
Chaotic Dynamics are Intrinsic to Neural Network

Training with SGD

Luis M. Herrmann

Center for Digital Health - AG Roland Eils
Berlin Institute of Health

Kapelle-Ufer 2, 10117 Berlin
luis.herrmann@charite.de

Maximilian Granz

FU BioRobotics Lab
Freie Universität Berlin

Arnimallee 7, 14195 Berlin
maximilian.granz@fu-berlin.de

Tim Landgraf

FU BioRobotics Lab
Freie Universität Berlin

Arnimallee 7, 14195 Berlin
tim.landgraf@fu-berlin.de

Abstract

With the advent of deep learning over the last decade, a considerable amount
of effort has gone into better understanding and enhancing Stochastic Gradient
Descent so as to improve the performance and stability of artificial neural net-
work training. Active research fields in this area include exploiting second order
information of the loss landscape and improving the understanding of chaotic
dynamics in optimization. This paper exploits the theoretical connection between
the curvature of the loss landscape and chaotic dynamics in neural network training
to propose a modified SGD ensuring non-chaotic training dynamics to study the
importance thereof in NN training. Building on this, we present empirical evidence
suggesting that the negative eigenspectrum - and thus directions of local chaos -
cannot be removed from SGD without hurting training performance. Extending
our empirical analysis to long-term chaos dynamics, we challenge the widespread
understanding of convergence against a confined region in parameter space. Our
results show that although chaotic network behavior is mostly confined to the initial
training phase, models perturbed upon initialization do diverge at a slow pace even
after reaching top training performance, and that their divergence can be modelled
through a composition of a random walk and a linear divergence. The tools and
insights developed as part of our work contribute to improving the understanding
of neural network training dynamics and provide a basis for future improvements
of optimization methods.

1 Introduction

In the last decade, the advent of Deep Learning has led to an explosive development of powerful
machine learning models capable of solving ever more complex problems. However, while numerous
different architectures have been developed, the underlying optimization procedure - Stochastic
Gradient Descent (SGD) (Robbins, 2007) and its descendants (Duchi et al., 2011; Kingma and Ba,
2017) - has largely remained the same, with many aspects of its nature not being fully understood yet.
The role of second order dynamics is one of those aspects, as are chaotic dynamics of Artificial Neural
Network (ANN) training, both being notoriously difficult to investigate due to the high computational
cost involved. In this paper, we establish a connection between the two aspects and generate new

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

insights by studying the intersection of these two through a series of experiments conducted on
small-sized models trained on natural datasets. Our main four contributions are as follows:

1. By modeling ANN training with SGD as a time-discrete dynamical system, we propose a
modified SGD algorithm ensuring non-chaotic training dynamics to study the importance of
chaos in ANN training.

2. We find empirical evidence suggesting that directions of negative curvature - and thus local
chaos - cannot be removed without hurting the training performance of ANNs.

3. We show empirically that the network dynamics start out diverging exponentially at the
beginning of the training but transition asymptotically against polynomial behaviour as the
model performance converges.

4. Elaborating on the previous aspect, we show that even as the model training converges, the
distance between similarly initialized models continues to grow at a small pace, and that
this behaviour can be modelled as a sum of a linear divergence and a random walk.

2 Theoretical preliminaries

2.1 Definition of chaos

A popular saying characterizing the notion of chaos states that ’The flapping of a butterfly’s wings
can cause a storm on the other side of the world.’, sometimes also briefly referenced as the butterfly
effect. Formally, a dynamical system is chaotic if it is (1) sensitive to initial conditions, (2)
topologically transitive and (3) has periodic points of the system which are dense in state space
(Skokos, 2009, p.3, Def.1). Although a complete analysis of chaos dynamics of a dynamical system
would encompass quantifying all three aforementioned properties, property (1) is the most relevant
property for model optimization: Given a small deviation in the parameter state of a model at any
point of the optimization, one should hope to obtain a similar solution at the end of the optimization
procedure, and by extension a solution that performs similarly well both on training and validation
data. Therefore, we use chaotic to refer to the sensitivity to initial conditions.1

2.2 Recap: Lyapunov Exponents

A common tool for characterizing chaos are Lyapunov exponents, which measure the evolution of
displacement vectors over time. Consider a dynamical system ✓

(t+1) = f(✓(t)), where ✓
(t) is the

system state and f the dynamics function which determines how the system evolves over time. Given
an initial, infinitesimally small displacement vector �✓0 s.t. ✓0

0 = ✓0 + �✓0, the evolution of the
displacement vector over time is given by the so-called tangent map, typically denoted dw�

(t) or
Y

(t) in matrix notation, satisfying

�✓
(t) = Y

(t)
�✓

(0) =
@✓

(t)

@✓
(0)

�✓
(0)

, (1)

where the matrix Y
(t) is the Jacobian of the dynamics function at time t w.r.t. the state at the initial

time step. When the state ✓
(t) depends only on the state at the previous time point ✓(t�1) the action

of the tangent map can be decomposed through application of the chain rule to

Y
(t) = Jf (✓

(t))Y (t�1) =
@✓

(t)

@✓
(t�1)

Y
(t�1)

, (2)

with Jf being the Jacobian of the dynamics function at time step t. The Lyapunov exponents are
defined as the eigenvalues (the Lyapunov spectrum) of the matrix

⇤(1) = lim
t!1

1

2t
lnY (t)T

Y
(t)
, (3)

which we will refer to as Lyapunov matrix from now on. With this definition, we expect initial system
perturbations �✓0 to evolve according to

�✓(t) / e
�1t�✓0, (4)

1A more rigorous definition of chaos would require the system’s invariant set to be bounded.

2

where �1 is the maximum eigenvalue of the Lyapunov matrix, also called maximum Lyapunov

Characteristic Exponent (mLCE). The respective eigenvector gives us the direction of maximum
expansion of an initial displacement as the dynamic system evolves. Thus, the mLCE can be used to
characterize three different types of system dynamics:

1. �1 > 0: Nearby trajectories diverge exponentially (chaotic).

2. �1 = 0: Nearby trajectories diverge polynomially (edge-chaotic).

3. �1 < 0: The distance of nearby trajectories is upper-bounded.

Although the mLCE is sufficient to characterize the overall system dynamics, a more fine-grained
analysis can be obtained in a natural manner by considering the full eigenvalue spectrum of the
Lyapunov matrix, with the biggest eigenpair (�1,v1) giving us the "most chaotic" direction of the
system evolution, (�2,v2) the second-most chaotic, and so on assuming �1 � �2 � ... � �N . Thus,
for a small initial perturbation ✓

0(0) = ✓
(0)+ "vi, we expect the perturbation to evolve approximately

as dictated by the respective eigenpair as �✓(t) / e
�it"vi. Along any direction, we can expect the

bound
e
�N (t)t

" �✓(t) e
�1(t)t" (5)

to hold for sufficiently small " s.t. the first order approximation

✓
0(t) ⇡ ✓

(t) + Y
(t)("w) (6)

of the training process at time step t, where w is a unit-length perturbation axis, is accurate.

2.3 Curvature and chaos

A neural network evolving according to SGD with learning rate � (without momentum) and trained
with data batches z(t) at time step t can be described by the equation

✓
(t) = ✓

(t�1) � �g(✓(t�1); z(t�1)), (7)

where g(✓(t�1); z(t�1)) is the loss gradient w.r.t. to network parameters ✓
(t�1). We show in

Appendix A.1 and A.3 that the evolution of the tangent map without and with momentum can be
described as

Y
(t+1) = (I � �H

(t))Y (t) and Y
(t+1) = Y

(t) � �

⇣Pt
s=1 �

(t�s)
H

(s)
Y

(s)
⌘
, (8)

respectively. This result shows that, discounting the effects of random batch sampling in SGD, the
chaotic dynamics depend on the Hessian and thus on the curvature of the loss landscape during
training.

2.4 Local chaos and negative Hessian eigenvalue spectrum

Given the connections we established above, one could hope to improve the training performance
of SGD by using second-order curvature information to avoid/promote a chaotic evolution of the
system, assuming chaos to be detrimental/beneficial for neural network training, e.g. by pruning the
directions of maximum chaos from the gradient updates. Unfortunately, the Lyapunov matrix is not
practical for this purpose because it considers the chaos over the entire training up to the current
time point, so it can only inform us of a chaotic evolution of the system a posteriori. To mitigate this
problem, one can instead consider a greedy approach where at any given time step t, one looks at the
finite-time Lyapunov matrix after a single time step, i.e.

⇤(t,t+1) =
1

2
ln(I � �H)T (I � �H) =

1

2
ln(I � �H)2 (9)

The eigenvalues of this matrix are called the Local Lyapunov Exponents (LLE) at time step t.
Analogously to the LCEs, we say the system is locally chaotic in the direction of eigenpair (�i,vi) iff
�i > 0. Using the fact that ⇤(t,t+1) has the same eigenvectors as H , we can relate the eigenspectrum
of the Hessian to local chaotic dynamics as follows:

3

Theorem 2.1. Given a neural network with N parameters, let H be the Hessian of the loss w.r.t.

network parameters, and let (�i,vi)
N
i=1 be the Hessian’s eigenpairs. Furthermore, let us assume that

the network is trained using SGD with learning rate � and no momentum. Then, the network’s LLEs

indicate locally chaotic training behaviour in the direction of vi if

�i < 0 _ �i >
2

�
(10)

For a proof see Appendix A.5. Our result leads to the interesting observation that sufficiently large
positive eigenvalues (as determined by the learning rate) imply locally chaotic training behaviour in
SGD. More interestingly however, negative eigenvalues automatically lead to locally chaotic training
behaviour.

2.5 Pruning chaotic updates

Since the eigenpairs (�i,vi)Ni=1 of ⇤(t,t+1) give us the directions of local chaos ordered by magnitude
of the LLEs, we can remove the locally chaotic directions from the parameter updates in SGD by
projecting the update vector onto non-locally-chaotic eigenvectors of ⇤(t,t+1). More specifically:

Theorem 2.2. Given a neural network with Hessian H
(t)

, eigenpairs (�(t)
i ,v

(t)
i)Ni=1 of ⇤(t,t+1)

and

gradient updates �✓
(t)

, let there be k N chaotic eigenpairs, i.e. �1 � ...�k > 0. Suppose all

chaotic components are removed through projection, leading to a modified update vector

�✓̃
(t)

= V
(t)(V (t))T�✓

(t)
, V

(t) =
P

l>k v
(t)
l v

(t)
l

T
. (11)

Then, for training with SGD without momentum, the updated training dynamics are given by

✓
(t+1) = ✓

(t) � �V
(t)
V

(t)T
g(✓(t)), Y

(t+1) = (I � �V
(t)
V

(t)T)Y (t) (12)

and for sufficiently small variations of the initial parameters, the system is guaranteed not to have

exponentially diverging orbits.

Proof is provided in Appendix A.7.

3 Related Work

Since the full Lyapunov eigenspectrum is very expensive to calculate, previous work analyzing
chaotic dynamics has so far mostly been limited either to small networks or to the largest mLCE, as
investigated for instance by Das et al. (2000). Several investigations of chaos in feedforward ANNs
such as those by Li (2019); Feng et al. (2019); Zhang et al. (2021) have focused on sensitivity of
outputs w.r.t. the inputs rather than w.r.t. the training dynamics, modelling the network function
itself as a discrete dynamical system. Recently, Vogt et al. (2020) have calculated approximations
of the Lyapunov exponents in RNNs and found correlations between better generalization (through
lower validation loss) and a smaller mLCE. To our knowledge, Sasdelli et al. (2021) are the only ones
to have investigated chaos dynamics in ANN training by SGD, but interestingly, they model ANN
training by SGD as an approximately time-continuous dynamical system and not more accurately
as a time-discrete dynamical system, thus arriving at slightly different theoretical results. While
their theoretical work also links the biggest Lyapunov exponent to the most negative eigenpair of
the network Hessian, positive eigenpairs as indicators of chaos disappear in their considerations,
which is not the case for time-discrete SGD without further assumptions. Unfortunately, they do not
investigate how the directions of chaotic evolution in general and negative curvature in particular
affect the training process.

There is a considerable body of work on the eigenvalue spectra of ANN Hessians that can be tied into
our theoretical findings, including an analysis of the full eigenvalue spectrum of a small 784-2-10
MLP for MNIST digit classification by Sagun et al. (2017). Among other findings, the authors
remark a two-phase distribution of eigenvalues with a bulk centered around zero and large positive
top eigenvalues (although not sufficiently big to satisfy � > 2/�), as well as the presence of negative

eigenvalues throughout the entire training. Further analysis of the negative spectrum by Alain et al.
(2019) has indicated that individual negative eigenvalues on average lead to the biggest improvement

4

of the loss in neural networks, but that current optimization algorithms appear not to be good at
optimizing in directions of negative curvature. This finding was extended by Gur-Ari et al. (2018),
who found that the gradient of the Hessian mostly resides in the space spanned by the top Hessian
eigenvectors and does not mix with the bulk, suggesting a marginal importance of the negative
Hessian eigenpairs for the training dynamics.

To the best of our knowledge, we are the first to use time-discrete modelling of training dynamics
by SGD to derive predictions of how curvature affects chaotic dynamics, and the first to explore
extensively - using the full Hessian spectrum at every training step - how directions of different
curvature affect the dynamics of the training process. This extensive investigation provides us with
empirical evidence allowing us to establish a novel connection between chaotic training dynamics
and the training performance.

4 Experiments

Taking into account all aspects discussed so far, we can make the following claims:

1. Due to the presence of negative eigenvalues in all training steps and assuming the MLP for
MNIST is a representative model for Feedforward ANNs, ANNs can be expected to have

positive LLEs at every training step.
2. Unless the positive top eigenvalues of the Hessian are sufficiently big to satisfy � > 2/�

- which was not the case for the MLP for MNIST investigated by Sagun et al. (2017) -
the chaotic behaviour of ANN training by SGD is exclusively determined by negative

eigenvalues in the bulk.

What remains to be verified experimentally is whether the negative eigenspectrum has little or at
worst a detrimental effect on the training performance, as suggested by the findings of Alain et al.
(2019) and Gur-Ari et al. (2018), or if it is actually benificial to the performance of ANN training.

Methods The code for all our experiments is written in Python using the Pytorch framework
(Paszke et al., 2017), and available at GitHub 2. For the calculation of the Hessians, we use O2Grad
(Anonymous, 2022), a package on top of Pytorch that enables faster calculation of the Hessian
of small ANNs using 2nd order backpropagation. As datasets, we use USPS (Hull, 1994) and
FashionMNIST (Xiao et al., 2017) (with images subsampled to 16 ⇥ 16 pixels), since these datasets
contain sufficiently low-dimensional, natural data to allow for the calculation of the Hessian and
its eigenvalue decomposition at every training step, both for a 784-20-10 MLP and for a small
2D CNN. To modify the parameter updates of the model as proposed in Theorem 2.2, we use the
Pytorch implementation of SGD and alter it slightly to implement an own class CGD (Chaos-sensitive
Gradient Descent) with the ability to filter parts of the eigenvalue spectrum.

Our experiments were run on single GPU nodes of a system featuring an AMD Ryzen Threadripper
1950X processor, 4x Nvidia GeForce RTX 2080 TI GPUs (11GB VRAM) and 64GB RAM, as well
as on a second system featuring an Intel(R) Core(TM) i5-8600K, Nvidia GeForce GTX 1080 Ti
(11GB VRAM) and an Nvidia Titan XP (12GB VRAM) and 32GB of RAM. Both systems run on
Debian Debian GNU/Linux 11 (bullseye).

4.1 Local Chaos Investigation

Chaotic direction pruning deteriorates training performance In order to verify the impact of
pruning different components on the training performance, we equipped CGD with the ability to filter
(1.) chaotic eigenpairs, (2.) only negative eigenpairs and (3.) only positive eigenpairs, and out of
those, filter only the k largest by absolute value or prune k at random. As our results for the MLP on
USPS in Figure 1 show, models trained without pruning (i.e. regular SGD) reach high/low training
accuracies/losses, while the models trained with CGD and pruning of chaotic eigenvalues get stuck at
much lower/higher training accuracies/losses. The same phenomenon can be observed for validation
losses/accuracies, and on the 2D CNN and FashionMNIST (see Appendix B.1). This is remarkable
because it seems to suggest that locally chaotic training behaviour is essential for ANN training in
order to quickly achieve reasonable training performance and generalization, and that ANNs trained

2https://github.com/luisherrmann/chaotic_neurips22

5

https://github.com/luisherrmann/chaotic_neurips22

(a) (b)

Figure 1: Line plots of the (a) accuracy and (b) loss curves for an MLP (relu activation) trained
on the USPS dataset without momentum. The models trained with CGD use pruning of the full
chaotic, negative or positive Hessian spectrum at every time step. The smoothed, solid lines are
obtained through local averaging (window size 50) of the respective sequential data. Pruning of
the full positive spectrum (red) only has a small effect on training performance, while negative and
chaotic pruning strongly limits the network’s ability to learn.

(a) (b)

Figure 2: Line plots of the (a) accuracy and (b) loss curves for an MLP trained on the USPS dataset
without momentum. We use a sigmoid activation because this slows down convergence and makes
the splitting of performance metrics better visible. The models trained with CGD use pruning of
the full chaotic Hessian spectrum at every time step after the onset of pruning after 2k, 5k and 10k
time steps. The smoothed, solid lines are obtained through local averaging (window size 50) of the
respective sequential data). The accuracy and loss curves start diverging from the baseline curve
when pruning starts.

by SGD are hardly able to learn in the absence of locally chaotic directions. To make sure this is not
an effect occurring only in the early stages of training by SGD, we execute several runs where the
pruning of locally chaotic directions starts later in the training. As we can see in Figure 2, training
loss and accuracy start improving at a slower rate after the onset of pruning, suggesting that the
models learn far more slowly as soon as the pruning of chaotic directions is engaged.

Negative Hessian eigenspectrum drives training by SGD Interestingly, the number of positive
chaotic eigenvalues of the Hessian is effectively 0 throughout most of the training (see Appendix

6

B.2). This means that the chaotic directions pruned during the training come almost exclusively from
the negative eigenpairs of the Hessian, which is in line with our previously formulated expectation.
However, the extent to which pruning of the negative eigenvalues hinders the training of the network
suggests that the negative eigenspectrum of the Hessian is far more important to the training dynamics
of neural networks than previously believed by Alain et al. (2019). To better understand the role of
the negative and positive eigenspectrum of the Hessian, we perform several runs where we prune (1.)
the entire negative eigenspectrum and (2.) the entire positive eigenspectrum of the Hessian.

As expected, our results in Figure 1 for pruning the full negative eigenspectrum coincide with the
results for pruning the full chaotic eigenspectrum of the Hessian: Models trained with pruning of
the full negative eigenspectrum of the Hessian reach far lower training performance than models
trained with regular SGD. However, pruning the full positive eigenspectrum of the Hessian only

has a small impact on the training performance: Although the accuracy/loss reaches slightly
lower/higher levels than for SGD without pruning, the ANNs trained in this way fare much better
than their counterparts with negative pruning. We observe this behaviour across different datasets
and models (see Appendix B.1).

These empirical results lead us to the following conclusions:

1. The negative eigenvalue spectrum of the Hessian contains important information about
the optimization problem since it cannot be discarded without hurting training performance.

2. The positive eigenvalue spectrum of the Hessian contains less important information

about the optimization since discarding it has less impact on the training.

3. Since the negative eigenspectrum induces locally chaotic training dynamics, locally chaotic

training dynamics are inevitable in SGD without hurting training performance.

These appear to contradict the findings of Gur-Ari et al. (2018), who observe that the overlap
of the gradient is biggest with the positive eigenpairs of the Hessian - an observation that we
confirm in our experiments (see Appendix B.2). The apparent contradiction can be resolved through
a simplified model of ANN training by SGD, in which negative curvature precedes positive

curvature: Directions of negative curvature indicate high potential for future loss improvement from
moving along those axes, while directions of positive curvature indicate proximity to a local minimum
along said axes, and thus reduced potential for loss improvement (see Appendix B.3.1). Removing

the negative components of the Hessian from the gradient eliminates possibilities for big future

improvements of the loss and may only allow the optimizer to finish converging in the directions
where it was moving anyway, hence why the network is still able to decrease its loss even when the
negative eigenspectrum is pruned, though at a smaller pace. This also matches our observation that
the count of negative/positive Hessian eigenvalues decreases/increases as the training proceeds (see
Appendix B.2).

Note that this model does not explain why the gradient overlap with axes of positive curvature is
greater than with axes of negative curvature, only why the former and a high importance of the
negative eigenvalues can exist at the same time: Negative curvature is important during an initial
discovery phase, and positive curvature during a subsequent exploitation phase.

4.2 Global Chaos Investigation

Our experiments so far have relied on a local quantification of chaos via the LLEs. Next, we extend
our investigations to global chaos using finite-time Lyapunov exponents to quantify chaos over longer
time spans.

Finite-time Lyapunov exponents In order to better understand long-term chaotic dynamics, we
calculate the tangent maps from equation (8) at every time step t and apply eigenvalue decomposition
on the resulting finite-time Lyapunov matrix ⇤(t) to end up with the corresponding finite-time
Lyapunov eigenspectrum. The Lyapunov exponents are above 0 at the beginning of the training and
converge against 0 as training progresses (see C.1), suggesting the evolution is initially chaotic, but
edge-chaotic in the time limits. Note that since the exponents do not drop below 0, we should expect
models with similar initializations to continue diverging even after they reach top performance.

7

Perturbation analysis The divergence behavior can be further explored by utilizing the Lyapunov
eigenspace to perturb models along determined directions. As discussed in section 2.2, this space
describes the global divergence directions locally around an initial set of parameters. In our perturba-
tion experiments, we train a model A until convergence at time Tconv and calculate the Lyapunov
eigenpairs. We then use those eigenpairs to apply initial perturbations onto several models B1, ..., Bn

initialized with the same random seed as A, and observe how their parameters evolve compared to A
along the perturbation axes. The latter are derived from the finite-time subspaces

Vchaotic(t) := {v 2 Eig(⇤(t)
,�) | � > 0}, Vnon-chaotic(t) := {v 2 Eig(⇤(t)

,�) | � < 0}

according to 5 perturbation strategies: We take (1) the top eigenvector of ⇤(N) as the maximally

chaotic direction and (2) the bottom eigenvector as maximally non-chaotic direction. Further-
more we consider a linear combination of vectors sampled randomly from (3) Vchaotic(N) and (4)
Vnon-chaotic(N) that describe random chaotic and random non-chaotic directions, respectively. Fi-
nally, we also sample (5) a completely random direction for comparison. The initial parameters
are perturbed along the respective directions, where we test different magnitudes "1, . . . "k for each
direction to make sure we consider perturbation magnitudes that are in agreement with the locality
required by our theoretical preliminaries (see equation (6)).

Ghorbani et al. (2019) finds that the loss landscape near a local minimum is almost flat (H ⇡ 0) and
thus using the finite-time Lyapunov matrix at a time point t = Tconv where the training is sufficiently
converged should provide an acceptable approximation. Therefore, the tangent map Y

(t) at the next
time step t > Tconv + 1 and its eigenspace would barely change.

Y
(Tconv+1) = (I � �H

(Tconv))Y (Tconv) ⇡ Y
(Tconv) (13)

Although we also see a similar distribution of the Hessian eigenspectrum, we do not observe a full
convergence of the Hessian to zero (see Appendix B.2). However, the subspaces of chaotic and
non-chaotic eigenvectors do stabilise towards the end of the training (see Appendix C.2), making a
finite-time analysis with the above perturbation strategies sound.

Distance results Figure 3 (a) shows the distance evolution of an MLP without momentum on USPS
and FashionMNIST. For a comparison between model architectures and analysis of momentum, see
Appendix C.3. In general, the maximal divergence (empirically ⇡ 1 in Figure 3 (a), up to 12 in
further experiments in Appendix C.3) lies in range of the expected distance of standard initialized
models in Pytorch (LeCun et al., 2012) for the duration of our experiments:

E✓1,i,✓2,i⇠U(� 1p
ki

, 1p
ki

)(k✓1 � ✓2k2) ⇡ 6.38,

where ki are the number of input features of layer i (see Appendix A.8). Still, a surprising result
is that the distances do not seem to saturate for the duration of our experiments, which would

be expected for a valley of finite size. In fact, we are still reaching a similar performance with
perturbations of magnitudes up to " 7.5, and only for � 10 there seems to be a significant drop in
performance (see Appendix C.3).

Theoretically, the observed distance evolution can be explained as composition of linear divergence
and a random walk. Suppose the gradients g1(t), g2(t) have distance components w1(t),w2(t) with
constant distance ↵ := kw1(t)�w2(t)k22

gi(t) ⇡ wi(t) + ⌘(t) (14)

and noise components defined by ⌘1(t),⌘2(t) 2 N (0,�2). Then the distance �✓(t) between two
sets of parameters ✓(t)

1 and ✓
(t)
2 evolves as follows:

�✓(t) ⇡ E
h���

Pt
s=0(w1(s)�w2(s)) +

Pt
s=0(⌘1(s)� ⌘2(s))

���
2

i
=

p
↵t2 + �t, (15)

with � := 2D�
2 (see Appendix A.10). For smaller t, this term is still influenced by the random walk

term �t whereas for large t the ↵t2 term dominates and leads to linear divergence. We give examples
of fitting this baseline to the data in Figure 3(b).

Unfortunately, we were unable to explore whether the model distances saturate for a sufficiently long
time evolution, which should be the case if the models end up in a bounded loss valley, whereas an

8

(a) Empirical perturbation evolution (b) Theoretical modelling

Figure 3: Euclidean distance between a baseline MLP and a perturbed MLP trained with SGD
(without momentum). We use 5 different strategies for computing initial perturbations of norm
" = 0.1 using the Lyapunov eigenspace of a model trained beyond convergence of training accuracy.
Darker lines represent perturbation directions which we expect to lead to higher model divergence.
The observed divergence in (a) on USPS (green) and on FashionMNIST (blue) increases even after
convergence of the training accuracy across all perturbation directions. As shown in (b) for the USPS
curves, the divergence can be approximated through a function

p
↵t2 + �t (red) within the observed

time range. The choice of " for the trajectories is in agreement with the theoretical bounds (purple)
predicted by the maximum/minimum LCE �1(t)/�N (t) calculated at every time step.

unbounded loss valley would allow for model divergence to be unbounded as well. A more conclusive
analysis on the matter will have to be provided by further studies. In any case, the evolution of
training dynamics from chaotic to edge-chaotic in the parameter domain is interesting given that
ANNs transition from unchaotic to chaotic in the input domain (Feng et al., 2019), suggesting there
may be a complementary relation between the two.

Choice of perturbation length We present the experiments with a perturbation length of " = 0.1
as we do not find that the approximation holds for larger ". Surprisingly, we see a similar behavior
for smaller perturbation lengths " < 0.1: the smaller the differences get, the more randomly they
behave. We argue that this phenomenon is caused by noise, probably induced by a numerical error.
For further analysis see Appendix C.4.

Theoretical bounds In Figure 3 (b), we present the theoretical bounds derived from the maximal
and minimal LCE (see equation (5)). Both bounds hold for our choice of " = 0.1 over the entirety of
our experiments where the lower bound converges always to zero (see Appendix C.5). The upper
bound, on the other hand, can be utilized as a measure of maximal divergence of a single training run
without conducting the full scale of our experiment. Note that for this purpose, it suffices to calculate
a Lyapunov-vector-product which can be realized through a Hessian-vector-product for which faster
algorithms exist (Pearlmutter, 1994).

5 Discussion

Although we have done our best to perform the pruning experiments on common datasets and model
architectures, the experiments are currently difficult to extend to higher-dimensional datasets and
models due to the high expense of calculating the Hessian at every training step. For similar reasons,
we have not studied the effect of BatchNorm (Ioffe and Szegedy, 2015) and skip connections (He
et al., 2015) yet, although we intend to do this at a later time. The high computational cost also
limits training time used in our analysis and it could be that some aspects don’t apply for longer

9

training times, e.g. our model for perturbed network divergence (see 3 (b)). In this context, it would
also be interesting to investigate possible connections between the edge-chaotic dynamics later in
training and overfitting, but we mainly limited the scope of our analysis to training metrics. Another
aspect requiring further inquiry is why the model divergence is not always ordered according to our
expectations for different perturbation strategies.

In this paper, we have shown that chaotic dynamics of ANN training by SGD are linked to negative
curvature. We have found strong evidence that using negative curvature information is essential for
training, and we have concluded that chaotic behaviour is inherent to training by SGD. Although
globally chaotic dynamics are mostly present at the beginning of the training behaviour and fade
towards the end of training, we have shown that models with slightly different initializations continue
to diverge linearly in parameter space and provided a model for this behavior. Our work provides a
theoretical starting point and tools for further investigations aiming to advance the understanding of
chaos in ANN training. In this context, we especially recommend investigating the divergence of
trajectories at the end of the training and exploring possible connections to generalization capability
(see A.1), as well as the relation between chaos in the input and in the parameter domain.

6 Acknowledgements

We are deeply thankful to Julius Upmeier zu Belzen and Roland Eils from the Berlin Institute of
Health for providing the main author with the time and support to write the paper. We would also like
to thank Leon Sixt from the Biorobotics Lab and Martin Aleksandrov from the Dahlem Center for
Machine Learning and Robotics for giving us valuable advice for the preparation and rebuttal of the
paper. Maximilian Granz was supported by the Elsa-Neumann-Scholarship by the state of Berlin. We
are also grateful to Nvidia for providing us with a Titan Xp and to ZEDAT for granting us access to
their HPC system. Finally, we would like to thank the anonymous reviewers of our paper for taking
their time to review our work and for supplying interesting points of discussion.

References

Alain, G., Roux, N. L., and Manzagol, P.-A. (2019). Negative eigenvalues of the hessian in deep
neural networks.

Anonymous (2022). O2Grad - A Pytorch Extension for 2nd Order Backpropagation. Draft attached
in the Supplementary Material.

Das, A., Roy, A., and Das, P. (2000). Chaos in a three dimensional neural network. Applied

Mathematical Modelling, 24(7):511–522.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. 12:2121–2159.

Feng, L., Zhang, L., and Lai, C. H. (2019). Optimal machine intelligence at the edge of chaos.

Ghorbani, B., Krishnan, S., and Xiao, Y. (2019). An investigation into neural net optimization via
hessian eigenvalue density. CoRR, abs/1901.10159.

Gur-Ari, G., Roberts, D. A., and Dyer, E. (2018). Gradient descent happens in a tiny subspace.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition. CoRR,
abs/1512.03385.

Hull, J. J. (1994). A database for handwritten text recognition research. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 16(5):550–554.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012). Efficient BackProp, pages 9–48.
Springer Berlin Heidelberg, Berlin, Heidelberg.

10

Li, H. (2019). Analysis on the nonlinear dynamics of deep neural networks: Topological entropy and
chaos.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga,
L., and Lerer, A. (2017). Automatic differentiation in pytorch.

Pearlmutter, B. A. (1994). Fast Exact Multiplication by the Hessian. Neural Computation, 6(1):147–
160.

Robbins, H. E. (2007). A stochastic approximation method. Annals of Mathematical Statistics,
22:400–407.

Sagun, L., Bottou, L., and LeCun, Y. (2017). Eigenvalues of the hessian in deep learning: Singularity
and beyond.

Sasdelli, M., Ajanthan, T., Chin, T.-J., and Carneiro, G. (2021). A chaos theory approach to understand
neural network optimization. In 2021 Digital Image Computing: Techniques and Applications

(DICTA), pages 1–10.

Skokos, C. (2009). The lyapunov characteristic exponents and their computation. Lecture Notes in

Physics, page 63–135.

Vogt, R., Touzel, M. P., Shlizerman, E., and Lajoie, G. (2020). On lyapunov exponents for rnns:
Understanding information propagation using dynamical systems tools. CoRR, abs/2006.14123.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms.

Zhang, L., Feng, L., Chen, K., and Lai, C. H. (2021). Edge of chaos as a guiding principle for modern
neural network training.

11

	Introduction
	Theoretical preliminaries
	Definition of chaos
	Recap: Lyapunov Exponents
	Curvature and chaos
	Local chaos and negative Hessian eigenvalue spectrum
	Pruning chaotic updates

	Related Work
	Experiments
	Local Chaos Investigation
	Global Chaos Investigation

	Discussion
	Acknowledgements
	Proofs
	Generalization and long-term chaos

	Further Analysis on Locally Chaotic Dynamics
	Pruning Experiments: Performance Metrics
	Pruning Experiments: Eigenspaces
	Additional

	Further Analysis on Globally Chaotic Dynamics
	Lyapunov Exponents
	Subspace Similarity of Chaotic spaces
	Distance Experiments
	Choice of Perturbation Magnitude
	Theoretical Distance Analysis

