
CLIPDraw: Exploring Text-to-Drawing Synthesis
through Language-Image Encoders

Kevin Frans
Massachusetts Institute of Technology, Cambridge, MA, USA

Cross Labs, Cross Compass Ltd., Tokyo, Japan
kvfrans@csail.mit.edu

L. B. Soros
Cross Labs, Cross Compass Ltd., Tokyo, Japan

Olaf Witkowski
Cross Labs, Cross Compass Ltd., Tokyo, Japan

Earth-Life Science Institute, Tokyo Institute of Technology, Japan
College of Arts and Sciences, University of Tokyo, Japan

Abstract

CLIPDraw is an algorithm that synthesizes novel drawings from natural language
input. It does not require any additional training; rather, a pre-trained CLIP
language-image encoder is used as a metric for maximizing similarity between the
given description and a generated drawing. Crucially, CLIPDraw operates over
vector strokes rather than pixel images, which biases drawings towards simpler
human-recognizable shapes. Results compare CLIPDraw with other synthesis-
through-optimization methods, as well as highlight various interesting behaviors
of CLIPDraw, such as satisfying ambiguous text in multiple ways, reliably pro-
ducing drawings in diverse styles, and scaling from simple to complex visual
representations as stroke count increases.

1 Introduction

When humans hear a description of a scene, it’s easy to imagine what it may look like. Conversely,
when we construct a mental image, it’s easy to then describe that scene. At some level, humans have
a deeply coupled representation for textual and visual structures key to understanding our world.

The recent introduction of CLIP (Radford et al., 2021), a dual language-image encoder, is a large
step towards unifying textual and visual information. In a CLIP model, both text and images are
mapped onto the same representational space, thus enabling the similarity between images and textual
descriptions to be measured. When trained on large amounts of data, CLIP representations have been
shown to solve a robust range of image-based recognition tasks.

This work presents CLIPDraw, an algorithm that synthesizes novel drawings based on natural
language input. CLIPDraw does not require any training; rather a pre-trained CLIP model is used as
a metric for maximizing similarity between the given description and a generated drawing. Rather
than photorealistic images, CLIPDraw aims to synthesize simple drawings that nevertheless match
the prompt. Thus, CLIPDraw optimizes a set of vector strokes rather than pixel images, a constraint
that biases drawings towards simple human-recognizable shapes.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Figure 1: Various drawings synthesized by CLIPDraw, along with the corresponding description
prompts used. CLIPDraw synthesizes images from text by performing gradient descent over a set of
RGBA Bézier curves, with the goal of minimizing cosine distance between the CLIP encodings of
generated images and description prompts. CLIPDraw does not require learning a new model, and
can generally synthesize images within a minute on a typical GPU.

The aim of this work is to present CLIPDraw a testbed for exploring language-image relationships
and synthesizing AI-assisted artwork, as well as to showcase various nuances of the method. Re-
sults compare between CLIPDraw and other optimization-based text-to-image methods, along with
highlighting several interesting behaviors:

• By adjusting descriptive adjectives, such as “watercolor” or “3D rendering”, CLIPDraw
produces drawings of vastly different styles.

• CLIPDraw often matches the description prompt in creative ways, such as writing words
from the prompt inside the image itself, or interpreting ambiguous nouns in multiple ways.

• Running CLIPDraw with a low stroke count results in cartoonish drawings, while high
stroke counts tend to result in realistic renderings.

• By giving CLIPDraw abstract prompts, such as “happiness” or “self”, we can examine what
visual concepts the CLIP model associates with them.

• CLIPDraw behavior can be further controlled through the use of negative prompts, such as
“a messy drawing”, to encourage the opposite behavior.

2 Related Work

Text-to-Image Synthesis. This work greatly draws from the field of text-to-image synthesis, whose
primary aim is to generate images that correctly match a given textual description. In recent years,
focus has been on methods that aim to learn a direct text-to-image mapping function, often in the
form of a conditional GAN (Goodfellow et al., 2014a; Mirza and Osindero, 2014; Reed et al., 2016;
Frolov et al., 2021). Commonly used datasets include Oxford-120 Flowers (Nilsback and Zisserman,
2008), CUB-200 Birds (Wah et al., 2011), and COCO (Lin et al., 2014), all of which contain natural
images and captions describing them. While GAN-based methods have enabled considerable progress
towards photorealistic image synthesis, strong autoregressive models have achieved similar quality
results (Oord et al., 2017; Chen et al., 2020), with the recent DALL-E model (Ramesh et al., 2021)
showcasing the benefit of scaling text-to-image synthesis networks to a large capacity. In comparison
to text-to-image generative models, which require large amounts of training, this work follows the
framework of synthesis through optimization, in which images are generated through evaluation-time
optimization against a given metric.

Synthesis Through Optimization. Instead of directly learning an image generation network, an
alternative method of image synthesis is to optimize towards a matching image during evaluation
time. This framework is often referred to as activation maximization (Erhan et al., 2009; Nguyen
et al., 2016; Mordvintsev et al., 2015), where a random image is optimized through backpropogation
to increase certain neuron activations of a pretrained network. Activation-maximization methods have
produced highly realistic images, however it is a challenge to understand the meaning of a neuron
activation. CLIPDraw builds off a set of methods where rather than maximizing an activation, the
objective is to minimize the distance between the produced image and a given description phrase,
as defined by a powerful CLIP language-image encoder (Fernando et al., 2021; Murdock, 2021;

2



Figure 2: CLIPDraw iteratively synthesizes images through evaluation-time gradient descent.
Starting from a random set of Bézier curves, the position and colors of the curves are optimized so
that the generated drawings best match the given description prompt. Before being passed into the
CLIP encoder, drawings are augmented into multiple perspective-shifted copies.

Figure 3: A typical CLIPDraw run gradually forms curves into concrete shapes. Here, a
background of star-shaped structures develops into a large spaceship. More pronounced stars
eventually appear, in addition to a Darth-Vader-like figure on the spaceship.

Crowson et al., 2022; Galatolo et al., 2021). A key issue in synthesis through optimization is that the
produced images often leave the space of natural images (Nguyen et al., 2015), or fool the system
through adversarial means (Goodfellow et al., 2014b), thus a body of work aims to discover ‘natural
image priors’ to constrain produced images (Nguyen et al., 2016, 2017). While a typical solution is
to constrain optimization to the generative space of a GAN, this setup can be expensive to evaluate,
and only allows synthesis of images producible by the GAN generator. Because CLIPDraw focuses
on synthesizing drawings rather than realistic pictures, CLIPDraw instead limits optimization to a set
of vector curves. This constraint results in stroke-based images, which must capture larger features
such as shapes and outlines, rather than fine-grained textures.

Vector Graphics. This work builds largely from work by Li et al. (2020), which introduces a
differentiable renderer for vector graphics. Image generation methods that operate over vector images
have traditionally required a vector-based dataset, however recent work has shown how differentiable
renderers can be used to bypass this limitation (Reddy et al., 2021; Shen and Chen, 2021; Kotovenko
et al., 2021). CLIPDraw uses a differentiable renderer as a representation for generating drawings;
namely a set of RGBA Bézier curves are optimized rather than pixels.

Follow Up Work to CLIPDraw. A draft of this work was previously released to the public
research community, and a number of follow-up papers have since been published. StyleCLIPDraw
(Schaldenbrand et al., 2021) introduces an explicit image-based style loss to the CLIPDraw framework.
CLIP-CLOP (Mirowski et al., 2022) extends CLIPDraw to use image patches rather than strokes,
and CLIPasso (Vinker et al., 2022) uses CLIP to extract sketches from photos. Tian and Ha (2022)
pursure optimization via evolutionary strategies rather than gradient descent. CLIPDraw has already
influenced the image synthesis community in its pre-release form, and we hope a formal publication
will continue to encourage collaboration.

3 Method

The objective of CLIPDraw is to synthesize a drawing that matches a given description prompt
(Figure 1). Specifically, a pre-trained CLIP model is used as a judge. A CLIP model contains two
networks – an image encoder and a textual encoder – which both map their respective inputs into a
shared encoding space of a 512-length vector. Similarity is measured via the cosine distance between
two encodings. Thus, the goal of CLIPDraw is to produce an image which, when encoded via CLIP,
matches the CLIP encoding of the prompt.

Drawings in CLIPDraw are represented by a set of differentiable RGBA Bézier curves, following the
method by Li et al. (2020). Each curve is parametrized by 3-5 control points, along with thickness

3



Algorithm 1 CLIPDraw
Input: Description Phrase desc; Iteration Count I; Curve Count N ; Augment Size D; Pre-trained
CLIP model.
Begin:
Encode Description Phrase. EncPhr = CLIP(desc)

Initialize Curves. Curves..N = RandomCurve()

for i = 0 to I do
Render Curves to Pixels. Pixels = DiffRender(Curves)

Augment the Image. AugBatch..D = Augment(Pixels)

Encode Image. EncImg = CLIP(AugBatch)

Compute Loss. Loss = �CosineSim(EncPhr, EncImg)

Backprop. Curves Minimize(Loss)

end for

and an RGBA color vector. Drawings initially begin with curves randomly distributed throughout the
image, with a white background. During optimization, the number of curves and control points is
fixed, however the positions of the points along with the thickness and color vectors can be optimized
via gradient descent.

The CLIPDraw algorithm (Algorithm 1) works by running evaluation-time gradient descent, as shown
in Figure 2. First, the description phrase is encoded via the CLIP model, and a random set of N
Bézier curves are initialized. During each iteration, the curves are rendered to a pixel image via
the differentiable renderer, and the resulting image is then duplicated D times and augmented by a
random perspective shift and random crop-and-resize. The resulting batch of augmented images is
passed into the CLIP image encoder, and the cosine distances to the description phrase are summed
to form the loss value. Because all operations are differentiable, gradient descent can be run through
the entire loop, optimizing the parameters of the curves to decrease loss. This procedure is repeated I
times, until convergence.

The goal of the image augmentation is to force drawings to remain recognizable when
viewed through various distortions. Without image augmentation, synthesis-through-optimization
methods often result in adversarial images that fulfill the numerical objective but are un-
recognizable to humans. This work uses the torch.transforms.RandomPerspective and
torch.transforms.RandomResizedCrop functions in sequence. Note that the specific details of
the augmentation were not the focus of this work, furthermore, trials with different augmentations
show that augmentation choice does not influence synthesis to a noticeable degree (see Appendix).

Figure 3 showcases the gradual synthesis of a typical CLIPDraw drawing. Note that while the
optimization process is largely deterministic, there is randomness in the initial curves and image
augmentations, thus multiple runs of CLIPDraw can result in different drawings.

4 Results

In the following sections, various interesting behaviors of CLIPDraw are highlighted through a variety
of examples. With the exception of Figure 15, example images are picked to best convey the behavior
in consideration. Focus is placed on qualitative observations, unusual behavior, or recurring trends in
CLIPDraw image synthesis.

Compared to methods that learn a direct generative model, optimization-based synthesis methods
do not require prior training. Instead, images are generated through an evaluation-time optimization
loop, aiming to maximize a given objective. This work specifically focuses on synthesizing images
that match the CLIP encoding of a description prompt. The following methods are compared:

• CLIPDraw, in which drawings are produced by a set of RGBA Bézier curves. The control
points, thickness, and colors of the curves can all be adjusted.

• Pixel Optimization, which instead optimizes a 224x224x3 matrix of RGB pixels. Otherwise,
all algorithmic aspects are the same as CLIPDraw, including image augmentation.

4



Figure 4: Images synthesized via various synthesis-through-optimization methods, all which
share the objective of matching a given CLIP-encoded description phrase. All methods optimize for
cosine similarity, as shown in Table 1. CLIPDraw can produce a diverse set of human-recognizable
drawings based on simple strokes and shapes. CLIPDraw tends to result in simple drawings, often
featuring multiple instances of concepts in a variety of styles. On the other hand, Pixel Optimization
creates interesting textures but fails to compose colors and shapes. BigGan and VQGAN Optimization
can synthesize high-resolution images, but are constrained to the set of natural images the generators
are trained on, thus they tend to produce images featuring a single object, and cannot achieve
techniques such as writing text. CLIPDraw without image augmentation produces images that score
high during training, but fail to retain these scores when tested on augmentations, and are nonsense
when viewed by humans. Cosine similarities for each prompt/method pair are shown in Table 1.

• BigGAN Optimization, in which images are produced using a pre-trained BigGAN gen-
erator. The weights of the generator are frozen; only the latent Z vectors are optimized.
Samples are generated as by Murdock (2021).

• VQGAN Optimization, in which images are created through sampling a VQGAN codebook
(Esser et al., 2021). Samples are generated as by Crowson et al. (2022).

• CLIPDraw (No Augment), which is identical to CLIPDraw, except no image augmentation
is applied to the synthesized drawings.

These methods are run on the same CLIP matching objective for 250 steps of gradient descent
(Figure 15). In CLIPDraw, stroke count is 256, and 8 duplicates are used during image augmentation.
CLIPDraw tends to result in a diverse set of human-recognizable doodles. Pixel Optimization creates
interesting textures but fails to compose colors and shapes. BigGAN and VQGAN Optimization
synthesize high-resolution images, but are constrained to the set of images the generator can produce.
Images from CLIPDraw without image augmentation score high numerically, but are nonsense to the
human eye.

4.1 What kinds of visual techniques does CLIPDraw use to satisfy the textual description?

CLIPDraw often results in drawings that match their description prompts in multiple, unexpected
ways, as shown in Figure 5. A prime example is the prompt for “a painting of a starry night sky”. The

5



Prompt CLIPDraw Pixel Opt. BigGan Opt VQGAN Opt (No Aug)
A drawing of a cat. .376 ± .005 .385 ± .009 .325 ± .014 .377 ± .004 .240 ± .015
A paint. of a sunset. .390 ± .004 .215 ± .010 .379 ± .003 .379 ± .003 .325 ± .015

Underwater. .413 ± .006 .385 ± .009 .327 ± .013 .358 ± .006 .247 ± .004
Sheep wearing a top hat. .434 ± .010 .434 ± .010 .321 ± .016 .411 ± .009 .215 ± .011
A 3D rend. of a temple. .467 ± .005 .385 ± .009 .311 ± .028 .430 ± .008 .240 ± .009
Watercol. of a firetruck. .507 ± .007 .385 ± .009 .318 ± .014 .457 ± .007 .233 ± .007

Third Eye. .436 ± .010 .385 ± .009 .323 ± .015 .368 ± .005 .251 ± .013

Table 1: CLIP cosine similarities for images shown above. Scores are computed by taking the
average cosine similarity between the description prompt and 64 augmentations of the generated
images. Each method is run for 250 steps of gradient descent, with 10 starting seeds for every prompt,
and resulting means and standard deviations are presented. In CLIPDraw results, stroke count is 256,
and 8 duplicates are used during image augmentation. Images take around 1-2 minutes to synthesize
on a typical Colab GPU.

Figure 5: CLIPDraw often matches the description prompt through creative techniques, such as
forming letters inside the images, or interpreting ambiguous words in multiple ways.

drawing’s background features a sky with a prominent moon and a few scattered stars. The drawing is
rendered in a painterly style, however it also features an actual canvas and painter. Inside the canvas,
black and blue swirls resemble Van Gogh’s 1889 “The Starry Night”.

Another interesting behavior of CLIPDraw is its tendency to write words in the drawing itself. In
“Yeti taking a selfie”, letters resembling “Yeti” can be seen in the top-right corner. In “Third Eye”,
again words resembling “third” and “eye” are scattered throughout the image. At times, the drawings
contain symbols that are not literally the description, but are still associated, such as the prompt “r
”ù” (bicycle in Japanese) resembling a Google Maps screenshot with a Japanese-like character in
the corner.

Prompt ambiguity also presents intriguing results. In “Fast Food”, a McDonald’s logo along with a
set of hamburgers is shown. However, also present are two joggers in a footrace, providing another
interpretation of “fast”. Included in Figure 5 are the top words predicted by CLIP as closest to the
image, showing that CLIP recognizes both “jogging” and “hamburger” as related to the synthesized
drawing of “fast food”.

4.2 Can CLIPDraw reliably produce drawings in different styles?

A useful feature of CLIPDraw is its ability to adjust not just the content of its drawings, but also
the styles, based on the description prompts given. Part of this flexibility is due to the robustness of
curve-based images: in comparison to methods that use a pre-trained GAN generator, CLIPDraw
drawings are not limited to the space of natural images. Thus, a variety of styles can be produced,
and these styles are easily explorable through text.

As shown in Figure 6, a synthesized image of a cat can look vastly different depending on the
descriptor words included. When asked for a “drawing of a cat”, CLIPDraw synthesized a cartoonish
depiction of a cat, comprised mostly of an outline and simple face. A “realistic photograph” features
more detailed shading, while a “cat as 3D rendered in Unreal Engine” showcases complex lighting
along with a depth-based blurring. Further styles feature a bias towards certain colors, such as the
reds and greens of Japanese woodblock prints, or the multi-color blends of watercolors.

6



Figure 6: By adjusting adjectives, CLIPDraw can produce drawings of diverse styles. Styles
vary not only in the texture of the images, but showcase different representations of the underlying
content, such as a cartoonish cat when prompted for a “drawing”, versus a cat in perspective when
prompted for a “3D wireframe model”.

Figure 7: When stroke count is increased, CLIPDraw produces drawings of increasing realism.
Low-stroke drawings of “The Eiffel Tower” opt for a cartoonish representation, while high-stroke
drawings capture 3D depth, background content, and shading.

An interesting result is that adjusting descriptive adjectives not only changes the textures of the draw-
ings, akin to Style Transfer methods (Gatys et al., 2015), but also changes its structural representation
of the underlying content. For example, prompting for “a drawing” produces a flat cartoonish cat,
while prompts like “a 3D wireframe” produce a cat in perspective, with depth and shadows.

4.3 How does the stroke count affect what drawings CLIPDraw produces?

When the stroke count is low, CLIPDraw tends to produce cartoonish or abstract representations
of the given description prompt. As stroke counts increase, drawings become more detailed and
incorporate additional features. Figure 7 shows “The Eiffel Tower” with various stroke counts. In the
16-stroke example, the tower is drawn as only a few straight lines. Higher stroke count images begin
more details on the Eiffel Tower itself, along with additional features such as background colors and
complex lighting.

A common thread in synthesis-through-optimization methods is that pure optimization leads to
undesirable results; it is also necessary to constrain optimization to a suitable space of images, such
as the natural images generated by a GAN, or any image made of strokes in the case of CLIPDraw.
Limiting stroke count furthers this constraint. When optimizing within the space of 16-stroke images,
it is hard to achieve details or textures, thus synthesized drawings will reveal the most basic forms
that make up a visual concept. As a tool for AI-assisted art, the stroke-count parameter presents an
easy way of adjusting between “simple” and “complex”.

4.4 What happens if abstract words are given as a description prompt?

When given an abstract prompt without a literal interpretation, CLIPDraw must utilize cultural con-
nections to come up with visual concepts that relate to the description. Often, this results in drawings
that contain symbols relating to the given prompt, such as in Figure 8 with “Happiness” containing
smiling faces and fireworks, “Translation” showcasing English and Japanese-like characters, and
“Enlightenment” featuring a prominent monk-like figure.

At times, synthesized drawings demonstrate concepts through more complex relationships. In the
prompt “Self”, the resulting drawing features a body with multiple heads, evoking e.g. the idea
that a person’s self may contain multiple outward personalities. When asked “What do you look
like, CLIPDraw?”, the synthesized drawing contains a smiling face followed by text resembling

7



Figure 8: Abstract prompts grant insight into how CLIP relates visual concepts. Synthesized
images often contain symbols that indirectly relate to the description prompt through a cultural
connection.

Figure 9: CLIPDraw behavior adjusted through negative description prompts. Negative prompts
discourage synthesized drawings from matching with them, presenting a tool for fine-tuning.

“CLIPDRAW”. Finally, “The space between infinity” presents a dream-like landscape with an infinity
symbol under a galaxy-filled sky.

4.5 Can synthesized drawings be fine-tuned via additional negative prompts?

A common pain point in AI-assisted image synthesis is that is hard to control what the AI will produce.
One potential tool for increased control in CLIP-based methods is to introduce negative prompts; the
optimization objective is to minimize cosine distance between the CLIP-encoded drawing and the
description prompt, while maximizing distance between the drawing and a set of negative prompts.

Figure 9 shows pairs of drawings synthesized from the same random initialization, with the bottom
row utilizing additional negative fine-tuning prompts, weighted .3:1. “Hashtag” contains many
instances of the word “hashtag” written out. By penalizing “Words and text”, the bottom example
contains fewer words. By penalizing “Purple” and “Red”, the main color of “A torii gate” switches to
green. Lastly, the original drawing for “a realistic painting of a sailboat” features many sailboats on
an ocean, and penalizing the phrase “many sailboats” results in only one sailboat.

While negative prompts present a richly semantic way to fine-tune image synthesis in CLIP-based
methods, it remains tricky to locate prompts that consistently encourage the intended behavior. Many
times, negative prompts show negligible effects. During experiments, a cure-all negative prompt such
as “a low-quality drawing”, with the goal of consistently improving drawing quality, was unable to
be found. Further work remains on how to best influence CLIP-based synthesis-through-optimization
methods through additional objectives, whether negative or positive.

5 Discussion

This work presents CLIPDraw, a text-to-drawing synthesis method based on the CLIP language-image
encoder. CLIPDraw does not require any model training; rather, drawings are synthesized through
iterative optimization during evaluation time. CLIPDraw is not the first method to use evaluation-time
optimization for image synthesis; many recent works have also used CLIP as an objective. However,
by constraining synthesis to images made of RGBA Bézier curves, CLIPDraw biases towards sketches
of human-recognizable concepts.

8



At a higher level, CLIPDraw is work that takes advantage of an existing large pre-trained foundation
model (Bommasani et al., 2021), and derives benefit from the representations provided. As foundation
models are often viewed as black-box models, it is important to study their use and affect on
downstream tasks. Thus, the focus of this paper is to examine the nuances of CLIPDraw behavior,
and experiments focus on specific questions and observations about synthesized drawings. These
observations, such as prompt ambiguity or the compositionality of styles and content, are qualitatively
distinct and interesting and likely apply to further CLIP-based work in the future, thus this paper
aims to start an investigation that continues forward.

5.1 Limitations

Synthesizing high-resolution images is a challenge, and CLIPDraw will often fall short of methods
that incorporate a high-functioning generative model. This problem is related to a classic pitfall in
synthesis-through-optimization methods, which is that an image may very closely match the CLIP
objective, while looking messy and ugly to a human. Thus it is important to introduce auxiliary
objectives or constraints. In the case of CLIPDraw, drawings are constrained by the Bézier curve
representation, however stricter constraints such as fooling a GAN discriminator may improve quality.
However, this work shows that simple image augmentation is enough to unlock the robustness of
CLIP representation to generate recognizable images.

A second limitation has to do with using CLIP encodings as a synthesis objective. While CLIP
provides a rich textual representation for describing an image, in comparison to coarser neuron-
activation objectives, it still remains a challenge to specify details. For example, it is hard to
tell CLIPDraw to move a sailboat to the other side of the image. Preliminary experiments also
explored negative prompts as a possible direction towards more fine-grained adjustments, however a
consistently satisfying method was hard to locate. A promising path in future research can lie in how
to correctly steer synthesized images, or introduce finer detail into description prompts via additional
objectives.

5.2 Ethics and Social Biases

An important concept to keep in mind when dealing with human data is the existence of inherent
social biases contained within. The pre-trained CLIP model is trained on a large corpus of online
data, so its representations may include connections or biases that are undesirable. As CLIPDraw
does not learn a new model, but instead optimizes based on CLIP itself, the bias studies presented in
the CLIP paper (Radford et al., 2021) are highly relevant for CLIPDraw as well. In Section 4.4, a use
case for CLIPDraw is mentioned as a tool for exploring visual connections in human culture. It is
crucial to recognize that symbols or connections that are formed by CLIPDraw are not necessarily
reflective of human culture, but rather are artifacts of the data used to train the original CLIP model.
Thus, while CLIPDraw can be used to synthesize drawings that utilize cultural connections to evoke
emotions or abstract concepts, it remains the duty of the user to ensure that the final product is up to
desired standards.

5.3 Conclusion

Overall, the aim of this work is to introduce CLIPDraw as an easily accessible starting point
to experiment with natural language image synthesis. Due to its focus on drawings rather than
photorealistic rendering, CLIPDraw presents a straightforward method to examine language-image
relationships without the overhead of realism. The presented CLIPDraw implementation can generally
synthesize images within a minute on a typical Colab GPU.

This paper describes various interesting behaviors of CLIPDraw, however it is not ex-
haustive. CLIP-based text-to-image synthesis remains a field with many promising di-
rections, and we hope others will continue to use this work for additional research into
the nuances of synthesis-through-optimization, or as a practical tool for AI-assisted art
and other interactive visual applications. To this end, source code is available at:
https://colab.research.google.com/github/kvfrans/clipdraw/blob/main/clipdraw.ipynb.

9

%20https://colab.research.google.com/github/kvfrans/clipdraw/blob/main/clipdraw.ipynb
%20https://colab.research.google.com/github/kvfrans/clipdraw/blob/main/clipdraw.ipynb


References
Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg,

J., Bosselut, A., Brunskill, E., et al. (2021). On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258.

Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., and Sutskever, I. (2020). Generative
pretraining from pixels. In International Conference on Machine Learning, pages 1691–1703.
PMLR.

Crowson, K., Biderman, S., Kornis, D., Stander, D., Hallahan, E., Castricato, L., and Raff, E. (2022).
Vqgan-clip: Open domain image generation and editing with natural language guidance. arXiv

preprint arXiv:2204.08583.

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. (2009). Visualizing higher-layer features of a
deep network. University of Montreal, 1341(3):1.

Esser, P., Rombach, R., and Ommer, B. (2021). Taming transformers for high-resolution image syn-
thesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12873–12883.

Fernando, C., Eslami, S., Alayrac, J.-B., Mirowski, P., Banarse, D., and Osindero, S. (2021).
Generative art using neural visual grammars and dual encoders. arXiv preprint arXiv:2105.00162.

Frolov, S., Hinz, T., Raue, F., Hees, J., and Dengel, A. (2021). Adversarial text-to-image synthesis: A
review. arXiv preprint arXiv:2101.09983.

Galatolo, F. A., Cimino, M. G., and Vaglini, G. (2021). Generating images from caption and vice
versa via clip-guided generative latent space search. arXiv preprint arXiv:2102.01645.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). A neural algorithm of artistic style. arXiv preprint

arXiv:1508.06576.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014a). Generative adversarial networks. arXiv preprint arXiv:1406.2661.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014b). Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572.

Kotovenko, D., Wright, M., Heimbrecht, A., and Ommer, B. (2021). Rethinking style transfer: From
pixels to parameterized brushstrokes. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 12196–12205.

Li, T.-M., Lukáč, M., Gharbi, M., and Ragan-Kelley, J. (2020). Differentiable vector graphics
rasterization for editing and learning. ACM Transactions on Graphics (TOG), 39(6):1–15.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L.
(2014). Microsoft coco: Common objects in context. In European conference on computer vision,
pages 740–755. Springer.

Mirowski, P., Banarse, D., Malinowski, M., Osindero, S., and Fernando, C. (2022). Clip-clop:
Clip-guided collage and photomontage. arXiv preprint arXiv:2205.03146.

Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint

arXiv:1411.1784.

Mordvintsev, A., Olah, C., and Tyka, M. (2015). Inceptionism: Going deeper into neural networks.

Murdock, R. (2021). The big sleep: Bigganxclip.

Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., and Yosinski, J. (2017). Plug & play generative
networks: Conditional iterative generation of images in latent space. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 4467–4477.

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., and Clune, J. (2016). Synthesizing the preferred in-
puts for neurons in neural networks via deep generator networks. arXiv preprint arXiv:1605.09304.

10



Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 427–436.

Nilsback, M.-E. and Zisserman, A. (2008). Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pages 722–729. IEEE.

Oord, A. v. d., Vinyals, O., and Kavukcuoglu, K. (2017). Neural discrete representation learning.
arXiv preprint arXiv:1711.00937.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural language
supervision. arXiv preprint arXiv:2103.00020.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever, I. (2021).
Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092.

Reddy, P., Gharbi, M., Lukac, M., and Mitra, N. J. (2021). Im2vec: Synthesizing vector graphics
without vector supervision. arXiv preprint arXiv:2102.02798.

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H. (2016). Generative adversarial
text to image synthesis. In International Conference on Machine Learning, pages 1060–1069.
PMLR.

Schaldenbrand, P., Liu, Z., and Oh, J. (2021). Styleclipdraw: Coupling content and style in text-to-
drawing synthesis. arXiv preprint arXiv:2111.03133.

Shen, I.-C. and Chen, B.-Y. (2021). Clipgen: A deep generative model for clipart vectorization and
synthesis. IEEE Transactions on Visualization and Computer Graphics, pages 1–1.

Tian, Y. and Ha, D. (2022). Modern evolution strategies for creativity: Fitting concrete images and
abstract concepts. In International Conference on Computational Intelligence in Music, Sound,

Art and Design (Part of EvoStar), pages 275–291. Springer.

Vinker, Y., Pajouheshgar, E., Bo, J. Y., Bachmann, R. C., Bermano, A. H., Cohen-Or, D., Zamir,
A., and Shamir, A. (2022). Clipasso: Semantically-aware object sketching. arXiv preprint

arXiv:2202.05822.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). The caltech-ucsd birds-200-
2011 dataset.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

11



(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12


	Introduction
	Related Work
	Method
	Results
	What kinds of visual techniques does CLIPDraw use to satisfy the textual description?
	Can CLIPDraw reliably produce drawings in different styles?
	How does the stroke count affect what drawings CLIPDraw produces?
	What happens if abstract words are given as a description prompt?
	Can synthesized drawings be fine-tuned via additional negative prompts?

	Discussion
	Limitations
	Ethics and Social Biases
	Conclusion

	Appendix

