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Abstract

We study the fundamental task of outlier-robust mean estimation for heavy-tailed
distributions in the presence of sparsity. Specifically, given a small number of
corrupted samples from a high-dimensional heavy-tailed distribution whose mean
µ is guaranteed to be sparse, the goal is to efficiently compute a hypothesis that
accurately approximates µ with high probability. Prior work had obtained efficient
algorithms for robust sparse mean estimation of light-tailed distributions. In this
work, we give the first sample-efficient and polynomial-time robust sparse mean
estimator for heavy-tailed distributions under mild moment assumptions. Our
algorithm achieves the optimal asymptotic error using a number of samples scaling
logarithmically with the ambient dimension. Importantly, the sample complexity of
our method is optimal as a function of the failure probability ⌧ , having an additive
log(1/⌧) dependence. Our algorithm leverages the stability-based approach from
the algorithmic robust statistics literature, with crucial (and necessary) adaptations
required in our setting. Our analysis may be of independent interest, involving
the delicate design of a (non-spectral) decomposition for positive semi-definite
matrices satisfying certain sparsity properties.

1 Introduction

One of the most fundamental problem setups in statistics is as follows: given n i.i.d. samples drawn
from an unknown distribution P chosen arbitrarily from some known distribution family P , infer
some particular property of P from the data. This generic model captures a range of statistical
problems of interest, for example, parameter estimation (such as the mean and (co)variance of P ),
as well as hypothesis testing. While long lines of work have given us a deep understanding on the
statistical and computational possibilities and limits on these problems, these results are not always
applicable in real-world settings due to (i) modelling issues, that the underlying distribution P might
not actually be in the known family P but only being close to it, and (ii) the fact that the n samples
supplied might be corrupted, for example by nefarious actors in high-stakes applications [ABH+72].

The field of robust statistics aims to design estimators and testers that can tolerate up to a constant
fraction of corrupted samples, independent of the potentially high dimensionality of the data [Tuk60,
HR09]. Classical works in the field have identified and resolved the statistical limits of problems in
this setup, both in terms of constructing estimators and proving impossibility results [Yat85, DL88,
DG92, HR09]. However, the proposed estimators were not computationally efficient, often requiring
exponential time to compute either in the number of samples or the number of dimensions [HR09].
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A recent line of work, originating in the computer science community, has developed the subfield of
algorithmic robust statistics, aiming to design estimators that not only attain tight statistical guarantees,
but are also computable in polynomial time. This line of research has provided computationally and
statistically efficient estimators in a variety of problem settings (e.g., mean estimation, covariance
estimation, and linear regression) under different assumptions (e.g., the distribution might be assumed
to be (sub-)Gaussian, or can be heavy tailed); see [DK19] for a recent survey of results.

The focus of this paper is the robust mean estimation problem under sparsity constraints on the
mean vector. Sparsity is an important structural constraint that is both relevant in practice, especially
in the face of increasing dimensionality of modern data, and extensively studied for statistical
estimation (see, e.g., the books [HTW15, EK12, van16]). In the specific context of robust sparse
mean estimation, prior works have studied the case where the underlying distribution has light-
tails, e.g., sub-exponential tails [BDLS17, DKK+19b, CDG+, DKK+22]. In particular, the case
of a spherical Gaussian distribution is now rather well-understood both in terms of the optimal
information-theoretic estimation error, as well as the conjectured computational-statistical tradeoff
— namely, that there is a gap between the statistical performance of computationally efficient and
inefficient estimators [DKS17, BB20]. In this work, we initiate the investigation of robust sparse
mean estimation for heavy-tailed distributions, under only mild moment assumptions. Our main
result is the first computationally efficient robust mean estimator in the heavy-tailed setting which
leverages sparsity to reduce sample complexity from depending polynomially on the dimensionality
to a logarithmic dependence. Importantly, our algorithm also achieves the optimal dependence on the
failure probability ⌧ as it tends to 0; see the next two subsections for further discussion.

1.1 Problem Setup

We first define the input contamination model before formally stating the statistical problem.
Definition 1.1 (Strong Contamination Model). Given a corruption parameter ✏ 2 (0, 1/2) and a
distribution P on uncorrupted samples, an algorithm takes samples from P with ✏-contamination as
follows: (i) The algorithm specifies the number n of samples it requires. (ii) n i.i.d. samples from P
are drawn but not yet shown to the algorithm. (iii) An arbitrarily powerful adversary then inspects the
entirety of the n i.i.d. samples, before deciding to replace any subset of d✏ne samples with arbitrarily
corrupted points, and returning the modified set of n samples to the algorithm.

Define the `2,k-norm of a vector v, denoted by kvk2,k, as the `2-norm of the largest k entries of a
vector v in magnitude. The goal is to estimate the mean vector in this sparse norm.
Problem 1. Fix a corruption parameter ✏ 2 (0, 1/2), error parameter � > 0, failure probability
⌧ 2 (0, 1), and distribution family D over Rd. Suppose we have access to ✏-contaminated samples
drawn from an unknown distribution P 2 D with mean µ. The problem is to compute an estimate µ̂
such that kµ̂� µk2,k is upper bounded by error � with probability at least 1� ⌧ over n samples. The
goal is then to give an estimator with the minimal sample complexity n(k, ✏, �, ⌧).

The above problem is slightly more general than sparse mean estimation in the following sense. To
estimate a k-sparse mean vector µ to error �, it suffices (see [CDG+, Lemma 3.2]) to: 1) get an
estimate µ̃ with kµ̃� µk2,k  �/3, and 2) round µ̃ to the k entries with the largest magnitude, and
zero out all the other entries. The result of our paper solves robust mean estimation in the `2,k norm.

A key aspect of robust statistics is that, depending on the distribution family D we consider, the
above problem is generally not solvable for all error parameters � > 0. This work focuses on sparse
mean estimation for heavy-tailed distributions, where a commonly used model for heavy-tailedness
is imposing only the mild assumption that the covariance is bounded by I , without any further
tail assumptions (see Section 1.4 for more discussion). Even when d = 1 and even when there
are infinitely many samples [DK19], it is known that in the heavy-tailed setting, the minimum �
achievable is in the order of

p
✏. This immediately implies the same lower bound of ⌦(

p
✏) for the

minimum achievable � in Problem 1.

Before discussing the algorithmic results in this paper, we first state known information-theoretic
bounds on the sample complexity that applies to all estimators, efficient or not, for Problem 1 on
distributions with covariance bounded by I , and for � = ⇥(

p
✏).

Fact 1.2 (Information-theoretic sample complexity: computationally-inefficient). In Problem 1, for
the distribution family D2 which is the set of distributions with covariance ⌃ � I , and for � = ⇥(

p
✏),
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we have that n(k, ✏, �, ⌧) ⇣ (k log(d/k) + log(1/⌧))/✏. That is, all algorithms need these many
samples and there exists a (computationally-inefficient) estimator with this sample complexity. The
upper bound is from [Dep20a, PBR20], and the lower bound follows from [LM19b] even in the
absence of outliers (see also Footnote 2 in [DL22a]) and even when we restrict to the distribution
family DGaussian which is the set of the Gaussian distributions with identity covariance.

An interesting aspect of robust sparse mean estimation is that there is a conjectured statistical-
computational tradeoff, namely that efficient algorithms require a qualitatively larger sample complex-
ity than inefficient algorithms. There is evidence (in the form of SQ lower bounds and reduction-based
hardness) that all efficient algorithms have a quadratically-worse dependence on k, that is, even for
constant ✏, �, ⌧ , and DGaussian being identity-covariance Gaussians in Problem 1, the sample complex-
ity of all efficient algorithms is at least ⌦̃(k2), as opposed to Õ(k) in Fact 1.2. See [DKS17, BB20]
for a detailed discussion.

Both the information-theoretic bound and the conjectured computational lower bound serve as
benchmarks for our algorithm to match.

1.2 Our Result

We now state the results of this paper, before discussing in the next section our algorithmic approach
and also the assumptions required in the results.

Our main result is a computationally efficiently robust mean estimator in the `2,k norm, with
performance matching the conjectured computational-statistical tradeoff, under the standard heavy-
tailed assumption that the covariance ⌃ � I and the additional mild assumption that the 4th moment
is bounded in all axis directions. In the following (and the rest of the paper), we use the notation
a � b for a, b 2 R to mean there exists a sufficiently large constant c with a � cb.
Theorem 1.3 (Our result: computationally efficient). Let ✏ 2 (0, ✏0) for small constant ✏0 > 0. Let P
be a multivariate distribution over Rd, where the mean and covariance of P are µ and ⌃ respectively.
Suppose ⌃ � I and further suppose that for all j 2 [d], E[(Xj � µj)4] = O(1). Then, there is an
algorithm such that, on input (i) the corruption parameter ✏, (ii) the failure probability ⌧ , (iii) the
sparsity parameter k, and (iv) T , an ✏-corrupted set of n � (k2 log d+ log(1/⌧))/✏) i.i.d. samples
from P , it outputs bµ satisfying kbµ� µk2,k = O(

p
✏) with probability 1� ⌧ in poly(n, d) time.

Phrased in a slightly different language, when our estimator is given a sufficiently large number n of ✏-

corrupted samples, it outputs an estimate µ̂ satisfying kbµ�µk2,k = O
⇣q

k2 log d

n
+
p
✏+

q
log(1/⌧)

n

⌘

with probability 1� ⌧ . We note also the guarantees of our algorithm remain the same under a weaker
assumption on ⌃: we need only k⌃kXk  1 (k · kXk defined in Definition 1.4) instead of spectral
norm. Informally, the Xk norm of a square matrix A is a convex relaxation of finding the maximum
of v>Av over k-sparse vectors v. See Theorem D.12 for the stronger version of the main result,
which assumes only that k⌃kXk  1.

As outlined above, the dependence of our sample complexity result on k is tight with respect to the
conjectured lower bound for efficient algorithms, and its dependence on ⌧ and ✏ are also tight with
respect to the information-theoretic lower bounds, even in the Gaussian case. In terms of the smallest
achievable asymptotic error (even given infinitely many samples), we show in Lemma E.1 that, even
after adding the mild axis-wise 4th moment assumption in Theorem 1.3, the asymptotic error remains
lower bounded by ⌦(

p
✏) when k is sufficiently large. The restriction on k is very mild, and covers

most parameter regimes of interest.

We also note that the sample complexity has a dependence on the failure probability that is log 1/⌧ ,
and importantly, this is an additive term in the complexity instead of multiplicative. This additive
dependence was non-trivial to achieve even in the optimal rates for heavy-tailed mean estimation in
the non-robust (and non-sparse) setting. See the [LM19a] survey for a more detailed discussion.

1.3 Our Approach

The algorithm we propose fits into the stability-based filtering approach that was first proposed by
[DKK+16] (also see the recent survey [DK19]). Using a filtering algorithm is a by-now-standard
technique in algorithmic robust statistics, and the approach can be summarized as follows: 1) with high
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probability over the sampling of the n uncorrupted samples, there exists a large subset of uncorrupted
samples (say, a 1�O(✏) fraction) satisfying a “stability” condition with respect to the mean of the
uncorrupted distribution, and 2) a filtering algorithm taking as input a corrupted version of the stable
samples will remove some of the samples, such that the sample mean of the remaining points is
guaranteed to be close to the true mean, which can then be returned as the final estimate. The notion of
“stability” depends crucially at the task at hand, and is defined below for the sparse estimation problem.

Stability-Based Algorithm for Sparsity Informally speaking, we say a set S is stable when the
mean and the covariance of S do not deviate too much when we remove a few elements from S. For
the context of sparse estimation, we would like to measure the deviation only along the k-sparse
directions. However, it is NP-hard to calculate the maximum of v>Av over k-sparse unit vectors for
an arbitrary matrix A (this is known as the sparse PCA problem [TP14]). Following [BDLS17], our
definition of stability would involve a convex relaxation of the above optimization problem, using the
following definition of the set Xk and the matrix norm k · kXk .
Definition 1.4 (The set Xk and the norm k · kXk ). The set Xk is defined as the set of positive semi-
definite matrices that have trace 1 and `1-norm at most k when flattened as a vector. The matrix norm
kAkXk is then defined as sup

M2Xk
|A •M |, where A •M denotes the trace product tr(A>M).

Note that for any square matrix A, kAkXk is always upper bounded by its spectral norm. Furthermore,
observe that for any square matrix A, the maximum of v>Av over k-sparse unit vectors is upper
bounded by kAkXk , and the latter can be calculated efficiently using a convex program. We are now
ready to define the stability condition.
Definition 1.5 (Stability Condition). For 0 < ✏ < 0.5 and ✏  �, a set S is (✏, �, k)-stable with
respect to µ 2 Rd and � 2 R+ if it satisfies the following condition: for all subsets S0 ⇢ S with
|S0| � (1� ✏)|S|, the following holds: (i) kµS0 � µk2,k  ��, and (ii) k⌃S0 � �2IkXk  �2�2/✏,
where µS0 = (1/|S0|)

P
x2S0 x is the sample mean of S0 and ⌃S0 = (1/|S0|)

P
x2S0(x�µ)(x�µ)>

is the second moment of S0.

Definition 1.5 is intended for distributions with covariance matrices at most �2 times identity. We
will omit µ and � above when they are clear from context. Focusing on the Gaussian distribution with
identity covariance, [BDLS17] gave a computationally-efficient algorithm with k2 log d samples.1

By using the standard median-of-means pre-processing described in Section 2, we can reduce the
problem to the case when the corruption parameter ✏ is constant, say 0.01, and aim to achieve only a
constant estimator error in the `2,k norm. For this regime, we state the guarantees of robust sparse
mean estimation algorithm of [BDLS17] (developed for the Gaussian setting) as follows2:
Fact 1.6. Let S be a set in Rd such that there exists a set S0 ✓ S such that (i) |S0| � 0.99|S|
and (ii) S0 is an (0.01, O(1), k)-stable with respect to (unknown) µ and (unknown) �. There is a
poly(|S|, d)-time algorithm that takes as input T , an 0.01-corruption of S, and returns a mean
estimate µ̂ such that kµ̂� µk2,k  O(�).

Given the prior algorithmic result, the remaining challenge is to show that, even in the setting
of heavy-tailed data, a large subset of the uncorrupted samples satisfies the “stability” condition
with high probability. In the dense setting, [DKP20, HLZ20] showed that O(d) samples suffice for
stability, which is too large for our setting.

Truncation is Necessary for Stability Recall that our goal is to show that, if we sample k2 log d
samples from a heavy-tailed distribution, then it contains a large stable subset. For the light-tailed data
(Gaussian), this was shown in [BDLS17]. However, this statement is not true for general heavy-tailed
distributions. Consider the standard setting for modelling heavy-tailed data, that the covariance ⌃ of
the uncorrupted distribution is upper bounded by the identity. For simplicity, also assume that the
sparsity parameter k, corruption parameter ✏ and failure probability ⌧ are all constants. Thus, our
goal is to show that, with high probability, there is a large stable subset among log d samples. Yet, as
we show in Example 1 in Section 3, there exists a distribution where deterministically for any set
of even o(d) many uncorrupted samples, no large subset can be stable. This distribution is the one

1The additional factor of k in their sample complexity (cf. Fact 1.2) is because the convex relaxation involving
Xk norm can be loose. However, [DKS17, BB20] suggest that k2 samples are needed for efficient algorithms.

2See also [ZJS21] for a related algorithm.
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returning a vector of length
p
d from a randomly chosen axis direction, which has unit covariance.

Essentially, the long length of
p
d along directions as sparse as the axis directions causes stability to

fail to hold.

In order to circumvent this obstacle, we propose to “truncate" all the samples in `1 norm, before
using a stability-based filtering robust mean estimation algorithm: compute an initial mean estimate,
then clip each sample coordinate-wise to within a radius of ⇥(

p
k) of the initial mean estimate.

This radius is chosen carefully to ensure that the mean of the original distribution and the clipped
distribution is close in `2,k-norm. Ensuring that the clipped distribution also has small variance turns
out to be non-trivial as we detail below.

Necessity of Bounded Higher Moments After truncation, no point is too far from the true mean,
but truncation can potentially also rotate a point about the true mean, in the sense that for a sample,
the direction of its difference from the true mean may change after such truncation. In general, this
rotation effect can cause much of the mass of the distribution to rotate and concentrate towards certain
directions, and significantly increase the variance in those directions. (See Appendix A.4 for more
details.) In this work, we identify the mild condition that the 4th moment is bounded along each
axis direction by some constant, on top of our assumption that ⌃ � I , to be sufficient to show that
truncation can only increase variance in directions that are non-sparse, in the sense that the resulting
covariance will still have bounded Xk norm (see Lemma 3.1). Thus, under these mild conditions,
we can safely truncate our samples (which is necessary for stability to hold as outlined above), and
modify our goal to show this truncated distribution contains a large stable set with high probability.

Stability of Truncated Samples with High Probability Even after truncation and after imposing
an axis-wise 4th moment bound, it remains challenging to show that, with high probability, there is a
large subset of samples that are stable with respect to the true mean.

As we see in Section 5, the analysis reduces to showing that with high probability over the uncorrupted
samples, for every matrix M 2 Xk, there exists a large subset of samples S whose empirical
covariance ⌃S has a small inner product with M , namely that M • ⌃S is bounded. In the non-sparse
setting, the strategy used in [DL22b] and [DKP20] is to first show a high probability event for all
M = vv> for unit vectors v, and then to show that the event for all M = vv> deterministically
implies that the event holds also for all M ⌫ 0 with tr(M) = 1. This strategy is important because
although the cover of PSD matrices would roughly be exponential in d2, the cover of vv> is only
exponential in d. Thus the first step holds with roughly d samples, and the second step crucially uses
the spectral decomposition (SVD) of positive semi-definite (PSD) matrices. On the other hand, in our
sparse setting, if we applied the usual SVD to the PSD matrices M 2 Xk, the resulting decomposition
will generally not yield sparse components, and thus not allowing us to leverage sparsity. Instead,
inspired by some matrix norm results derived by Li [Li18], we carefully design a (non-spectral)
decomposition that does yield k2-sparse components and can be covered with k2 log d samples, as
well as a more delicate argument to complete the second step, namely that the event holding for all
components M in the decomposition implies the event holding for all M 2 Xk. The intricacies of
these arguments also allow us to get a sample complexity that ultimately yields an additive (instead of
multiplicative) dependence on log 1/⌧ , which as described in the previous section is a crucial feature
of our result, and in line with the non-robust non-sparse sub-Gaussian mean estimation setting.

1.4 Related Work

Algorithmic Robust Statistics The goal of algorithmic robust statistics is to obtain dimension-
independent asymptotic error even in the presence of constant fraction of outliers in high dimensions
in a computationally efficient way. Since the dissemination of [DKK+16, LRV16], which focused
on high-dimensional robust mean estimation, the body of work in the field has grown rapidly. For
example, prior work has obtained dimension-independent guarantees for various problems such
as linear regression [KKM18, DKS19] and convex optimization [PSBR20, DKK+19a]. See the
recent survey [DK19] for a more detailed description. Most relevant to us are the works for robust
mean estimation that leverage the sparsity constraints and obtain improved sample complexity. The
algorithms developed in [BDLS17, DKK+19b, CDG+, DKK+22] obtain optimal asymptotic error
for light-tailed distributions such as Gaussians. However, these algorithms crucially rely on the
light-tails and, as outlined in Section 1.3, provably do not work for heavy-tailed distributions.
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Heavy-Tailed Estimation The recent decades also saw a growing interest in studying statistics
in heavy-tailed settings. Even for the basic question of univariate mean estimation without sample
corruption, the statistical limits are only recently resolved by a line of work started by Catoni [Cat12]
and ending with Lee and Valiant [LV21] (see also [Min22] for an alternative estimator). There is
also much research effort on resolving the statistical limits of various high-dimensional estimation
tasks for heavy-tailed distributions, for example, mean estimation in `2 norm [LM19c] and in other
norms [LM19b, DL22a], covariance estimation [MZ20], and stochastic convex optimization [BM22].
In absence of contamination, the goal is to obtain sample complexity as if the distribution were
Gaussian. Roughly speaking, this corresponds to an additive dependence on the logarithm of failure
probability in various estimation tasks (as we achieve also in this work). We refer the reader to the
recent survey for more details [LM19a]. This line of work focuses on the statistical limits, and the
estimators developed are generally computationally inefficient.

A closely-related body of research aims to obtain efficient algorithms for heavy-tailed distributions
with optimal statistical performance, ideally matching the above guarantees. These works include
high-dimensional (dense) mean estimation [Hop20, CFB19, DL22b, LLVZ20, DKP20, HLZ20,
CTBJ22, LV22], linear regression [CHK+20, PJL20, Dep20b], and covariance estimation [CHK+20].
We note that many of these works are inspired by the algorithmic robust statistics literature, and can
also tolerate a constant fraction of contaminated data.

To the best of our knowledge, none of these works studies sparse estimation under heavy-tailed
distributions (even in absence of outliers), and our work is the first result with sample complexity that
is additive in the logarithm of the failure probability.

2 Preliminaries

Notations Here we define the notations we use in the rest of the paper. For a (multi-)set S ⇢ Rd,
we denote µS = (1/|S|)

P
x2S

x and ⌃S = (1/|S|)(
P

x2S
(x� µS)(x� µS)>). When the vector

µ notation is clear from context, we use ⌃S to denote (1/|S|)
P

x2S
(x� µ)(x� µ)>.

Let Uk denote the set of k-sparse unit vectors in Rd. For two vectors x and y, hx, yi denotes the
dot product x>y. For a vector x 2 Rd, we use kxk2,k := sup

v2Uk
hx, vi and kxk1 to denote

maxj |xj |. For a matrix M , we use kMk1 to denote
P

i,j
|Mi,j | and kMk0 to denote the number of

non-zero entries of M . For two matrices A and B, we use A •B to denote the trace inner product
tr(A>B). Define Xk := {M : M < 0, tr(M) = 1, kMk1  k}. For a matrix A, we define
kAkXk := sup

M2Xk
|A •M |. For an n 2 N, we use [n] to denote the set {1, . . . , n}.

Coordinate-wise Median-of-Means We use the coordinate-wise median-of-means algorithm to
robustly obtain a preliminary mean estimate, with guarantees captured by the following fact.

Fact 2.1. The coordinate-wise median-of-means algorithm satisfies the following guarantee: given
the corruption parameter ✏, failure probability ⌧ , and a set T of n many ✏-corrupted samples from a
distribution D with mean µ and axis-wise variance EX⇠D[(Xj � µj)2]  �2 for all j 2 [d], then
with probability at least 1 � ⌧ over the sample set T , the output of the algorithm µ̂ is such that
kµ̂� µk1  �O(

p
✏+

p
(log(d/⌧))/n).

Median-of-Means Pre-Processing Another standard technique we use in this paper is the median-
of-means pre-processing, which is a distinct technique from the coordinate-wise median-of-means
algorithm mentioned right above. Recall that in Theorem 1.3, the asymptotic error term is

p
✏,

which tends to 0 as the corruption parameter ✏ ! 0. The following pre-processing step allows us
to reduce the problem from the ✏ ! 0 case to a constant ✏ case: Split the samples randomly into
g equally-sized groups of size m = n/g where g = ⇥(✏n), and replace each group by the sample
mean of the group. The effects of this pre-processing is captured by the following Fact 2.2, which
we prove for completeness.

Fact 2.2 (Median-of-Means Pre-Processing). Suppose there is an efficient algorithm such that, on
input � 2 R+ and a 0.1-corrupted set of n � k2 log d + log(1/⌧) samples from a distribution
D with mean µ and covariance ⌃ with k⌃kXk  �2 and EX⇠D[(Xj � µj)4] = O(�4) for each
coordinate j 2 [d], returns µ̂ such that kµ̂� µk2,k  O(�) with probability at least 1� ⌧ .
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Then, there is an efficient algorithm such that, on input ✏ 2 (0, 0.1) and an ✏-corrupted set of
n � (k2 log d+ log(1/⌧))/✏ samples from a distribution with mean µ and covariance ⌃, satisfying
k⌃kXk  1 satisfying EX⇠D[(Xj � µj)4] = O(1) for every coordinate j 2 [d], returns a mean
estimate µ̂ such that kµ̂� µk2,k  O(

p
✏) with probability at least 1� ⌧ .

3 Truncation Pre-Processing

The general approach for using a stability-based filtering algorithm, for algorithmic robust statistics,
is to show that given sufficiently many samples, there exists a large (say 1�O(✏) fraction) subset of
the samples that are stable with respect to the true mean µ. However, the following simple example
shows that it is not possible for i.i.d. samples from a heavy-tailed distribution to satisfy the sparse
stability in poly(log d) samples.
Example 1. For any number of moments t � 2, there is a distribution X satisfying the following
conditions: (i) The mean of X is 0, and for every unit vector v, the tth moment in direction v is upper
bounded by 1, that is, E[|hv, xi|t]  1 for t � 2, (ii) If S is an arbitrary set of n  o(d2/t) points
from the support of X , then the set S cannot be (✏, O(

p
✏), k)-stable, for any ✏ > 0, with respect to

the mean of the distribution. As a corollary, no subset of S can be stable either.

We show Example 1 in Appendix B.

Thus, we need to modify the algorithm if we want to do robust sparse mean estimation using
poly(k, log d) samples. Our approach is to perform an initial truncation of the samples, before using
a stability-based robust mean estimator. A balance needs to be struck, in order to truncate sufficiently
for stability to hold (with high probability over the samples), but also to truncate mildly enough such
that the mean (and covariance) of the truncated distribution does not shift too much.

For a scalar a 2 R+ and a vector b 2 Rd, let ha,b : Rd ! Rd be the following thresholding function:

8i 2 [d], ha,b(x)i =

8
<

:

xi, if |xi � bi|  a
bi + a if xi � bi � a
bi � a if xi � bi  �a

. (1)

Note that ha,b(x) projects the point x to the `1 ball of radius a around b.

As explained in the Introduction, truncation in general rotates a point about the true mean, and thus
can in fact cause the covariance of the distribution to grow in certain directions. The following lemma
captures the fact that, if we make the further mild assumption that the distribution has bounded 4th

moment along all the axis directions, then we will at least be able to preserve the Xk norm of the
covariance matrix. The proof of Lemma 3.1 is also in Appendix B.
Lemma 3.1 (Truncation in `1). Let P be a distribution over Rd with mean µP and covariance ⌃P ,
with k⌃kXk  �2 for some �2 > 0. Let X ⇠ P and assume that for all j 2 [d], E[(X � µP )4j ] 
�4⌫4 for some ⌫ � 1. Let b 2 Rd be such that kb � µk1  a/2 and a := 2�

p
k/✏ for some

✏ 2 (0, 1). Define Q to be the distribution of Y := ha,b(X). Let the mean and covariance of Q be
µQ and ⌃Q respectively. Then the following hold:

(1) kµP � µQk1  �
p
✏/k

(2) kµP � µQk2,k  �
p
✏

(3) k⌃P � ⌃QkXk  3�2✏⌫4

(4) For all i 2 [d], E[(Y � µQ)4i ]  8⌫4�4

(5) kY � µQk1  2a = 4�
p
k/✏ almost surely.

In Lemma 3.1 above, b represents the initial mean estimate, and µ̃ will be obtained by Fact 2.1.

4 Algorithm and Analysis

The high-level algorithm we propose is stated as follows.
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Algorithm 1 Robust Sparse Mean Estimation with High Probability

1. Input: An ✏-corrupted sample set S ✓ Rd of size n

2. Median-of-Means pre-processing: Group points into g groups, each of size m = n/g, where
g = ⇥(✏n), and take the sample mean of a group to be a new point

3. Compute initial coordinate-wise median-of-means estimate µ̃

4. Truncate all points to within B1(µ̃, 2
p
k), namely, given a point x, we replace it with the

point h2
p
k,µ̃

(x), where ha,b is defined in Equation (1).

5. Run the stability-based robust sparse mean estimator from Fact 1.6 on the samples after the
processing of Step 4.

We note that this algorithm is shift and scale invariant, based on the same invariance of the median-
of-means pre-processing as well as the invariance of the robust sparse mean estimator from Fact 1.6.

We will now prove that Algorithm 1 satisfies the guarantees of Theorem 1.3 and its stronger version,
Theorem D.12. Our analysis uses Theorem D.11, which states that, with high probability, there exists
a set consisting of most of the truncated samples that is stable with respect to some point close to the
true mean in `1 norm. In Section 5, we outline the central part (Theorem 5.1) of the proof of this
theorem. We have not optimized constants in our analysis.

Proof of Theorems 1.3 and D.12. By Fact 2.2, it suffices to show that, for every � > 0, Steps 3–5
in Algorithm 1 yields an O(�) estimation error in `2,k norm when given corrupted samples from a
distribution D with covariance bounded by �2I and axis-wise 4th moment bounded by O(�4).

Theorem D.11 states that, with probability at least 1� ⌧ , the samples after the processing of Step
4 are such that there exists a 95% of the samples that form a (0.1, O(1), k)-stable subset with
respect to some vector µ0 and � with kµ0 � µk1  O(�/

p
k). Fact 1.6 then guarantees that, on

input such a set of samples, the algorithm we invoke Step 5 of Algorithm 1 will return a mean
estimate µ̂ such that kµ̂ � µ0k2,k  O(�). Further, since kµ0 � µk1  O(�/

p
k), we have that

kµ0 � µk2,k  O(�), and therefore we can conclude with the triangle inequality that the mean
estimate µ̂ satisfies kµ̂� µk2,k  O(�).

5 Stability After Removing Points: Additive dependence on log(1/⌧)

In this section, we sketch the main stability result in this paper. Recall, via the median-of-means
pre-processing, that we only need to consider the constant contamination case (✏ = ⇥(1)). Thus, the
goal is to show (Theorem D.11) that with high probability, after truncation according to the coordinate-
wise median-of-means preliminary estimate, there exists a large subset of uncontaminated samples
that is (⇥(1), O(�), k)-stable with respect to the true mean of the distribution where � = k⌃kXk .

Theorem 5.1 below, an informal version of Theorem C.1 in Appendix C, captures the core of the
argument. The key difference between Theorems 5.1 and D.11 is that the former is a stability result
concerning uncontaminated samples truncated according to some fixed vector close to the true mean.
On the other hand, the final stability result we require concerns samples truncated according to the
coordinate-wise median-of-means estimate, which itself depends on the samples and is not fixed.
Appendix D shows the delicate argument going from Theorem 5.1 to Theorem D.11.
Theorem 5.1 (Informal version of Theorem C.1). Let S be a set of n i.i.d. data points from a
distribution P over Rd. Let the mean of P be µ, and covariance ⌃ such that k⌃kXk  �2, and for
all j 2 [d], E[X4

j
] = O(�4). Suppose P is supported over the set {x : kx � µk1 = O(�

p
k)}. If

n = ⌦(k2 log d+ log(1/⌧)), then, with probability 1� ⌧ , there exists a set S0 ⇢ S such that:

1. |S0| � 0.98n

2. S0 is (0.01, �, k)-stable with respect to µ and � where � = O(1).

For the rest of the section, we sketch the proof of Theorem 5.1.
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Proof sketch for Theorem 5.1. In the following proof sketch, we hide most multiplicative constants.
The proof of Theorem C.1 in Appendix C will make explicit the calculations for completeness. For
the rest of the sketch, we will also assume µ = 0 without loss of generality.

Instead of directly showing the existence of subset S0 ✓ S (with high probability over the sam-
ples S) that is stable, we will be working with weights/distributions over the set S of samples.
Given a weight vector w and S = {x1, . . . , xn} ⇢ Rd, denote ⌃w by

P
i
wixix>

i
. Then,

Proposition A.1 in Appendix A lets us show the following simpler condition instead: let �n,✏

be the set of weights/distributions w such that wi  1/(1 � ✏), then there exists a weighting
w 2 �n,0.01 such that k⌃wkXk  O(�2). That is, for the following proof, we just need to prove that
minw2�n,0.01 k⌃wkXk = O(�2).

We proceed as follows:

min
w2�n,0.01

k⌃wkXk = min
w2�n,0.01

max
M2Xk

M • ⌃w = max
M2Xk

min
wM2�n,0.01

M • ⌃w

where the last equality is a straightforward application of the minimax theorem for a minimax
optimization problem with independent convex domains and a bilinear objective. It thus suffices to
show the following: with probability 1� ⌧ ,

8M 2 Xk : |{x 2 S : x>
i
Mxi � �2}|  0.01|S| (2)

and we can construct the weight wM as uniform distribution over the elements outside the above set.

Define the following sets of sparse matrices, the first of which also appears in [Li18]:

Ak :=
�
A 2 Rd⇥d : kAk0  k2, kAkF  1

 
,

Ak,P :=
�
A 2 Ak : Px⇠P

�
x>Ax � �2

�
 small constant

 
. (3)

If n � k2 log d + log(1/⌧), then a standard covering/VC-dimension bound (see Lemma B.2 for
details) implies that the following event holds with probability 1� ⌧ :

8A 2 Ak,P : |{x 2 S : x>Ax � �2}|  0.002 · |S|. (4)

We will now show that the event in Equation (4) implies that the event in Equation (2) holds. Note
that the constants hidden in the � notation in Equations Equation (2) and Equation (4) are different,
which is the slackness that makes the implication possible. As mentioned, we will make these
constants explicit in the formal proof in Appendix C.

Suppose, for the sake of contradiction, that the event in Equation (2) does not hold. Then there exists
an M 2 Xk such that |{x 2 S : x>

i
Mxi � �2}| > 0.01|S|. We will show the existence of a matrix

Q violating event Equation (4), via the probabilistic method, to reach the desired contradiction.

To achieve this, we define a decomposition of M 2 Xk into components in Ak,P , in the sense of
a distribution over matrices Q such that 1) E[Q] = M and 2) a small constant multiple of Q belongs
to Ak,P with high constant probability. We will additionally show that this decomposition Q roughly
preserves quadratic forms, in that if M violates Equation (2) then Q violates Equation (4) with
non-trivial probability.

Fixing an M that violates Equation (2), consider the random matrix Q where each entry Qi,j is inde-
pendently set to be Mi,j/pi,j with probability pi,j and 0 otherwise, where pi,j := min(1, k|Mi,j |/c)
for a large constant c > 0.

We will show that the following events hold simultaneously with non-zero probability, leading
to a contradiction to event Equation (4): (i) Q/c0 2 Ak,P for a large constant c0 and (ii)
|{x 2 S : x>

i
(Q/c0)xi � �2}| > 0.002 · |S|. Using different techniques, we will show that the first

condition holds with probability at least 1�2⇥10�6 and the second condition holds with probability
at least 4⇥ 10�6, thus implying that the events hold simultaneously with non-zero probability.

Condition (i), that Q/c0 2 Ak,P with high constant probability. Showing that Q/c0 belongs
to Ak is straightforward: by the construction of Q, it has small expected sparsity as well as small
expected Frobenius norm. An application of Markov’s inequality shows that Q/c0 2 Ak with high
constant probability (Lemma C.2).
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The trickier part is to show that Q/c0 is also in Ak,P , namely that Px⇠P (x>(Q/c0)x � �2) is
upper bounded by the small constant. We consider the distribution of x>Qx over the probability of
independently drawing x ⇠ P and a random Q, and show that x>Qx is small with high probability
over this joint distribution (Lemma C.4), which requires using the axis-wise 4th moment bounds
on P as well as the fact that M 2 Xk. Lemma C.3 implies that with high probability, we will draw
a Q satisfying Px⇠P (x>Qx � �2) being bounded by a small constant.

Condition (ii), that if M violates Equation (2) then Q violates Equation (4) with non-trivial
probability We consider the random variable Z =

P
i
1
x
>
i Qxi��2 , over the randomness of Q. The

overall strategy is to lower bound E[Z] � cn for a small c > 0 and use the Paley-Zygmund inequality
to show that with at least small constant probability, Z � cn/2, where we use Z always is less than
n. The expectation of Z is just the average over all samples the probability that x>

i
Qzi � �2. Since

the fraction of xis with x>
i
Mxi � �2 is at least a constant, to lower bound E[Z], it suffices for us

to lower bound this probability for each such xi. Fix any such x for the remainder of the argument.

Lower bounding the probability that x>Qx � �2 is non-trivial, since, the support of the quadratic
form can scale with k and given a lower bound on its expectation, it could be the case that it is 0
with high probability and has a huge value with small probability.

We will argue that this does not happen by considering two cases. First, and the simpler setting,
is when x>Qx has small variance. In this case, we can use Chebyshev’s inequality to lower bound
the probability that x>Qx � �2. Essentially, this is the case when x>Qx is “concentrated”.

The second, and the more involved setting, is when x>Qx has large variance. Here, we would like
to argue that x>Qx is sufficiently “anti-concentrated” like a Gaussian, in the sense that there is a
constant probability mass above its mean. Noting that x>Qx =

P
i2[d],j2[d](x)i(x)jQi,j and the

entries of Q are independent, this is a sum of independent terms, and we can reasonably expect
Gaussian-like behavior. Concretely, we will show this using the Berry-Esseen theorem, which requires
us to upper bound the third moment of x>Qx. This upper bound crucially uses the facts that 1) the
samples here are truncated, which implies that each (x)i(x)j has bounded magnitude and 2) each
Qi,j is a (scaled) Bernoulli which has exact and simple expressions for its second and third moments.

Summarizing, we argued that conditions (i) and (ii) hold simultaneously with non-zero probability,
thus showing the existence of a Q violating Equation (4), reaching a contradiction assuming the
existence of some M violating Equation (2). Therefore, Equation (4) implies Equation (2), which
completes the argument for Theorem 5.1.
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