

102

103
= 0.0001, batch=4

SIP
Adam

0 100 200 300
Time (s)

102

103
= 0.0001, batch=32

SIP
Adam

0 100 200 300
Time (s)

102

103
= 0.0001, batch=128

SIP
Adam

Figure 11: Hyperparameter study for the heat equation experiment. The learning rate η varies
vertically from 10−4 to 10−2 and the batch size varies horizontally from 4 to 128 examples per
mini-batch. The solid curves are averaged over 64 mini-batches. A learning rate of 10−3 with large
batch sizes yields best performance.

Given m0 and v0, a ground truth simulation is run for t = 2 with ∆t = 0.25. The resulting marker
density is then used as the target for the optimization. This ensures that there exists a solution for
each example.

Computation of SIP gradients To compute the SIP gradients for this example, we construct
an explicit formulation v̂0 = P−1(m0,mt |x0) that produces an estimate for v0 given an initial
guess x0 by locally inverting the physics. From this information, it fits the coarse velocity, i.e. the
uniform velocity and the vortex present in the data. This use of domain knowledge, i.e., enforcing
the translation and rotation components of the velocity field as a prior, is what allows it to produce a
much better estimate of v0 than the regular gradient. More formally, it assumes that the solution lies
on a manifold that is much more low-dimensional than v0. On the other hand, this estimator ignores
the small-scale velocity fluctuations which limits the accuracy it can achieve. However, the difficulty
of fitting the full velocity field without any assumptions outweighs this limitation. Nevertheless, GD
could eventually lead to better results if trained for an extremely long time.

22

0 100 200 300
Time (s)

102

103 batch=4 out of 2048
SIP test
Adam test
SIP train
Adam train

0 100 200 300
Time (s)

102

103 batch=32 out of 2048
SIP test
Adam test
SIP train
Adam train

0 100 200 300
Time (s)

102

103 batch=128 out of 2048
SIP test
Adam test
SIP train
Adam train

0 100 200 300
Time (s)

102

103 batch=4 out of 512
SIP test
Adam test
SIP train
Adam train

0 100 200 300
Time (s)

102

103 batch=32 out of 512
SIP test
Adam test
SIP train
Adam train

0 100 200 300
Time (s)

102

103 batch=128 out of 512
SIP test
Adam test
SIP train
Adam train

0 100 200 300
Time (s)

102

103 batch=4 out of 128
SIP test
Adam test
SIP train
Adam train

0 100 200 300
Time (s)

102

103 batch=32 out of 128
SIP test
Adam test
SIP train
Adam train

0 100 200 300
Time (s)

102

103 batch=128 out of 128
SIP test
Adam test
SIP train
Adam train

0 100 200 300
Time (s)

102

103 batch=4 out of 32
SIP test
Adam test
SIP train
Adam train

0 100 200 300
Time (s)

102

103 batch=32 out of 32
SIP test
Adam test
SIP train
Adam train

0 100 200 300
Time (s)

102

103 batch=128 out of 32
SIP test
Adam test
SIP train
Adam train

Figure 12: Heat equation experiment with different training set sizes. The training set size |T |
varies vertically from 32 to 2048 and the batch size b varies horizontally from 4 to 128 examples per
mini-batch. The test set is of fixed size 128. The solid curves are averaged over 64 mini-batches.
Overfitting occurs in both SIP training and Adam when no mini-batches are used, |T | ≤ b, and for
small b where the convergence is unstable.

23

0 200 400 600 800 1000
Iterations

50

100

150

200

250

300

x
M

AE

L-BFGS-B
GD
NN Adam
NN SIP

Figure 13: Iterative optimization of individual examples from a test set of 128 heat examples. Gradi-
ent descent (GD) and L-BFGS-B directly optimize the initial state x0 (64x64 grid), independently for
each example. The predictions of the trained and frozen neural networks (NN Adam, NN SIP) are
evaluated on the same data set for reference.

To estimate the vortex strength, the estimator runs a reverse Navier-Stokes simulation. The reverse
simulation is initialized with the marker mrev

t = mt and velocity vrev
t = vt from the forward

simulation. The reverse simulation then computes mrev and vrev for all time steps by performing
simulation steps with ∆t = −0.25. Then, the update to the vortex strength is computed from the
differences mrev −m at each time step and an estimate of the vortex location at these time steps.

Neural network training We train a U-net [48] similar to the previous experiments but with 5
resolution levels. The network contains a total of 49,570 trainable parameters. The network is given
the observed markers m0 and mt, resulting in an input consisting of two feature maps. It outputs two
feature maps which are interpreted as a velocity field sampled at cell centers.

The objective function is defined as |F(P(x)−y∗)| ·w where F denotes the two-dimensional Fourier
transform and w is a weighting vector that factors high frequencies exponentially less than low
frequencies.

We train the network using Adam with a learning rate of 0.005 and mini-batches containing 64
examples each, using PyTorch’s automatic differentiation to compute the weight updates. We found
that second-order optimizers like L-BFGS-B yield no significant advantage over gradient descent,
and typically overshoot in terms of high-frequency motions. Example trajectories and reconstructions
are shown in Fig. 14 and performance measurements are shown in Fig. 15.

24

S
IP

S
IP

S
IP

Figure 14: Three example inverse problems involving the Navier-Stokes equations. For each example,
the ground truth (GT) and neural network reconstructions using Adam with SIP gradient (SIP) and
pure Adam training (Adam) are displayed as rows. Each row shows the initial velocity v0 ≡ x as well
as five frames from the resulting marker density sequence m(t), at time steps t ∈ {0, 0.5, 1, 1.5, 2}.
The differences of the Adam version are especially clear in terms of v0.

25

0 10000 20000 30000 40000 50000
Iteration

0.00

0.02

0.04

0.06

Se
c.

 /
ite

ra
tio

n

Sin
SIP (Ours)
Adam
SGD
Adadelta
Adagrad
RMSprop

0 2000 4000 6000 8000 10000 12000
Iteration

0.5

1.0

Se
c.

 /
ite

ra
tio

n

Poisson Equation
SIP (Ours)
Adam

0 10000 20000 30000 40000 50000 60000 70000
Iteration

0.150

0.175

0.200

Se
c.

 /
ite

ra
tio

n

Heat Equation
SIP (Ours)
Adam
SGD

0 2000 4000 6000 8000 10000
Iteration

4.00

4.25

4.50

Se
c.

 /
ite

ra
tio

n

Incompressible Fluid
SIP (Ours)
Adam

Figure 15: Measured time per neural network training iteration for all experiments, averaged over
64 mini-batches. Step times were measured using Python’s perf_counter() function and include
data generation, gradient evaluation and network update. In all experiments, the computational cost
difference between the various gradients is marginal, affecting the overall training time by less than
10%.

26

C Additional Experiments

Here, we describe the additional experiments that were referenced in sections 1 and 2.

C.1 Wave packet localization

As we state in the introduction, one advantage of solution inference using neural networks is that
no initial guess needs to be provided for each problem. Of course the network starts off with some
initialization but we observe that the network can explore a much larger area of the solution space
than any iterative solver. To our knowledge this claim has not been verified as of yet. However, as
it is not directly relevant to our method, we do not discuss it in detail in the main text. Instead, we
provide a simple example here.

The wave packet localization experiment is an instance of a generic curve fitting problem. The task is
to find an offset parameter t0 that results in least mean squared error between a noisy recorded curve
and the model.

Data generation. We simulate an observed time series y∗ from a random ground truth position
x∗ = t0. Each time series contains 256 entries and consists of the wave packet and superimposed
noise. For the wave packet, we sample t0 ∈ [25.6, 128) from a uniform distribution. The wave packet
has the functional form

y(t) = A · sin(f · (t− t0)) · exp
(
−1

2

(t− t0)
2

σ2

)
where we set A = 1, f = 0.7 and σ = 20 constant for all data. For the noise, we superimpose
random values sampled from the normal distribution N (0, 0.1) at each point.

Network architecture. We construct the neural network from convolutional blocks, followed by
fully-connected layers, all using the ReLU activation function. The input is first processed by five
blocks, each containing a max pooling operation and two 1D convolutions with kernel size 3. Each
convolution outputs 16 feature maps. The downsampled result is then passed to two fully connected
layers with 64 and 32 and 2 neurons, respectively, before a third fully-connected layer produces the
predicted t0 which is passed through a Sigmoid activation function and normalized to the range of
possible values.

Training and fitting. We fit the data using L-BFGS-B with a centered initial guess (t0 = 76.8)
and the network output is offset by the same amount. Both network and L-BFGS-B minimize the
squared loss ||y(t0)− y∗||22 and the resulting performance curves along with example fits are shown
in Fig. 16. We observe that L-BFGS-B manages to fit the wave packet perfectly when it is located
very close to the center where the initial guess predicts it. When the wave packet is located slightly
to either side, L-BFGS-B gets stuck in a local optimum that corresponds to an integer phase shift.
When the wave packet is located further away from the initial guess, L-BFGS-B does not find it and
instead fits the noise near the center.

The neural network is trained using Adam with learning rate η = 10−3 and a batch size of 100.
Despite the simpler first-order updates, the network learns to localize most wave packets correctly,
outperforming L-BFGS-B after 30 to 40 training iterations. This improvement is possible because
of the network’s reparameterization of the problem, allowing for joint parameter optimization using
all data. When the prediction for one example is close to a local optimum, updates from different
examples can prevent it from converging to that sub-optimal solution.

Conclusion This example shows that neural networks have the capability to explore the solution
space much better than iterative solvers, at least in some cases. Employing neural networks should
therefore be considered, even when problems can be solved iteratively.

27

(b)

(a)

x MAE

Figure 16: (a) Two examples from the wave packet data set, each showing the simulated data
(orange), neural network prediction and L-BFGS-B fit. (b) Learning curves of the network trained to
localize wave packets. The performance of L-BFGS-B and random guessing are evaluated on the
same data for reference. The left graph shows the objective ||y − y∗||22 and the right graph shows the
x-space (t0) deviation from the true solution.

C.2 Gradient normalization for the exponential function

The task in this simple experiment is to learn to invert the exponential function P(x) = ex. As
described in the text, both SGD and Adam converge very slowly on this task due to the gradients
scaling linearly with ex.

Gradient normalization We introduce a gradient normalization which first computes the gradient
∂L
∂x . It then normalizes this adjoint vector for each example in the batch to unit length, ∆x =

sign
(
∂L
∂x

)
. ∆x is then passed on to the network optimizer, replacing the standard adjoint vector for

x. Like with SIP training, we implement this using an L2 loss for the effective network objective
L̃ = 1

2 ||NN(y∗)− (NN(◦) + ∆x)||22.

Neural network training For training data, we sample x∗ uniformly in the range [−12, 0] and
compute y∗ = ex

∗
. We train a fully-connected neural network with three hidden layers, each using

the Sigmoid activation function and consisting of 16, 64 and 16 neurons, respectively. The network
has a single input and output neuron. We train the network for 10k iterations with each method,
using the learning rates η = 10−3 for Adam, η = 10−2 for SGD and η = 10−3 for Adam with x
normalization. Each mini-batch consists of 100 randomly sampled values.

28

	Introduction
	Scale-invariance in Optimization
	Scale-invariant Physics and Deep Learning
	Derivation
	Update Rule
	Convergence
	Experimental Characterization
	Application to High-dimensional Problems
	Limitations and Discussion

	Conclusions
	Convergence
	Assumptions
	Probable Loss Decrease for the Case n = 1

	Detailed Description of the Experiments
	Characterization with two-dimensional sine function
	Poisson's equation
	Heat equation
	Navier-Stokes equations

	Additional Experiments
	Wave packet localization
	Gradient normalization for the exponential function

