
Supplementary Material

Additional Notation. For a vector x 2 Rd and H ⇢ [d], we denote vH to denote the vector that is
equal to v on i 2 H , and zero otherwise. For a real-valued random variable X and m 2 N, we use
kXkLm to denote (E |X|m)1/m. For a set S ✓ Rd and a function f , we also define the set function
notation f(S) as {f(x) |x 2 S}.

A Miscellaneous Lemmas and Facts

A.1 Finding a stable subset from a stable weighted subset

For a set S on n points, we define �n,✏ as the set of weights w 2 Rn such that wi 2 [0, 1/((1�✏)n] for
all i 2 [n] and

P
i
wi = 1. For a fixed vector µ 2 Rd that will be clear from context, a set of n points

S = {x1, . . . , xn}, and weights w 2 �n,✏ over S, we use ⌃w to denote
P

i
wi(xi � µ)(xi � µ)>.

The goal of this section is to show Proposition A.1, which states that if we have a weight w over
S such that ⌃w (with respect to some vector µ) has bounded Xk norm proportional to �2 for some
� > 0, then there must exists some large subset S0 ✓ S that is stable with respect to µ and �.
Proposition A.1. Let S be a set of n points in Rd. Let �n,✏ be the set of weights defined above, and
define the notation ⌃w =

P
xi2S

wi(xi � µ)(xi � µ)> for some given vector µ 2 Rd. Suppose that
there exists a w 2 �n,✏ such that k⌃wkXk  B�2 for some vector µ. Then there exists a subset
S0 ✓ S such that (i)|S0| � (1 � 2✏)n and (ii) S0 is (✏, �, k)-stable with respect to µ and �, where
� = O(

p
B + 1).

Observe that k⌃wkXk  B�2 implies k⌃w � �2IkXk  (B + 1)�2 by the triangle inequality. In
order to show Proposition A.1, we show Lemma A.2, which is a weakening of Proposition A.1 where
we additionally assume that µw =

P
i
wixi is close to µ, where µ is the vector we use to define ⌃w

as well as the vector that we want to find a large sample subset S0 to be stable with respect to. To use
Lemma A.2, we additionally show Proposition A.4, which states that k⌃wkXk  B�2 is enough to
imply that µw is close to µ. We combine Lemma A.2 and Proposition A.4 to prove Proposition A.1
at the end of Appendix A.1.
Lemma A.2. Suppose, for some ✏  1

3 and for some � �
p
✏, there exist a w 2 �n,✏ over a set of n

samples S = {x1, . . . , xn}, a µ 2 Rd and a � > 0 such that

• kµw � µk2,k  ��,

• k
P

i2[n] wi(xi � µ)(xi � µ)> � �2IkXk  �2 �
2

✏
.

Then, there exists a subset S0 ✓ S of samples such that

• |S0| � (1� 2✏)|S|,

• S0 is (✏, �0, k)-stable with respect to µ and �, where �0 = O(� +
p
✏).

Proof. Without loss of generality, we will only handle the � = 1 case to simplify notation.

The main step is to show the existence of a large subset S0 whose mean is within 10� + 10
p
✏ of µ

and whose variance is at most 9(1 + �2/✏). In fact, we can simply choose S0 to be the subset whose
weights wi are the largest.

Without loss of generality, assume µ = 0 and that ✏n is an integer. We also order the samples in
decreasing order of weight in w, namely, 1/((1� ✏)n) � w1 � w2 � . . . � wn.

First, we will lower bound each wi. We have that for each k 2 [n],

1 =
X

i

wi 
k

(1� ✏)n
+ (n� k)wk,

which upon rearranging implies that

wk � (1� ✏)n� k

(1� ✏)n(n� k)
.
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In particular, for k = (1� 2✏)n, we have

w(1�2✏)n � 1

2(1� ✏)n
.

Letting S0 to be the (1� 2✏)n points with largest weight, we have that for all i 2 S0, wi � 1
2(1�✏)n .

We will use this to now bound the Xk norm of ⌃S0 = 1
|S0|

P
i2S0 xix>

i
. Consider an arbitrary

M 2 Xk, we have
X

i2S0

1

|S0| hxix
>
i
,Mi =

X

i2S0

1

(1� 2✏)n
hxix

>
i
,Mi


X

i2S0

2(1� ✏)

1� 2✏
wihxix

>
i
,Mi


X

i2S

2(1� ✏)

1� 2✏
wihxix

>
i
,Mi

 9

✓
1 +

�2

✏

◆
.

Since � �
p
✏, this in turn implies the (rather loose in constants) inequality that k⌃S0 � IkXk 

20(�2/✏).

Next, we show that the mean µS0 of S0 is 10� + 10
p
✏-close to µ = 0. This will essentially follow

from 1) the uniform distribution US0 over S0 is close in total variation distance to w and 2) the
contribution of the tail to the mean of a bounded-covariance distribution is small.

For 1), using the notation that US is the uniform distribution over S (analogous to the S0 notation just
before), it is immediate that by the triangle inequality,

dTV(w,US0)  dTV(w,US) + dTV(US , US0)  ✏+ 2✏ = 3✏.

A standard consequence is that there exists distributions p(1), p(2) and p(3) such that

w = (1� 3✏)p(1) + 3✏p(2) and US0 = (1� 3✏)p(1) + 3✏p(3).

Intuitively, treating p(2) and p(3) as the “tails”, we will bound their contributions to the mean under
the boundedness of the covariance of w and US0 .

Take any k-sparse unit vector direction v 2 Uk, we can bound the following variances in the direction
of v:

3✏
X

i

p(2)
i

hxi, vi2 
X

i

wihxi, vi2  1 +
�2

✏
,

3✏
X

i

p(3)
i

hxi, vi2 
X

i

US0,ihxi, vi2  9

✓
1 +

�2

✏

◆
,

where we used the fact that vv> is in Xk for a k-sparse unit vector v.

By Jensen’s inequality, we can then conclude that
�����3✏

X

i

p(2)
i

hxi, vi

����� 
p
3✏

s
3✏
X

i

p(2)
i

hxi, vi2 
p
3✏

r
1 +

�2

✏


p
3(
p
✏+ �),

�����3✏
X

i

p(3)
i

hxi, vi

����� 
p
3✏

s
3✏
X

i

p(3)
i

hxi, vi2  3
p
3✏

r
1 +

�2

✏
 3

p
3(
p
✏+ �).
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Finally, since US0 = w � 3✏p(2) + 3✏p(3), by the triangle inequality, we have

|hµS0 � µ, vi| =

�����
X

i

US0,ihxi, vi

�����



�����
X

i

wihxi, vi

�����+

�����3✏
X

i

p(2)
i

hxi, vi

�����+

�����3✏
X

i

p(3)
i

hxi, vi

�����

 � +
p
3(
p
✏+ �) + 3

p
3(
p
✏+ �)

 10� + 10
p
✏,

where the second inequality uses the above bounds as well as the assumption that kµw � µk2,k  �.

Now that we have shown that µS0 is close to µ in 2, k norm and ⌃S0 is small in the Xk norm, we will
use the following lemma (Lemma A.3) to show that the set S0 is (✏, O(� +

p
✏)-stable with respect to

µ.

Lemma A.3 (Bounded Mean and Covariance implies O(
p
✏) stability). Let µ 2 Rd and let S0 be

a set of samples such that kµS0 � µk2,k  � and
��� 1
|S0|

P
x2S0(x� µ)(x� µ)> � I

���
Xk

 �
2

✏
for

some 0  ✏  � and ✏  0.5. Then S0 is (✏, �0, k)-stable with respect to µ where �0 = O(� +
p
✏)

and �0 �
p
✏.

Proof. Consider an arbitrary large subset S00 ✓ S0 where |S00| � (1 � ✏)|S0|. Without loss of
generality, take µ = 0. Then, for an arbitrary M 2 Xk,

h⌃S00 � I,Mi = 1

S00

X

i2S00

hxix
>
i
,Mi � 1,

which is trivially at least �1 � �(�02)/✏ for �0 �
p
✏. As for the upper bound, we have

h⌃� I,Mi = 1

S00

X

i2S00

hxix
>
i
,Mi � 1


 

1

S00

X

i2S0

hxix
>
i
,Mi

!
� 1

 1

1� ✏

✓
1 +

�2

✏

◆
� 1

=
�
2

✏
+ ✏

1� ✏

 2

✏
(�2 + ✏2)

 �02

✏
,

for some �0 = ⇥(� +
p
✏).
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We now bound the error in the mean of S00 in 2, k norm. First, observe that, for an arbitrary k-sparse
unit vector v,

������
1

|S0|
X

i2S0\S00

hxi, vi

������
=

�����
1

|S0|
X

i2S0

1[xi 2 S0 \ S00]hxi, vi

�����

 1

|S0|
X

i2S0

|1[xi 2 S0 \ S00]hxi, vi|


p
✏

s
1

|S0|
X

i2S0

hxi, vi2


p
✏

r
1 +

�2

✏

=
p

✏+ �2 ,

where the second inequality is an application of Hölder’s inequality, and the third inequality uses the
fact that for a unit k-sparse vector v, vv> is in Xk.

Thus, again for an arbitrary k-sparse unit vector v,

|hµS00 , vi| =

�����
1

|S00|
X

i2S00

hxi, vi

�����

 1

1� ✏

�����
1

|S0|
X

i2S00

hxi, vi

�����

 2

0

@
�����
1

|S0|
X

i2S0

hxi, vi

�����+

������
1

|S0|
X

i2S0\S00

hxi, vi

������

1

A

 2(� +
p

✏+ �2) = O(� +
p
✏) = �0.

Proposition A.4 (Bounded Covariance and Stability). Let µ 2 Rd and let S be a set of n samples.
Let w 2 �n,✏ over the set of samples S such that k

P
i
wi(xi �µ)(xi �µ)>k�k  r for some r > 0.

Then kµw � µk2,k 
p
r.

Proof. For every k-sparse unit vector v, vv> is in Xk, and thus for every sparse unit vector v, we
have that

P
i
wihxi � µ, vi2  r. Applying Cauchy-Schwarz inequality, we get that for any sparse

unit vector v, it follows that
P

i
wihxi � µ, vi 

pP
i
wihxi � µ, vi2 

p
r.

With Proposition A.4 and Lemma A.2, we can prove Proposition A.1.

Proof of Proposition A.1. Without loss of generality, we will assume that � = 1. By Proposition A.4,
we have that kµw � µk2,k 

p
B. We thus have a weighting w 2 �n,✏, where kµw � µk2,k  �0

and k⌃w � IkXk  �20/✏ for �0 =
p
B+1, where we use triangle inequality on the k · kXk norm. By

Lemma A.2, we know that there exists a set S0 such that |S0| � (1� 2✏)n and S0 is (✏, �, k)-stable
with respect to µ and �, where � = O(�0 +

p
✏) = O(

p
✏+

p
B + 1) = O(

p
B + 1).

A.2 Median of Means

Fact 2.2 (Median-of-Means Pre-Processing). Suppose there is an efficient algorithm such that, on
input � 2 R+ and a 0.1-corrupted set of n � k2 log d + log(1/⌧) samples from a distribution
D with mean µ and covariance ⌃ with k⌃kXk  �2 and EX⇠D[(Xj � µj)4] = O(�4) for each
coordinate j 2 [d], returns µ̂ such that kµ̂� µk2,k  O(�) with probability at least 1� ⌧ .

Then, there is an efficient algorithm such that, on input ✏ 2 (0, 0.1) and an ✏-corrupted set of
n � (k2 log d+ log(1/⌧))/✏ samples from a distribution with mean µ and covariance ⌃, satisfying
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k⌃kXk  1 satisfying EX⇠D[(Xj � µj)4] = O(1) for every coordinate j 2 [d], returns a mean
estimate µ̂ such that kµ̂� µk2,k  O(

p
✏) with probability at least 1� ⌧ .

Proof. The new algorithm simply performs median-of-means preprocessing as defined in Section 2
before the fact statement, yielding g new samples that are fed into the algorithm that works with
constant corruption. The uncorrupted new samples, namely the ones that are the sample mean of
groups containing no originally corrupted samples, are distributed i.i.d. according to the distribution
D0 which has mean µ, and covariance ⌃0 = (g/n)⌃, with axis-wise fourth moment EY⇠D0 [(Yj �
µj)4] being bounded by C(g2/n2)EX⇠D[(Xj � µj)4] for every j 2 [d] for some constant C > 0,
obtained by the following fact:

Fact A.5. (Marcinkiewicz-Zygmund inequality) Recall the notation kXkLs for a centered random
variable X , defined as E[|X|s]1/s. Let W1, . . . ,Wm,W be identical and independent centered
random variables on R with a finite kWkLs norm for s � 2. Then,

�����
1

m

mX

i=1

Wi

�����
Ls

 3
p
sp
m

kWkLs .

First note that we give g samples to the original algorithm, and g = ⌦(✏n) = ⌦(k2 log d+ log(1/⌧))
by definition. Next, we need to check that the normalized axis-wise 4th moment of D0 is O(1)
times the (bound on the) Xk-norm of the covariance matrix, that is, for all j 2 [d], it holds that
(EX⇠D0 [(Xj � µj)4])1/4  O(�4) and k⌃0kXk = O(�2). By the calculations at the end of the
previous paragraph and the assumptions in the statement, we note that this is true for � = O(

p
g/n).

Lastly, we check that, by the scale-invariance of the original algorithm that works with con-
stant corruption, the estimation error of the final algorithm is upper bounded by O(�k⌃kXk) =
O(

p
(g/n)k⌃kXk) = O(

p
g/n) = O(

p
✏) as desired.

A.3 Xk-Norm

Lemma A.6. Let A 2 Rd⇥d be a symmetric matrix such that |Ai,i|  ⌘1 for each i 2 [d], and
|Ai,j |  ⌘2 for each i 6= j 2 [d]⇥ [d]. Then kAkXk  ⌘1 + k⌘2.

Proof. Let A = B + C, where B is a diagonal matrix and C is diagonal-free. Then we have the
following using triangle inequality: kAkXk  kBkXk + kCkXk . Thus it suffices to bound each of
these terms by 1.

kBkXk  sup
M :

Pd
i=1 |Mi,i|1

hB,Mi = kBk1  ⌘1,

where we use that B is a diagonal matrix with entry at most ⌘1.
kCkXk  sup

M :kMk1k

hC,Mi = sup
M :kMk1k

kCk1kMk1  k⌘2.

A.4 Truncation

We show how truncation can increase the spectral norm of covariance from 1 to !(1).

Consider the distribution which, with probability 1/(2k), returns a vector where each coordinate is
independent �

p
k with probability 2/3 and 2

p
k with probability 1/3. Otherwise, with probability

1� 1/(2
p
k), the distribution returns the origin. The mean of the distribution is the origin, and the

covariance is I .

Now consider the truncation h0,
p
k
, which truncates at distance

p
k from the origin. Let Y be the

resulting random variable. The mean of Y , µ0, is thus equal to (1/2k)(�
p
k/3, . . . ,�

p
k/3) =

�1/(6
p
k)v, where v is the all ones vector. The norm of µ0 is ⇥(

p
d/k). Since the distribution

returns the origin with constant probability (asymptotically tending to 1), the variance of Y along the
direction of µ0, which is v/

p
d, is at least ⌦(d/k) = !(1).
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B Concentration and Truncation

Example 1. For any number of moments t � 2, there is a distribution X satisfying the following
conditions: (i) The mean of X is 0, and for every unit vector v, the tth moment in direction v is upper
bounded by 1, that is, E[|hv, xi|t]  1 for t � 2, (ii) If S is an arbitrary set of n  o(d2/t) points
from the support of X , then the set S cannot be (✏, O(

p
✏), k)-stable, for any ✏ > 0, with respect to

the mean of the distribution. As a corollary, no subset of S can be stable either.

Proof. For j 2 [d], let ej be the vector that is 1 on the j-th coordinate and 0 otherwise. For a fixed r,
consider the distribution P , supported uniformly on the 2d points S = {±re1,±re2, . . . ,±red}.

It follows that P is a zero mean distribution. The covariance of the distribution P isP
j
(1/d)r2eie>i = (r2/d)I .

Furthermore, for any unit vector v and t � 2, we have that the t-th moment in the direction v is
bounded as follows:

E[|v ·X|t] =
dX

j=1

1

d
|vj |trt =

rt

d
kvkt

t
 rt

d
kvkt2  rt

d
,

where we use that t � 2 and kvkt  kvk2 for any vector v. Thus, we choose r = d1/t for the
distribution.

Now we show the second claim, that any set of at most ⌦(d2/t) samples from this distribution cannot
be stable.

Let S be any (multi-)set of n points from the support of X . Let x1 2 S. Since x1 is 1-sparse and has
`2 norm r, we have that x1x>

1 /r
2 belongs to Xk. Thus we have the following:

�����
1

n

X

i2S0

xix
>
i

�����
Xk

�
*
1

n

X

i2S0

xix
>
i
,
1

r2
x1x

>
1

+
� kx1k4

r2n
=

r2

n

Thus, for r2/n to be upper bounded by a constant, n has to be ⌦(d2/t).

Lemma 3.1 (Truncation in `1). Let P be a distribution over Rd with mean µP and covariance ⌃P ,
with k⌃kXk  �2 for some �2 > 0. Let X ⇠ P and assume that for all j 2 [d], E[(X � µP )4j ] 
�4⌫4 for some ⌫ � 1. Let b 2 Rd be such that kb � µk1  a/2 and a := 2�

p
k/✏ for some

✏ 2 (0, 1). Define Q to be the distribution of Y := ha,b(X). Let the mean and covariance of Q be
µQ and ⌃Q respectively. Then the following hold:

(1) kµP � µQk1  �
p
✏/k

(2) kµP � µQk2,k  �
p
✏

(3) k⌃P � ⌃QkXk  3�2✏⌫4

(4) For all i 2 [d], E[(Y � µQ)4i ]  8⌫4�4

(5) kY � µQk1  2a = 4�
p
k/✏ almost surely.

Proof. Let Y := ha,b(X) and denote µ := µP . Fix a i 2 [d]. Since |µi�bi|  a/2 and we threshold
at the radius a, we have the following:

|Yi � µi|  |Xi � µi|, and |Xi � Yi|  |Xi � µi|. (5)

Let Ei be the event that Yi 6= Xi. We get the following by Markov’s inequality and moment bounds:

P(Ei) = P(|Xi � bi| > a)  P(|Xi � µi| � a/2)  min

✓
4
�2

a2
, 16

�4⌫4

a4

◆
= min

✓
✏

k
,
✏2⌫4

k2

◆
.

(6)
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1. We can verify the following relation using Equation (5):
|Yi �Xi|  1Ei · (|Yi �Xi|)  1Ei · (|Xi � µi|) . (7)

Applying Cauchy-Scharz on the above inequality gives the desired conclusion:

|E[Yi]� µi| = |E[Yi �Xi]|  E [1E · (|Xi � µi|)] 
p
P(E)

p
E [|Xi � µi|2]  �

r
✏

k
,

where we use that variance of Xi is at most �2 and use Equation (6).

2. This follows directly from above.

3. By Lemma A.6, it suffices to show that k⌃Q � ⌃P k1  3�2✏⌫4/k. Using triangle
inequality, we obtain the following:

k⌃P � ⌃Qk1 =
���E[(X � µP )(X � µP )

>]� E[(Y � µP )(Y � µP )
>]

+ (µQ � µP )(µQ � µP )
>
���
1


���E[(X � µP )(X � µP )

>]� E[(Y � µP )(Y � µP )
>]
���
1

+
���(µQ � µP )(µQ � µP )

>
���
1
.

By the first part above, we have that k(µQ � µP )(µQ � µP )>k1  �2✏/k  �2⌫4✏/k,
where we use that ⌫ � 1. We will thus focus on the first term. Without loss of generality,
we will assume that µP = 0 for the remainder of this proof. Thus for any i, j 2 [d], we thus
need to upper bound E[|XiXj � YiYj |].

E[|XiXj � YiYj |]  E[|XikXj � Yj |] + E[|YjkXi � Yi|]
 E[|XikXj | · 1Ej ] + E[|XikXj | · 1Ei ] (Using Equation (7))


q
E[|XiXj |2]

✓p
P(Ei) +

q
P(Ej)

◆

 (E[X4
i
])1/4(E[X4

j
])1/4

✓p
P(Ei) +

q
P(Ej)

◆

= �2⌫2
✓
2
✏⌫2

k

◆

=
2�2⌫4✏

k
.

Combining the above with Lemma A.6, we get that the k⌃P � ⌃QkXk  3�2✏⌫4.

4. Fix an i 2 [d]. We use the triangle inequality and Equation (7) to get the following:

E[(Y � µQ)
4
i
]  4(E[(Y � µP )

4
i
]) + 4kµP � µQk41  4�4⌫4 + 4�4✏2/k2  8�4⌫4,

where the last inequality uses that ⌫ � 1 and ✏  1.

5. This follows by definition of the random variable Y , the function ha,b, and the parameter a.

Fact B.1 (VC inequality). Let F be a family of boolean functions over X with VC dimension
r and let S = {x1, . . . , xn} be a set of n i.i.d. data points from a distribution P over X . If
n � c(r + log(1/⌧))/�2, then with probability 1� ⌧ , for all f 2 F , we have that

�����

nX

i=1

f(xi)

n
� E

P

[f(x)]

�����  �.

Lemma B.2 (Uniform concentration over Ak,P ). Let S be a set of n i.i.d. data points from a
distribution P , and let Ak,P be as defined in Equation (9). There exists a constant c > 0 such that if
n � c(k2 log d+ log(1/⌧))/(q2), then Equation (10) holds with probability at least 1� ⌧ over the
set S of n i.i.d. points from distribution P .
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Proof. Let Q be the distribution of y := xx>. Let F := {1y·A>s1 : A 2 Ak}. Suppose for
now that VC dimension of F is less than Ck2 log(d). Then the standard VC inequality (Fact B.1)
implies that if n � c(k2 log d + log(1/⌧))/(q2), then Equation (10) holds because under y ⇠ Q,
P(y ·A > s1)  q for all A 2 Ak,P . Thus it remains to show an upper bound on the VC dimension
of F . Since F corresponds to a family of linear functions that are k2-sparse in d2 dimensional
space, [AV19, Theorem 6] implies that the VC dimesion is at most 4k2 log(3d). This completes the
proof.

C Stability with High Probability

Theorem C.1. Let S be a set of n i.i.d. data points from a distribution P over Rd. Let the mean of
P be µ, and covariance ⌃ such that k⌃kXk  �2, and for all j 2 [d], E[(Xj � µ)4]  ⌫4. Suppose
P is supported over the set {x : kx � µk1  � ⇥ r ⇥

p
k}. If n = ⌦(k2 log d + log(1/⌧)), then,

with probability 1� ⌧ , there exists a set S0 ⇢ S such that:

1. |S0| � 0.98n

2. S0 is (0.01, �, k)-stable with respect to µ and � where � = O(max(1, r2, ⌫2/�2)).

Proof. In the following proof, we will use notations q, s1, s2, s3, VZ and B, all of which are either
constants or functions of �, r and ⌫ in the theorem statement. The functions are explicitly chosen in
Appendix C.1.

We will assume µ = 0 without loss of generality. Instead of directly showing the existence of subset
S0 ✓ S (with high probability over the samples S) that is stable, Proposition A.1 in Appendix A
lets us show the following simpler condition: let �n,✏ be the set of weights/distributions w such that
wi  1/(1� ✏), then there exists a weighting w 2 �n,0.01 such that k⌃wkXk  B for the function
B chosen in Appendix C.1, which satisfies B = O(�2 max(1, r2, ⌫2/�2)). That is, for the following
proof, we just need to prove that minw2�n,0.01 k⌃wkXk  B.

We proceed as follows:

min
w2�n,0.01

k⌃wkXk = min
w2�n,0.01

max
M2Xk

hM,⌃wi = max
M2Xk

min
wM2�n,0.01

hM,⌃wi

where the last equality is a straightforward application of the minimax theorem for a minimax
optimization problem with independent convex domains and a bilinear objective. It thus suffices to
show the following: with probability 1� ⌧ ,

8M 2 Xk : |{x 2 S : x>
i
Mxi > B}|  0.01|S| (8)

from which we can construct the weighting wM as uniform distribution over the elements outside the
above set.

Define the following sets of sparse matrices:

Ak :=
�
A 2 Rd⇥d : kAk0  k2, kAkF  1

 
,

Ak,P :=
�
A 2 Ak : P

�
x>Ax � s1

 
 q

 
. (9)

where q and s1 are chosen in Appendix C.1. If n & (k2 log d + log(1/⌧))/(q2), then a standard
covering/VC-dimension bound (see Lemma B.2 for details) implies that the following event holds
with probability 1� ⌧ :

8A 2 Ak,P : |{x 2 S : x>
i
Axi > s1}|  2⇥ q · |S|. (10)

Our choice of q is a constant (cf. Appendix C.1) and thus the required sample complexity for
Equation (10) to hold is ⌦(k2 log d+ log(1/⌧)). We will now show that the event in Equation (10)
implies that the event in Equation (8) holds.

Suppose, for the sake of contradiction, that the event in Equation (8) does not hold. Then there exists
a M 2 Xk such that |{x 2 S : x>

i
Mxi > B}| > 0.01|S|. We will show the existence of a matrix Q

violating event Equation (10), via the probabilistic method, to reach the desired contradiction.
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Fixing an M that violates Equation (8), consider the random matrix Q where each entry Qi,j is
sampled independently from the following distribution, defined using the constant s2 chosen in
Appendix C.1:

Qi,j :=

8
<

:

Mi,j , with prob. 1 if |Mi,j | � s2/k,
s2
k

sign(Mi,j), with prob. |kMi,j |/s2 if |Mi,j |  s2/k,
0, with remaining prob. if |Mi,j |  s2/k

. (11)

Defining pi,j to be min(1, k|Mi,j |/s2), then Qi,j is equivalently Mi,j/pi,j with probability pi,j and
0 otherwise.

We will show that the following events hold simultaneously with non-zero probability, leading to a
contradiction to event Equation (10):

1. Q 2 s3Ak,P

2. |{x 2 S : x>
i
Qxi > s3 ⇥ s1}| > 2⇥ q · |S|

where s3 is also a constant, larger than 2, and explicitly chosen in Appendix C.1. Using different
techniques, we will show that the first condition holds with probability at least 1 � 2 ⇥ 10�6 and
the second condition holds with probability at least 4 ⇥ 10�6, thus implying that the events hold
simultaneously with non-zero probability.

Condition 1 We begin with the following lemma showing that Q lies in s3Ak with high probability.

Lemma C.2 (Q lies in s3Ak with high probability). Let Q be generated as described in Equation (11),
for an M 2 Xk. Then with probability except (1/s2) + (s2/s23), we have that that Q 2 s3Ak.

Proof. The expected sparsity of Q is at most
P

i,j

k

s2
|Mi,j |  k

2

s2
since |M |1  k. Thus, by

Markov’s inequality, except with 1/s2 probability, Q and hence Q/s3 is k2-sparse. We also have to
show that with probability at least 1� 108, kQkF  s3.

E kQk2
F

X

i,j

⇣s2
k

⌘2
✓
k|Mi,j |

s2

◆
=

s2|Mi,j |
k

= s2. (12)

Again, by Markov’s inequality, we get that with probability except s2/s23, the Frobenius norm of Q is
at most s3. The lemma statement follows from the union bound.

Our choice of constants in Appendix C.1 would ensure that the failure probability in Lemma C.2 is at
most 10�6.

1

s2
+

s2
s23

 10�6. (13)

It remains to show that Q belongs to s3Ak,p with high (constant) probability, i.e., with probability
10�6 over sampling of Q, we have that Px⇠P (x>Qx > s3 ⇥ s1|Q)  q. Let R := x>Qx, where
both x and Q are sampled independently from P and Equation (11) respectively.

To show this, we use the following the lemma for a sufficient condition involving sampling both x
and Q.

Lemma C.3. Consider a probability space over the randomness of independent variables X and
Y . Suppose the event E (over pairs (X,Y )) happens with probability at least 1 � ↵� for some
↵,� 2 [0, 1]. Then, it must be the case that, with probability at least 1� ↵ over the sampling of X ,
the conditional probability of E given X is at least 1� �.

Proof. For the sake of contradiction, suppose the lemma conclusion is false. Then

P
X,Y

(E) =

Z
P
Y

(E|X) dP(X) < (1� ↵) + ↵(1� �) = 1� ↵�,

which contradicts the premise.
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It thus suffices to show that with probability 1� 10�6 ⇥ q over both x and Q, R  s3 ⇥ s1.

Lemma C.4. Let R = x>Qx, where Q is independently drawn from the distribution in Equation (11)
and x is drawn independently from P . Under the assumptions of Theorem C.1,

P{R > s3 ⇥ s1}  �2

s1
+

4

s3
+

s2 ⇥ ⌫4

s3 ⇥ s21
, (14)

Proof. We consider three exhaustive events, over x and Q, of E := {R > s3 ⇥ s1}, and bound the
probability of each of them :

1. E1 := {(x,Q) : E[R|x] > s1}. Since E[R|x] = x>Mx, the event corresponds to {x :
x>Mx > s1}. We have that E[x>Mx] = h⌃,Mi  k⌃kXk = �2. By Markov’s inequality,
P(E \ E1)  P(E1)  �2/(s1).

2. E2 := {(x,Q) : x 2 F}, where F is the following event over x: F = {x : E[R|x] 
s1,Var(R|x)  s3⇥s21}. Observe that conditioned on x 2 F , we have that R|x is a random
variable with mean at most s1 and variance at most s3 ⇥ s21. Thus for each such x 2 F ,
the conditional probability that R > s3 ⇥ s1 is at most s3s21/((s3 � 1)2s21) by Chebyshev’s
inequality. We thus get that P(E2 \ E)  P(E|E2) = P(E|x 2 F)  4/(s3), where we use
that s3 � 2.

3. E3 := {(x,Q) : Var(R|x) � s3 ⇥ s21}. We will upper bound P(E3). We first calculate the
Var(R|x) using the independence of entries of Q as follows:

Var(R|x) =
X

i,j

x2
i
x2
j
Var(Qi,j) =

X

i,j:|Mi,j |s2/k

x2
i
x2
j
|Mi,j |

⇣s2
k

� |Mi, j|
⌘
.

To show that Var(R|x) is small with high probability, we will upper bound E[Var(R|x)].

E[Var(R|x)] =
X

i,j:|Mi,j |s2/k

|Mi,j |
⇣s2
k

� |Mi, j|
⌘
E[x2

i
x2
j
]


X

i,j

s2
k
|Mi,j |E[x2

i
x2
j
]

 s2 ⇥ kMk1 ⇥ ⌫4

k
(using E[x2

i
x2
j
] 

q
E[x4

i
]E[x4

j
] = ⌫4)

 s2 ⇥ ⌫4. (using kMk1  k)

Thus Markov’s inequality implies that P(E \ E3)  P(E3)  (s2 ⇥ ⌫4)/(s3 ⇥ s21).

Taking the union bound, we get the desired result.

As reasoned above, we want the failure probability in Equation (14) to be less than 10�6 ⇥ q. That is,

�2

s1
+

4

s3
+

s2 ⇥ ⌫4

s3 ⇥ s21
 10�6 ⇥ q. (15)

In Appendix C.1, we choose s1, s2, s3 and q such that the bound holds. This, by the reasoning after
Lemma C.3, guarantees that Q satisfies the extra condition for s3Ak,p (on top of being in s3Ak) with
probability at least 1� 10�6.

Taking a union bound, with failure probabilities 10�6 (for Q being in s3 2 Ak, Lemma C.2) and
10�6 for satisfying the additional criterion for being in s3Ak,p, we conclude that Condition 1 happens
with probability 1� 2 · 10�6.
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Condition 2 The second condition makes crucial use of the Berry-Esseen theorem, which we
restate as follows.

Fact C.5 (Berry-Esseen Theorem for sums of independent variables). Consider a random variable
⇠ =

P
i
⇠i, where the variables ⇠i are independent (but not necessarily identical) and each of them

has finite third moment. Denote µi as E[⇠i], �2
i

as Var(⇠i) and ⇢i as the third central absolute
moment, namely ⇢i = E[|⇠i � µi|3]. Then,

dK(⇠,N (
X

i

µi,�
2
i
))  0.57

P
i
⇢i

(
P

i
�2
i
)1.5

= 0.57

P
i
⇢i

(Var(⇠))1.5

where dK is the Kolmogorov distance between two distributions (namely, the `1 distance between
the cumulative density functions).

Define the random variable Z to be
Z =

X

i

1(xix
>
i )•Q>s3⇥s1

. (16)

The second condition is equivalent to saying that Z > 2⇥ q ⇥ |S|, which we show to happen with
probability at least 4⇥ 10�6.

The strategy is to lower bound E[Z], and then use Paley-Zygmund to show that Z is large with
constant probability. To lower bound the expectation, for any i such that (xix>

i
) •M > B, we want

to lower bound PQ((xix>
i
) •Q > s3 ⇥ s1), using either Chebyshev’s inequality or the Berry-Esseen

theorem. First, note that for these i, E[(xix>
i
) • Q] = (xix>

i
) • M > B by our assumption. If

Var[(xix>
i
) •Q]  VZ , where VZ is a fixed function of r and � chosen in Appendix C.1, then by

Chebyshev’s inequality, we have

P
�
(xix

>
i
) •Q � s3 ⇥ s1

�
� P

⇣
(xix

>
i
) •Q � B � 10⇥

p
VZ

⌘
� 0.99. (17)

where the first inequality is true by our choice of s1, s3, VZ and B in Appendix C.1. Otherwise, we
have the case where Var[(xix>

i
)•Q] > VZ . In this case, we treat (xix>

i
)•Q as a sum of independent

variables
(xix

>
i
) •Q =

X

s,t

(xi)s(xi)tQs,t

and use the Berry-Esseen theorem, which requires bounding the sum of the third central absolute
moment of the summands. Let ⇢s,t be the third central absolute moment of (xi)s(xi)tQs,t. For any
(s, t) such that 0 < |Ms,t|  s2/k, we can calculate its third moment as follows:

⇢s,t = E[|(xi)s(xi)tQs,t � E[(xi)s(xi)tQs,t]|3]

= |(xi)s|3|(xi)t|3
|Ms,t|3

p3
s,t

E[|Ber(ps,t)� ps,t|3]

= |(xi)s|3|(xi)t|3
|Ms,t|3

p3
s,t

ps,t(1� ps,t)(1� 2ps,t + 2p2
s,t
)

 |(xi)s|3|(xi)t|3
|Ms,t|3

p3
s,t

ps,t(1� ps,t) for all ps,t 2 [0, 1]

 (�2 ⇥ r2 ⇥ s2)(xi)
2
s
(xi)

2
t

M2
s,t

p2
s,t

ps,t(1� ps,t)

since |xi|1  � ⇥ r ⇥
p
k and |Ms,t|/ps,t = s2/k

The same inequality holds trivially for (s, t) where |Ms,t| � s2/k or Ms,t = 0 since ⇢s,t = 0 in both
of these edge cases. Thus, the sum of the third central absolute moment of the summands we need for
Berry-Esseen is

X

s,t

⇢s,t  (�2 ⇥ r2 ⇥ s2)
X

s,t

(xi)
2
s
(xi)

2
t

M2
s,t

p2
s,t

ps,t(1� ps,t)

= (�2 ⇥ r2 ⇥ s2)Var
�
(xix

>
i
) •Q

�
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where the last equality is a simple calculation to calculate the term-by-term variance for (xix>
i
) •Q.

Thus, Fact C.5 implies that the Kolmogorov distance between the distribution of (xix>
i
) •Q and the

Gaussian with the same mean and variance is at most

0.57

P
s,t

⇢s,t

(Var((xix>
i
) •Q))1.5

 0.57(�2 ⇥ r2 ⇥ s2)
Var

�
(xix>

i
) •Q

�

Var1.5
�
(xix>

i
) •Q

�  0.57(�2 ⇥ r2 ⇥ s2)p
VZ

where the inequality comes from the assumption that the variance is at least VZ . Therefore, (xix>
i
)•Q

has at least probability 0.5� 0.57(�2⇥r
2⇥s2)p

VZ
of exceeding its expectation. By our choice of quantities

in Appendix C.1, this probability is at least 0.4. Furthermore, E((xix>
i
) •Q) = xix>

i
•M is bigger

than B and in turn bigger than s3 ⇥ s1 (by our choice for these quantities). Thus, with probability at
least 0.4, (xix>

i
) •Q exceeds s3 ⇥ s1.

Combined with the guarantee that PQ((xix>
i
)•Q > s3⇥s1) > 0.99 in the case where Var((xix>

i
)•

Q)  VZ (cf. Equation (17)), we have shown that in all cases, PQ((xix>
i
) • Q > s3 ⇥ s1) > 0.4

whenever xix>
i
•M > B.

Thus, we have shown that E[Z] =
P

i
PQ((xix>

i
) •Q > s3⇥ s1) > 0.4⇥ 0.01n = 0.004n, since at

least 0.01 fraction of points satisfy xix>
i
•M > B and thus also satisfy PQ((xix>

i
)•Q > s3⇥s1) >

0.4. Note also that Z 2 [0, n] always, meaning that E[Z2]  n2. Since 0.004 � 4⇥ q by our choice
of q, it then follows from the Paley-Zygmund inequality that

P(Z > 2⇥ q ⇥ |S|) � 0.25
(E[Z])2

n2
>

0.25⇥ 0.0042n2

n2
= 4 · 10�6

showing the second claim above, and completing the proof of this lemma.

C.1 Choice of Numerical Constants

This section shows how to pick the numerical constants q, s1, s2, s3, VZ and B. In the proof of
Theorem C.1, these constants need to satisfy the following constraints:

1. s3 � 2

2. q is at least a small constant since the sample complexity is inversely proportional to 1/q2.
3. See (13)

1

s2
+

s2
s23

 10�6

4. See (15)

�2

s1
+

4

s3
+

s2 ⇥ ⌫4

s3 ⇥ s21
 10�6 ⇥ q

5. See (17) B � s3 ⇥ s1 + 10
p
VZ

6. See (18) 0.57(�2⇥r
2⇥s2)p

VZ
 0.1

7. Paley-Zygmund 0.004 � 4⇥ q

Therefore, we pick the constants as follows:

1. ⌫,� and r are numbers we get from the `1 truncation, nothing to choose here.
2. q = 0.001

3. s2 = 107

4. s3 = 1010

5. Solve for s1 in terms of above in Constraint 4. Suffices to take s1 = max(�2, ⌫2)⇥ 1010

6. Solve for
p
VZ using Constraint 6. Suffices to take VZ = 1016�4r4.

7. Solve for B using Constraint 5. Suffices to take B = max(�2,�2r2, ⌫2)⇥ 1020.
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D Smoothness of Stability

The goal of this appendix is to prove Theorem D.11, the stability result we use in the proof of Theo-
rem 1.3.

In Section 5, we sketched the proof of Theorem 5.1, which we formalized as Theorem C.1 in
Appendix C. The key difference between Theorems C.1 and D.11 is that the former is a stability
result concerning uncontaminated samples truncated according to some fixed vector close to the true
mean. On the other hand, Theorem D.11 concerns samples truncated according to the coordinate-wise
median-of-means estimate, which itself depends on the samples and is not fixed. Thus, much of this
appendix is dedicated to showing the “Lipschitzness" of the stability of samples, as we truncate using
different preliminary mean estimates.

We start with showing Lemma D.1, which states that with high probability, there exists a large subset
of samples where in each dimension, at most a negligible fraction of the points have large magnitude.
Then, Lemma D.9 shows that we can take the intersection between this large subset and the large
subset of samples that are stable. Finally, Lemma D.10 and Theorem D.11 show that this subset is
stable as long as the truncation is centered at any point close to the true mean, thus yielding the final
stability result we desire.

For a vector Xi 2 Rd, we will use Xi,j to refer to the j-th coordinate of Xi.

Lemma D.1. Let P be a distribution over Rd. For X ⇠ P , suppose for all j 2 [d], E[X4
j
]  ⌫4.

Then let S be a set of n i.i.d. points from P . Then there exists positive constants c1 such that the
following holds with probability 1� ⌧ if n � c1(k1.5 + log(1/⌧)): there is a set S0 ⇢ S such that
the following hold simultaneously:

1. |S0| � 0.99|S|

2. For each j in [d], the number of points in S0 with j-th coordinate larger in magnitude than
2⌫

p
k is at most n/k1.5. Equivalently,

8j 2 [d] :
X

i2S

1|Xi,j |�2⌫
p
k
 n

k1.5
(18)

Before providing the proof of Lemma D.1, we highlight why the result is not obvious. The first
approach that one may try is to show that the original set S directly satisfies the claim, i.e., (with high
probability) in each coordinate, the fraction of points with large magnitude in that coordinate is at
most k�1.5. At the population level, this is indeed true by the fourth moment assumption, i.e., for any
fixed i 2 [n] and j 2 [d], the probability that |Xi,j | is large is at most O(1/k2). However, for this to
hold with probability 1� ⌧ , one requires roughly k1.5 log(1/⌧) samples even in 1 dimension3, which
would give a multiplicative dependence on log(1/⌧) instead of additive dependence.

The second approach that one may try would be the following: define S0 to be the set of all “good”
samples, where we say a sample is “good” if all of its coordinates are smaller than c⌫

p
k. For any

fixed coordinate j 2 [d], the probability that the j-th coordinate may be larger than c⌫
p
k may be as

large as 1/k2. Thus the probability that a particular sample is bad may be arbitrarily close to 1 — for
example, when coordinates are independent — and the resulting set S0 will be too small with high
probability.

Proof. We will assume that k � C for a large enough constant. If k is smaller than the constant, then
the result follows by applying Bernstein inequality and taking S0 = S.

3The upper bound follows from a Chernoff bound, and the lower bound follows from the fact that Chernoff
bounds are essentially tight for Bernoulli coins.
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Let S = {Y1, . . . , Yn}. For i 2 [n] and j 2 [d], we use Zi,j to denote I|Yi,j |�c2⌫
p
k
. For simplicity,

we set ↵ = k�1.5/3. Our goal is to show that the following integer program is feasible:
variables p1, . . . , pn

subject to 8j 2 [d] :
nX

i=1

piZi,j  3↵n

nX

i=1

pi � 0.99n

8i 2 [n] : pi 2 {0, 1}.

(F1)

As argued above in the prose after the statement, one needs to argue about all the samples, and their
coordinates, simultaneously to prove the statement. Since directly handling the feasibility program
(F1) seems difficult, our argument will go in the following steps: (i) first consider the LP relxation of
(F1), (ii) using duality theory, the LP relaxation is feasible iff the dual LP is infeasible, (iii) Simplify
the dual LP and show that, with high probability, the resulting program is infeasible.

We begin by considering the LP relaxation.
variables p1, . . . , pn

subject to 8j 2 [d] :
nX

i=1

piZi,j  ↵n

nX

i=1

pi � 0.999n

8i 2 [n] : pi 2 [0, 1].

(F2)

We first show that if the following LP relaxation, (F2), is feasible, then (F1) is also feasible.

Claim D.2 (Feasibility of (F2) implies feasibility of (F1)). Suppose n > 106 and ↵ � (4 log n)/n.
If (F2) is feasible, then (F1) is also feasible.

Proof. Let p1, . . . , pn be the feasible solution to (F2). Consider the following random assignment,
for i 2 [n], Pi ⇠ Ber(pi) independently. We will show that, with non-zero probability, Pi’s satisfy
(F1). We will use the following inequality:

Fact D.3 (Chernoff Inequality). Let a1, . . . , an such that ai 2 {0, 1}. Let W1, . . . ,Wn be inde-
pendent Bernoulli random variables and consider the random variable Z =

P
n

i=1 Wi. Then, with
probability 1� ⌧ , Z  2(EZ + log(1/⌧)).

By Fact D.3, we get that the each of the inequalities in (F1) holds with probability 1 � 1/(2n) as
long as n↵ � 2 log(2n) and n > 1000 log(2n). The latter holds when n � 106.

Since n > 106 in our setting (as k is large and choosing c1 to be large enough) and ↵ = 1/(3k1.5),
we have that ↵ � 4(log n)/n is equivalent to n � 12k1.5 log n, which is satisfied when n �
100k1.5 log k. The latter holds when n � ck1.5 log d for a large enough constant c. Thus in the
remainder of this section, we will show that, with high probability, this LP program is indeed feasible.
We begin by considering the following dual program:

variables w1, . . . , wd, y1, . . . , yn, x

subject to
nX

i=1

yi + ↵n
dX

j=1

wj < 0.999nx

8i 2 [n] : yi +
dX

j=1

Zi,jwj � x

z � 0, 8i 2 [n] : yi � 0, 8j 2 [d] : wj � 0.

(F3)

Suppose for the sake of contradiction that (F2) is infeasible. By Farkas’ Lemma [GKT51], it means
that the (dual) program in (F3) is feasible. Formally, we have the following claim:
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Claim D.4 (LP Duality for (F2)). (F3) is infeasible if and only if (F2) is feasible.

Claim D.4 follows from Farkas’ Lemma. We will argue that (F3) is infeasible by showing that the
following program, which is feasible whenever (F3) is feasible, is infeasible.

variables w1, . . . , wd, A

subject to 8i 2 A :
dX

j=1

Zi,jwj � ↵(
dX

j=1

wj)

8j 2 [d] : wj � 0,

A ⇢ [n], |A| � 10�3n

(F4)

(F4) states that for at least 10�3 fraction of i’s in n, the following inequality holds:
P

d

j=1 Zi,jwj �
↵kwk1. The following claim relates the two programs above.

Claim D.5. If (F3) is feasible, then (F4) is feasible.

Proof. Let y1, . . . , Yn, w1, . . . , wd, x be any feasible solution to (F3). Then the first constraint in
(F3) that the average of yi’s is less than 0.999x� ↵(

P
d

j=1 wj). By Markov’s inequality, the fraction

of the yi’s such yi � (x� ↵(
P

d

j=1 wj)) is at most 0.999x�↵(
Pd

j=1 wj)

(x�↵(
Pd

j=1 wj))
 0.999. Thus the fraction of

yi’s such that yi < (x� ↵(
P

d

j=1 wj)) is at least 0.001.

Let A ⇢ [n] be the set of such indices. For any i 2 A, the second constraint in (F3) implies thatP
d

j=1 Zi,jwj � x� yi � ↵(
P

d

j=1 wj). This implies that (F4) is feasible.

In order to argue that (F4) is infeasible, we first consider a particular w. Using calculations provided
below, it can be seen that the probability that a particular w satisfies (F4) is exponentially small in
n. However, a direct approach at covering w seems difficult since w is a dense vector in Rd and
n = o(d). Using a randomized rounding mechanism, we show that it suffices to consider only sparse
w as follows:

variables w1, . . . , wd, A

subject to 8i 2 A :
dX

j=1

Zi,jwj � 1

8j 2 [d] : wj 2 {0, 1},
dX

j=1

wj 
2⇥ 107

↵

A ⇢ [n], |A| � 10�4n

(F5)

The following claim shows that if (F4) is feasible then (F5) is also feasible.

Claim D.6. If (F4) is feasible, then (F5) is also feasible.

Proof. Let w1, . . . , wd and A be the feasible solution to (F5). Set qj = min(1, wj/(↵kwk1)) for
j 2 [d]. Consider the following random assignment: set Wj ⇠ Ber(qj) independently for j 2 [d].
We will show that with non-zero probability Wj’s satisfy (F5). Consider the following events:

E1 :=

8
<

:

dX

j=1

Wj  2⇥ 10�7(1/↵)

9
=

; , and E2 :=

8
<

:|{i :
dX

j=1

Zi,jWj � 1}| � 10�4n

9
=

; (19)

We will show that P{cE1} � 1� 5⇥ 10�8 and P{cE2} � 10�7. By a union bound, we will have
that E1 \ E2 has non-zero probability and thus (F5) is feasible.
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Let F := {j 2 [d] : Wj = 1} be the set of coordinates where Wj is non-zero. Then E[|F |] =
E[
P

d

j=1 Wj ] =
P

d

j=1 qj  1/↵. Thus with probability at least 1 � 5 ⇥ 10�8, we have that the
number of non-zero Wj’s is at most 2⇥107

↵
. Equivalently, P{E1} � 1� 5⇥ 10�8.

We now focus on the second event E2. Let S1, . . . , Sn be the subsets of [d] such that Si = {j 2 [d] :
Zi,j = 1}, i.e., for each sample i, Si is the set of indices where the coordinates are large. Consider
the random variables R1, . . . , Rn, where for i 2 [n], Ri :=

P
d

j=1 Zi,jWj =
P

j2Si
Zi,jWj . (F5)

requires that for at least 10�4 fraction of i’s, Ri � 1. Since Zi,j’s are binary and fixed, we have that
Ri is distributed as Binomial random variable and is thus anti-concentrated.

Fact D.7 (Anti-concentration of Binomial). Let X ⇠ Binomial(n, p) for some n 2 N and p 2 [0, 1].
Suppose E[X] � 1. Then P{X � 1} � (1� 1/e).

Proof. Using the fact that 1 + x  ex for all x 2 R, we get the following:
P{X � 1} = 1� P{X = 0} = 1� (1� p)n � 1� (e�p)n = 1� e�np � (1� 1/e).

Consider a fixed i 2 A. Then either there exists a j 2 Si such that qj = 1, or for all j 2 Si, qj < 1.
In the former case, we have that Ri is at least one since Wj = 1.

In the latter setting, we have that qj = wj/(↵kwk1) for all j 2 Si, and thus E[Ri] =
P

d

j2Si
Zi,jqj =P

d

j=1 Zi,jwj/(↵kwk1) � 1. Applying Fact D.7 to any such i 2 A, we get that the probability of Ri

being positive is at least 1� 1/e. Let A0 be set of i’s such that Ri � 1, i.e., A0 = {i : Ri � 1}. Thus
combining the two cases above, we have the following:

8i 2 A : P{i 2 A0} � 0.5. (20)
Thus E[|A0|] � 0.5|A| � 5⇥ 10�4. Since |A0| lies in in [0, n], applying Paley-Zygmund inequality
to the random variable |A0|, we get the following:

P{|A0| � 10�4n} � P{|A0| � 0.2E[|A0|]} � 0.64
(E[|A0|])2

n2
� 0.64⇥ 25⇥ 10�8 > 10�7. (21)

Equivalently, P{E2} � 10�7. This completes the proof.

Thus it suffices to show that, with high probability, (F5) is infeasible.

Lemma D.8 (Infeasibility of (F5)). Under the setting of Lemma D.1 and when k > 1026, there exists
a constant c1 > 0 such that if n � c1(k1.5 log d + log(1/⌧)), then with probability 1 � ⌧ , (F5) is
infeasible.

Proof. First consider any fixed w = (w1, . . . , wd) such that wi 2 {0, 1} and
P

d

j=1 wj  2⇥ 107 ·
(1/↵).

Consider the integer-valued random variables R1, . . . , Rn such that Ri =
P

d

j=1 Zi,jwj , and observe
that Ri’s are i.i.d. random variables (since Xi’s are i.i.d. random variables). Thus (F5) requires that
at least 10�4% of Ri’s are non-zero.

By the fourth moment bound on each coordinate, we have that E[Zi,j ] = P{Xi,j � 2⌫
p
k}  1/k2

for each i and j. Thus the expectation of each Ri is at most
P

d

j=1 wj E[Zi,j ] 
P

d

j=1 wj(1/k2) 
(2⇥ 107)/(k2↵) = (2⇥ 107)/(k2↵) = (6⇥ 107)/

p
k, which is less than 10�5 for k large enough.

By Markov’s inequality, the probability that P{R1 � 1}  10�5.

Thus by Chernoff bound (since Ri’s are independent), with probability at least 1� exp(�c0n), the
fraction of Ri’s that are non-zero is at most 5⇥10�5. Hence, with the same probability, this particular
choice of w does not satisfy (F5). Since there are at most d(2⇥107)/↵) such choices of w, applying a
union bound, we get that (F5) is infeasible with probability at least 1�exp((2⇥107)/↵) · log d�c0n).
The failure probability is at most ⌧ when n & log(1/⌧) + k1.5 log d. This concludes the proof.

Since we assumed k is large enough, Lemma D.8 is applicable. Lemma D.8 implies that, with high
probability, the program (F5) is infeasible. Hence, with the same high probability, the programs
(F4) and (F3) are also infeasible, and the programs (F1) and (F2) are feasible. This completes the
proof.
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D.1 Lipschitz Argument

Let ha,b be as defined in Equation (1).
Lemma D.9 (Lipschitzness of Truncation Under Coordinatewise Regularity). Let µ, µ0 be vectors in
Rd and let a 2 R+ be greater than 2. Let S = {x1, . . . , xn} ✓ Rd be the set of n points. Suppose
there exist a set S1 ⇢ [n] satisfying the following:

|S1| � 0.98n and

�����
1

|S1|
X

i2S1

(ha,µ(xi)� µ0)(ha,µ(xi)� µ0)>

�����
Xk

 r. (22)

Suppose also that, for some ↵ 2 (0, 1), there exist a set S2 ⇢ [n] satisfying the following:

|S2| � 0.99n and 8j 2 [d] :
X

i2S2

I|xi,j�µj |�a/2  ↵n. (23)

Then, we have the following: there exists a set S3 ⇢ [n] such that for all b 2 Rd satisfying
kb� µk1  a/2 and kb� µ̃k1  a, we have that

|S3| � 0.97n and

�����
1

|S3|
X

i2S3

(ha,b(xi)� µ0)(ha,b(xi)� µ0)>

�����
Xk

 1.1r + 5a↵kkb� µk1.

(24)

Proof. We will take S3 = S1 \ S2, which directly implies that |S3| � 0.97n. For any M 2 Chik,
since xx> •M � 0, we have the following:
*
M,

1

|S3|
X

i2S3

(ha,µ(xi)� µ0)(ha,µ(xi)� µ0)>
+


*
M,

1

|S3|
X

i2S1

(ha,µ(xi)� µ0)(ha,µ(xi)� µ0)>
+

 1

0.97
r.

Let F (b) be the following matrix:

F (b) =
1

|S3|
X

i2S3

(ha,b(xi)� µ0)(ha,b(xi)� µ0)>

We will establish that kF (b)� F (µ)k�k  5a↵kkb� µk1, which establishes the lemma statement
by the triangle inequality. In order to do that, we will show that kF (b)� F (µ)k1  5a↵kb� µk1
and then use Lemma A.6.

Consider an arbitrary (j, `)-entry of these matrices. By abusing notation, when x and y are scalar, we
use ha,y(x) to be the function from R ! R defined analogously to Equation (1). Let g(·, ·) be the
following function that is equal to the (j, `) entry of the matrix F (b), which is explicitly

g(bj , b`) =
1

|S3|
X

i2S3

(ha,bj (xj)� µ0
j
)(ha,b`(x`)� µ0

`
).

We will show that g(·, ·) is locally Lipschitz in its arguments. Consider a particular i 2 S3 and define
the following:

gi(bj , b`) = (ha,bj (xi,j)� µ0
j
)(ha,b`(xi,`)� µ0

`
)

Then, we can bound the difference for each sample by

|gi(bj ,b`)� gi(µj , µ`)|
= |(ha,bj (xi,j)� µ0

j
)(ha,b`(xi,`)� µ0

`
)� (ha,µj (xi,j)� µ0

j
)(ha,µ`(xi,`)� µ0

`
)|

 |(ha,bj (xi,j)� ha,µj (xi,j))(ha,b`(xi,`)� µ0
`
)|+ |(ha,µj (xi,j)� µ0

j
)(ha,b`(xi,`)� ha,µ`(xi,`))|

 (a+ kb� µ0k1) · kb� µk1
�
1|xi,j�µj |�a�kb�µk1 + 1|xi,`�µ`|�kb�µk1

�

 (a+ kb� µ0k1) · kb� µk1
�
1|xi,j�µj |�a/2 + 1|xi,`�µ`|�a/2

�

 2a · kb� µk1
�
1|xi,j�µj |�a/2 + 1|xi,`�µ`|�a/2

�
,
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where we use that |ha,y(x)�ha,z(x)|  |y�z|, |ha,y(x)�z|  |a+y�z|, and |ha,y(x)�ha,z(x)|
is non-zero only if |x� y| � a� |y � z|.
Combined with assumption Equation (23), this implies that

|g(bj , b`)� g(µj , µ`)|  2a · kb� µk1 · 2↵

0.97
 5a↵kb� µk1.

By Lemma A.6, we have the following:

kF (b)� F (µ)kXk  kkF (b)� F (µ)k1  5a↵k · kb� µk1·

D.2 Main Theorem

Lemma D.10. Let S be a set of n i.i.d. data points from a distribution P over Rd. Let the mean of
P be µ, and covariance ⌃ such that k⌃kXk  �2, and for all i 2 [d], E[X4

i
]  O(�4). Suppose

n = ⌦(k2 log d + log(1/⌧)). Let a = �
p
k. With probability 1 � ⌧ over S, there exists a subset

S0 ⇢ S with |S0| � 0.95n such that for any b satisfying kb � µk1 = O(�), we have ha,b(S0) is
(0.01, O(1), k)-stable with respect to some µ0 and � with kµ0 � µk1  O(�/

p
k).

Proof. Let P 0 be distribution of ha,µ(P ) and let µ0 and ⌃0 be the mean and covariance of P 0. This
will be the µ0 in the lemma statement. By Lemma 3.1, we get that (i) kµ0 � µk1  �/

p
k, , (ii)

k⌃� ⌃0kXk  O(�2), and (iii) P 0 is supported on the set {x : kx� µk1  a}.

Applying Theorem C.1 to P 0 states that with probability at least 1� ⌧ , there exists a subset S1 ⇢ S
with |S1| � 0.98n such that

�����
1

|S1|
X

i2S1

(ha,µ(xi)� µ0)(ha,µ(xi)� µ0)>

�����
Xk

 O(�2). (25)

By applying Lemma D.1 to P � µ, with probability at least 1� ⌧ , there exists a subset S2 ⇢ S with
|S2| � 0.99n such that

8j 2 [d] :
X

i2S2

I|xi,j�µj |�a/2  O(k�1.5)n. (26)

We can then apply Lemma D.9 to show that, conditioned on the above events, there exists a subset
S3 ⇢ S with |S3| � 0.97n such that for all b such that kb� µk1  O(�) and kb� µ0k1  O(�)
(the latter holds by the triangle inequality for all b such that kb� µk1  O(�)), we have that

�����
1

|S3|
X

i2S3

(ha,b(xi)� µ0)(ha,b(xi)� µ0)>

�����
Xk

 O(�2) +O(ak�1.5kkb� µk1)  O(�2).

(27)

By Proposition A.1, this implies S3 contains a set S0 satisfying the following: (i) |S0| � 0.95n is
(0.1, O(1), k)-stable with respect to µ0 and �. Thus, we choose S0 in the lemma statement to be this
set.

Taking a union bound, all the above events fail with probability at most O(⌧). Reparameterizing
yields the lemma statement.

Theorem D.11. Let S be a set of n i.i.d. data points from a distribution P over Rd, and let T be
a 0.01-corruption of S. Let µ̃ be the coordinate-wise median-of-means estimate computed from
set T . Let the mean of P be µ, and covariance ⌃ such that k⌃kXk  �2, and for all i 2 [d],
E[X4

i
]  O(�4). Suppose n = ⌦(k2 log d + log(1/⌧)). Let a = �

p
k. With probability 1 � ⌧

over S, for all T we have that there exists a subset S0 ⇢ T with |S0| � 0.95n such that ha,µ̃(S0) is
(0.01, O(1), k)-stable with respect to some µ0 and � with kµ0 � µk1  O(�/

p
k).
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Proof. By Fact 2.1, we know that with probability at least 1� ⌧ , we have kµ̃� µk1  O(�)O(1 +
(log(d/⌧))/n) = O(�) by the assumption that n is sufficiently large.

Thus, we use µ̃ as “b” in Lemma D.10 to yield the stability guarantee in the theorem statement.

The total failure probability is at most 2⌧ , and reparameterizing yields the theorem statement.

In Section 4, we use Theorem D.11 as the main technical ingredient to prove Theorem D.12, which
in turn implies Theorem 1.3.
Theorem D.12 (Stronger version of our result). Let ✏ 2 (0, ✏0) for small constant ✏0 > 0. Let P be
a multivariate distribution over Rd, where the mean and covariance of P are µ and ⌃ respectively.
Suppose k⌃kXk  1 and further suppose that for all j 2 [d], E[(Xj � µj)4] = O(1). Then, there is
an algorithm such that, on input (i) the corruption parameter ✏, (ii) the failure probability ⌧ , (iii) the
sparsity parameter k, and (iv) T , an ✏-corrupted set of n � (k2 log d+ log(1/⌧))/✏) i.i.d. samples
from P , it outputs bµ satisfying kbµ� µk2,k = O(

p
✏) with probability 1� ⌧ in poly(n, d) time.

E Information-Theoretic Error

Let Dk be the family of all distributions over Rd that satisfy the following:

1. For every D 2 Dk, the mean of D is k-sparse,
2. For every D in Dk the covariance of D is upper bounded by I in spectral norm, and
3. For every D 2 Dk we have that E[(Xi�E[Xi])4] = O(1), where X = (X1, . . . , Xd) ⇠ D.

Lemma E.1. Let k � 1/
p
✏. Then there exist two distributions in D1 and D2 in Dk such that the

following hold: (i) dTV(D1, D2) = ✏, and (ii) The means of D1 and D2 are separated by ⌦(
p
✏) in

`2,k-norm.

Before giving the proof of Lemma E.1, we remark that the assumption of k � 1/
p
✏ is mild. First,

the assumption is independent of the ambient dimensionality d—the most challenging parameter
regime in algorithmic robust statistics is when we fix a small ✏ and then take the dimensionality d to
1. Second, the typical interesting sparsity regime is when k is super-constant but grows very slowly
in d, say, logarithmically. The assumption that k � 1/

p
✏ applies readily to the above regime.

Proof. Let D1 be the distribution that places all of its mass at origin, i.e., (0, . . . , 0). Let D2 be the
distribution that places (1� ✏) probability mass at origin and places ✏ probability mass at y, where
the first k-coordinates of y are ↵ and the remaining d� k coordinates are 0.

It is easy to see that the total variation distance between D1 and D2 is ✏, and that D1 2 Dk. We will
now show that D2 2 Dk for a suitable value of ↵.

1. First the mean of D2 is ✏y, which is k-sparse by construction.

2. We have that the covariance of D2 is ✏yy> � ✏2yy> = ✏(1 � ✏)yy> � ✏yy>, which is
upper bounded by 1 in spectral norm if kyk2  1/

p
✏. Since kyk2 =

p
k↵, we want that

↵  1/
p
k✏.

3. Finally, let X ⇠ D2. For every i > k, we have that E[(Xi � E[Xi])4] = 0. For i 2 [k],
E[(Xi�E[Xi])4] = E[(Xi� ✏↵)4]  8(E[X4

i
+ ✏4↵4]) = 8(✏↵4+ ✏4↵4)  16✏↵4, which

is less than 16, if ↵  ✏�1/4.

Thus the above construction goes through as long as ↵  min(1/
p
k✏, ✏�1/4). When k � 1/

p
✏, it

suffices that ↵ = 1/
p
k✏. Finally, we note that the difference in means of D1 and D2 is ✏kyk2 =

✏
p
k↵ =

p
✏ for the chosen value of ↵.
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