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Abstract

We explore the capability of plain Vision Transformers (ViTs) for semantic seg-
mentation and propose the SegViT. Previous ViT-based segmentation networks
usually learn a pixel-level representation from the output of the ViT. Differently, we
make use of the fundamental component—attention mechanism, to generate masks
for semantic segmentation. Specifically, we propose the Attention-to-Mask (ATM)
module, in which the similarity maps between a set of learnable class tokens and
the spatial feature maps are transferred to the segmentation masks. Experiments
show that our proposed SegViT using the ATM module outperforms its counter-
parts using the plain ViT backbone on the ADE20K dataset and achieves new
state-of-the-art performance on COCO-Stuff-10K and PASCAL-Context datasets.
Furthermore, to reduce the computational cost of the ViT backbone, we propose
query-based down-sampling (QD) and query-based up-sampling (QU) to build a
Shrunk structure. With the proposed Shrunk structure, the model can save up to
40% computations while maintaining competitive performance.

1 Introduction

Semantic segmentation is a dense prediction task in computer vision that requires pixel-level clas-
sification of an input image. Fully Convolutional Networks (FCN) [1] are widely used in recent
state-of-the-art methods. This paradigm includes a deep convolutional neural network as the en-
coder/backbone and a segmentation-oriented decoder to provide dense predictions. A 1×1 convolu-
tional layer is usually applied to a representative feature map to obtain the pixel level predictions.
To achieve higher performance, previous works [2–4] focus on enriching the context information or
fusing multi-scale information. However, the correlations among spatial locations are hard to model
explicitly in FCNs due to the limited receptive field.

Recently, Vision Transformers (ViT) [5], which make use of the spatial attention mechanism are
introduced to the field of computer vision. Unlike typical convolution-based backbones, the ViT has
a plain and non-hierarchical architecture that keeps the resolution of the feature maps all the way
through. The lack of the down-sampling process (excluding tokenizing the image) brings differences
to the architecture to do the semantic segmentation task using ViT backbone. Various semantic
segmentation methods [6–8] based on ViT backbones have achieved promising performance due to
the powerful representation learned from the pre-trained backbones. However, the potential of the
attention mechanism is not fully explored.

Different from previous per-pixel classification paradigm [6–8], we consider learning a meaningful
class token and then finding local patches with higher similarity to it. To achieve this goal, we propose
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the Attention-to-Mask (ATM) module. More specifically, we employ a transformer block that takes
the learnable class tokens as queries and transfers the spatial feature maps as keys and values. A
dot-product operator calculates the similarity maps between queries and keys. We encourage regions
belonging to the same category to generate larger similarity values for the corresponding category
(i.e. a specific class token). Fig. 1 visualizes the similarity maps between the features and the ‘Table’
and ‘Chair’ tokens. By simply applying a Sigmoid operation, we can transfer the similarity maps to
the masks. Meanwhile, following the design of a typical transformer block, a Softmax operation is
also applied to the similarity maps to get the cross attention maps. The ‘Table’ and ‘Chair’ tokens are
then updated as in any regular transformer decoders, by a weighted sum of the values with the cross
attention maps as the weights. Since the mask is a byproduct of the regular attentive calculations,
negligible computation is involved during the operation.

Building upon this efficient ATM module, we propose a new semantic segmentation paradigm with
the plain ViT structure, dubbed SegViT. In the paradigm, several ATM modules are employed on
different layers, and we get the final segmentation mask by adding the outputs from different layers
together. SegViT outperforms its ViT-based counterparts with less computational cost. However,
compared with previous encoder-decoder structures that use hierarchical networks as encoders, ViT
backbones as encoders are generally heavier. To further reduce the computational cost, we employ a
Shrunk structure consisting of query-based down-sampling (QD) and query-based up-sampling (QU).
The QD can be inserted into the ViT backbone to reduce the resolution by half and QU is used parallel
to the backbone to recover the resolution. The Shrunk structure together with the ATM module as the
decoder can reduce up to 40% computations while maintaining competitive performance.

We summarize our main contributions as follows:

• We propose an Attention-to-Mask (ATM) decoder module that is effective and efficient for
semantic segmentation. For the first time, we utilize the spatial information in attention
maps to generate mask predictions for each category, which can work as a new paradigm for
semantic segmentation.

• We managed to apply our ATM decoder module to the plain, non-hierarchical ViT backbones
in a cascade manner and designed a structure namely SegViT that achieves mIoU 55.2% on
the competitive ADE20K dataset which is the best and lightest among methods that use ViT
backbones. We also benchmark our method on the PASCAL-Context dataset (65.3% mIoU)
and COCO-Stuff-10K dataset (50.3% mIoU) and achieve new state-of-the-art performance.

• We further explore the architecture of ViT backbones and work out a Shrunk structure
to apply to the backbone to reduce the overall computational cost while still maintaining
competitive performance. This alleviates the disadvantage of ViT backbones that are usually
more computationally intensive compared to their hierarchical counterparts. Our Shrunk
version of SegViT on the ADE20K dataset reaches mIoU 55.1% with the computational
cost of 373.5 GFLOPs which is about 40% off compared to the original SegViT (637.9
GFLOPs).

2 Related Work

Semantic segmentation. Semantic segmentation which requires pixel-level classification on an
input image is a fundamental task in computer vision. Fully Convolutional Networks (FCN) used
to be the dominant approach to this task. Initial per-pixel approaches such as [9, 10] attribute the
class label to each pixel based on the per-pixel probability. To enlarge the receptive field, several
approaches [11, 12] have proposed dilated convolutions or apply spatial pyramid pooling to capture
contextual information of multiple scales. With the introduction of attention mechanisms, [13, 14, 6]
replace the feature merge conducted by convolutions and pooling with attention to better capture
long-range dependencies.

Recent works [15, 8, 16] decouple the per-pixel classification process. They reconstruct the structure
by using a fixed number of learnable tokens and use them as weights for the transformation to
apply on feature maps. Binary matching rather than cross-entropy is used to allow overlaps between
feature maps and learnable tokens are used to dynamically generate classification probabilities. This
paradigm enables the classification process to be conducted globally and alleviates the burden for
the decoder to do per-pixel classification, which as a result, is more precise and the performance is
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Figure 1: The overall concept of our Attention-to-Mask decoder. In a typical attentive process,
the dot-product is first calculated between queries and keys to measure the similarity (as illustrated on
the left). If the similarity map is applied with Softmax operation on the spatial dimension, the output
is the typical attention map (multiple heads are summed together). However, if the same similarity
map is applied with a per-pixel operation Sigmoid, it produces a mask that indicates the area with
certain similarity. Based on the assumption that the tokens within the same category have higher
similarity, we can train a token vector to have high similarity within tokens of the specific category
and low similarity elsewhere. In the meantime, this process does not violate the attention mechanism.
Thus, it can process alongside the original transformer layers.

generally better. However, for those methods, the feature map is still calculated in a static manner,
usually requiring feature merge modules such as FPN [4].

Transformers for vision. Attention-based transformer backbones have become powerful alterna-
tives to standard convolution based networks for image classification tasks. The original ViT [5] is
a plain, non-hierarchical architecture. Various hierarchical transformers such as [17–21] have been
presented afterwards. These methods inherit some designs from convolution based networks such as
hierarchical structures, pooling and down-sampling with convolutions. As a result, they can be used
as a straightforward replacement for convolutional based networks and applied with previous decoder
heads for tasks such as semantic segmentation.

Plain-backbone decoders. High-resolution feature maps generated by backbones are important for
dense prediction tasks such as semantic segmentation. Typical hierarchical transformers use feature
merge techniques such as FPN [4] or dilated backbones to generate high-resolution feature maps.
However, for plain, non-hierarchical transformer backbones, the resolution remains the same for all
layers. SETR [6] proposed a simple strategy to treat transformer outputs in a sequence-to-sequence
perspective to solve segmentation tasks. Segmenter [8] joints random initialized class embeddings
and the transformer patch embeddings together and applies several self-attention layers to the joint
token sequence to obtain updated class embeddings and patch embeddings semantic prediction. In
our study, we consider learning a class token and then finding local patches with higher similarities
with the help of the attention map, making the inference process more direct and efficient.

3 Method

3.1 Encoder

Given an input image I ∈ RH×W×3, a plain vision transformer backbone reshapes it into a sequence
of tokens F0 ∈ RL×C where L = HW/P 2, P is the patch size and C is the number of channels.
Learnable position embeddings of the same size of F0 are added to capture the positional information.
Then, the token sequence F0 is applied with m transformer layers to get the output. We define the
output tokens for each layer as [F1,F2, . . . ,Fm] ∈ RL×C . Typically, a transformer layer consists of
a multi-head self-attention block followed by a point-wise multilayer perceptron block with layer
norm in between and then a residual connection is added afterward. The transformer layers are
stacked repetitively several times. For a plain vision transformer like ViT, there are no other modules
involved and for each layer, the number of the tokens is not changed.
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Figure 2: The overall SegViT structure with the ATM module. The Attention-to-Mask (ATM)
module inherits the typical transformer decoder structure. It takes in randomly initialized class
embeddings as queries and the feature maps from the ViT backbone to generate keys and values.
The outputs of the ATM module are used as the input queries for the next layer. The ATM module
is carried out sequentially with inputs from different layers of the backbone as keys and values in
a cascade manner. A linear transform is then applied to the output of the ATM module to produce
the class predictions for each token. The mask for the corresponding class is transferred from the
similarities between queries and keys in the ATM module.

3.2 Decoder

Mask-to-Attention (ATM). Cross attention can be described as the mapping between two se-
quences of tokens. We define two token sequences as G ∈ RN×C with the length N equals to the
number of classes and Fi ∈ RL×C . First, linear transformations are applied to each of them to form
query (Q), key (K) and values (V), as presented by Eq. (1).

Q = ϕq(G) ∈ RN×C , K = ϕk(Fi) ∈ RL×C , V = ϕv(Fi) ∈ RL×C , (1)

The similarity map is calculated between the query and the key. Following the scaled dot-product
attention mechanism, the similarity map and attention map are calculated by:

S(Q,K) =
QKT

√
dk

∈ RN×L,

Attention(G,Fi) = Softmax(S(Q,K))V ∈ RN×C ,

(2)

where
√
dk is a scaling factor with dk equals to the dimension of the keys. The shape of the similarity

map S(Q,K) is determined by the length of the two token sequences N and L. The attention
mechanism is then to update G by a weighted sum of V , where the weight assigned to the summation
is the similarity map applied with Softmax along the dimension L.

Dot-product attention uses the Softmax function to exclusively concentrate the attention on the
token that has the most similarity. However, we suppose that the tokens other than ones that yield
maximum similarities are also meaningful. Based on this intuition, we design a lightweight module
that generates semantic predictions more directly. To be more specific, we assign G as the class
embeddings for the segmentation task and Fi as the output of layer i of the ViT backbone. We pair a
semantic mask to each token in G to represent the semantic prediction for each class. The calculation
for the mask is:

Mask(G,Fi) = Sigmoid(S(Q,K)) ∈ RN×L (3)
The shape of the masks is N ×L, which can be further reshaped to N ×H/P ×W/P . The structure
of the ATM mechanism is illustrated in the right part in Fig. 2. Masks are the middle output of
the cross attention. The final output tokens from the ATM module are used for classification. We
apply a linear transformation followed by a Softmax activation to the output class tokens to get class
probability predictions. Note that we follow [15] to add a ‘no object’ category (Ø) in case the image
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Figure 3: The structure comparison between SegViT with a single layer and the Shrunk version.
(a) illustrates the SegViT structure with ATM module used once with the last layer of the ViT
backbone as the input to generate predictions. (b) uses the query-based down-sampling (QD) module
to implement a naive way to shrink the resolution of the features of the backbone from 1/16 to
1/32 and thus reduces the overall computational cost. (c) is the proposed (shrunk) version which
applies the additional query-based up-sampling module. The Shrunk version can save up to 40% of
computational cost when using the ViT-Large backbone without much sacrifice to the performance.

doesn’t contain certain classes. During inference, the output is produced by the dot-product between
the class probability and the mask groups.

Plain backbones such as ViT does not have multiple stages with features of different scale. Thus,
structures such as FPN to merge features with multiple scales are not applicable. However, fea-
tures other than the last layer contain rich low-level semantic information and are beneficial to
the performance. We designed a structure that can make use of the feature maps from different
layers of ViT to compact with our ATM decoder namely SegViT. In this study, we also found a
way to compact the computational cost for the ViT backbone without sacrificing performance. This
proposed Shrunk version of SegViT uses query-based down-sampling (QD) module together with a
query-based up-sampling (QU) module to compress the ViT backbone and bring an overall reduction
to the computational cost.

The SegViT structure. As illustrated in Fig. 2, an ATM decoder takes in N tokens as the class
embeddings and another sequence of tokens as the base to calculate keys and values for the ATM
module to generate masks. The output of the ATM is N updated tokens and N masks corresponding
to each class token. We use random initialized learnable tokens as the class embeddings and the
output of the last layer of the ViT backbone as the base first. To make use of multi-layer information,
the output of the first ATM decoder is then used as the class embeddings for the next ATM decoder
with the output of another layer of the ViT backbone as the base. This process is repeated another
time so that we can get three groups of tokens and masks. Formally, the loss function of each layer
can be formulated as,

Loverall = Lcls + Lmask = Lcls + λfocalLIoU + λdiceLdice (4)

In each group, the output tokens are supervised by the classification loss (Lcls) which is mentioned
above and the masks are summed orderly and supervised by the mask loss (Lmask) which is a linear
combination of a focal loss [22] and a dice loss [23] multiplied by hyper-parameters λfocal and λdice

respectively as in DETR [24]. The loss of all three groups are then summed together. We have further
experiments to show that this design is beneficial and efficient.

The Shrunk structure. Plain transformer backbones such as ViT is known to have larger com-
putational cost than their counterparts with similar performance. We propose a Shrunk structure
using query-based down-sampling (QD) and up-sampling (QU). Since the shape of the output of the
attention module is determined by the shape of the query, we can apply down-sampling before the
query transformation to realize the QD or insert new query tokens during the cross attention to realize
the QU. By changing the resolution with the number of query tokens, the spatial size is changed
according to the cross attention, providing more flexibility to preserve (recover) important regions.
To be more specific, in the QD layer, we use the nearest sampling to reduce the number of the query
tokens while keep the size of the key and value tokens. When passing through a transformer layer,
the values are weighted and summed by the attention map between query tokens and the key tokens.
This is non-linear downsampling that will pay more attention to the important regions. In the QU
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layer, we employ a transformer decoder structure [25] and initialize new learnable tokens as queries
based on the desired output resolution.

As shown in Fig. 3, we design the SegViT structure with one single layer as the baseline (a). We first
try a naive approach (b), which is to apply the QD once at the 1/3 depth of the backbone (e.g., the 8th
layer of a backbone with 24 layers) to down-sample the resolution of the layer output from 1/16 to
1/32 so as to reduce the overall computational cost. The performance drops as expected since the QD
process involves information lose.

To compensate for the information loss in the naive ‘shrunk’ version, we further apply two QU layers
in parallel with the backbone. This is our proposed Shrunk version (c). The first QU layer takes in
features with 1/16 resolution from the low level of the backbone. Its output is then used as the query
to make cross attention with the down-sampled features with 1/32 resolution from the last layer of the
backbone. The shape of the output of this QU structure is of 1/16 resolution.

Directly reducing the number of the query tokens inevitably harms the final performance. However,
with our designed QU layer and the ATM module, the Shrunk structure is able to reduce 40% of
overall computational cost while still being competitive in performance.

4 Experiments

4.1 Datasets

ADE20K [26] is a challenging scene parsing dataset which contains 20, 210 images as the training
set and 2, 000 images as the validation set with 150 semantic classes.

COCO-Stuff-10K [27] is a scene parsing benchmark with 9, 000 training images and 1, 000 test
images. Even though the dataset contains 182 categories, not all categories exist in the test split. We
follow the implementation of mmsegmentation [28] with 171 categories to conduct the experiments.

PASCAL-Context [29] is a dataset with 4, 996 images in training set and 5, 104 images in the
validation set. There are 60 semantic classes in total, including a class representing ‘background’.

4.2 Implementation details

Transformer backbone. We use the naive ViT [5] as the backbone. In particular, we use its ‘Base’
variation for most ablation studies and provide results on the ‘Large’ variation. Since there can be a
huge difference with different pre-trained weights, as suggested by Segmenter [8], we use the weights
provided by Augreg [30] following the counterparts [8, 31] for a fair comparison. The weights
are obtained by training on ImageNet-21k with strong data augmentation and regularization. For a
simple reference, we report that for pre-trained weights provided by ViT [5] and Augreg [30], the
mIoU scores using the same training recipe on ADE20K dataset are 51.7% and 54.6%, respectively.
Training settings. We use MMSegmentation [28] and follow the commonly used training settings.
During training, we applied data augmentation sequentially via random horizontal flipping, random
resize with the ration between 0.5 and 2.0 and random cropping (512× 512 for all except that we
use 480 × 480 for PASCAL-Context and 640 × 640 for ViT-large on ADE20K). The batch size
is 16 for all datasets with a total iteration of 160k, 80k and 80k for ADE20k, COCO-Stuff-10k
and PASCAL-Context respectively. Evaluation metric. We use the mean Intersection over Union
(mIoU) as the metric to evaluate the performance. ‘ss’ means single-scale testing and ‘ms’ test time
augmentation with multi-scaled (0.5, 0.75, 1.0, 1.25, 1.5, 1.75) inputs. All reported mIoU scores are
in a percentage format. All reported computational costs in GFLOPs are measured using the fvcore 2

library.

4.3 Comparisons with the State-of-the-art Methods

Results on ADE20K. Table 1 reports the comparison with the state-of-the-art methods on ADE20K
validation set using ViT backbone. The SegViT uses the ATM module with multi-layer inputs from
the original ViT backbone, while the Shrunk is the one that conducts QD to the ViT backbone and
saves 40% of the computational cost without sacrificing too much performance. Our method achieves

2https://github.com/facebookresearch/fvcore
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Table 1: Experiment results on the ADE20K val. split. ‘ms’ means that mIoU is calculated using
multi-scale inference. ‘†’ means the models use the backbone weights pre-trained by AugReg [30].
‘*’ represents the model is reproduced under the same settings as the official repo. The GFLOPs is
measured at single-scale inference with the given crop size.

Method Backbone Crop Size GFLOPs mIoU (ss) mIoU (ms)

UperNet* [32] ViT-Base 512× 512 >250 46.6 47.5
DPT* [7] ViT-Base 512× 512 219.8 47.2 47.9

SETR-MLA* [6] ViT-Base 512× 512 113.5 48.2 49.3
Segmenter* [8] ViT-Base 512× 512 129.6 49.0 50.0

StructToken [31] ViT-Base 512× 512 >150 50.9 51.8

SegViT (Ours) ViT-Base 512× 512 120.9 51.3 53.0

DPT* [7] ViT-Large† 640× 640 479.0 49.2 49.5
UperNet* [32] ViT-Large† 640× 640 >700 48.6 50.0

SETR-MLA [6] ViT-Large 512× 512 368.6 48.6 50.3
MCIBI [33] ViT-Large 512× 512 >400 - 50.8

Segmenter [8] ViT-Large† 640× 640 671.8 51.8 53.6
StructToken [31] ViT-Large† 640× 640 >700 52.8 54.2

SegViT (Shrunk, ours) ViT-Large† 640× 640 373.5 53.9 55.1
SegViT (ours) ViT-Large† 640× 640 637.9 54.6 55.2

55.2% in terms of mIoU with the ViT-Large backbone. It is 1.0% better than the recent StructToken
[31] using the same backbone. Besides, our Shrunk version can also achieve a similar performance
55.1% with computational cost 373.5 GFLOPs which is much less than the ViT-Large backbone
alone (612.3 GFLOPs).

Results on COCO-Stuff-10K. Table 2 shows the result on the COCO-Stuff-10K dataset. Our
method achieves 50.3% which is higher than the previous state-to-the-art StrucToken by 1.2% with
less computational cost. Our Shrunk version achieves 49.4% with 224.8 GFLOPs, which is similar to
the computational cost of a dilated ResNet-101 backbone but with much higher performance.

Table 2: Experiment results on the COCO-Stuff-10K test. split. Following published methods, we
report the results with multi-scale inference (denoted by ‘ms’). The GFLOPs is measured at single
scale inference with a crop size of 512× 512.

Method Backbone GFLOPs mIoU (ms)

DANet [34] Dilated-ResNet-101 289.3 39.7
MaskFormer [15] ResNet-101-fpn 81.7 39.8

EMANet [35] Dilated-ResNet-101 247.4 39.9
SpyGR [36] ResNet-101-fpn >80 39.9
OCRNet [3] HRNetV2-W48 167.9 40.5

GINet [37] JPU-ResNet-101 >200 40.6
RecoNet [38] Dilated-ResNet-101 >200 41.5

ISNet [39] Dilated-ResNeSt-101 228.3 42.1
MCIBI [33] ViT-Large >380 44.9

StructToken [31] ViT-Large >400 49.1

SegViT (Shrunk, ours) ViT-Large 224.8 49.4
SegViT (ours) ViT-Large 383.9 50.3

Results on PASCAL-Context. Table 3 shows the results on the PASCAL-Context dataset. We
follow HRNet [40] to evaluate our method and report the results under 59 classes (without background)
and 60 classes (with background). SegViT reaches mIoU 65.3% and 59.3% respectively for those two
metrics that outperform the state-of-the-art methods using the ViT backbones with less computational
cost.
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Table 3: Expperiment results on the PASCAL-Context val. split. Following published methods,
we report the results with multi-scale inference (denoted by ‘ms’). mIoU59: mIoU averaged over 59
classes (without background). mIoU60: mIoU averaged over 60 classes (59 classes plus background).
Both metrics were used in the literature; and we report for the 60 classes. The GFLOPs is measured
at single scale inference with a crop size of 480× 480.

Method Backbone GFLOPs mIoU59 (ms) mIoU60 (ms)

RefineNet [41] ResNet-152 - - 47.3
UNet++ [42] ResNet-101 - 47.7 -
PSPNet [11] Dilated-ResNet-101 157.0 47.8 -

Ding et al. [43] ResNet-101 - 51.6 -
EncNet [44] Dilated-ResNet-101 192.1 52.6 -
HRNet [40] HRNetV2-W48 82.7 54.0 48.3

NRD [45] ResNet-101 42.9 54.1 49.0
GFFNet [46] Dilated-ResNet-101 - 54.3 -

EfficientFCN [47] ResNet-101 52.8 55.3 -
OCRNet [3] HRNetV2-W48 143.9 56.2 -

SETR-MLA [6] ViT-Large 318.5 - 55.8
Segmenter [8] ViT-Large 346.2 - 59.0

SegViT (Shrunk, ours) ViT-Large 186.9 63.7 57.4
SegViT (ours) ViT-Large 321.6 65.3 59.3

4.4 Ablation Study

In this section, we conduct the ablation study to show the effectiveness of our proposed methods.

Effect of the ATM module. Table 4 shows the effect of the ATM module. We set the SETR-naive
as the baseline, which uses two 1× 1 convolutions to get per-pixel classifications directly from the
last layer of the ViT-Base transformer output. We can see that by applying the ATM module and
supervise with a regular cross-entropy loss, ATM is capable of providing 0.5% of performance boost.
However, it is more beneficial to decouple the classification and mask prediction process and use the
mask and classification supervision separately (3.1% increase).

Ablation of using different layers as input for SegViT. Table 5 shows the performance boost
that multiple layers input can provide. We can see that the performance boost of feature maps from
additional lower layers is obvious (+1.3%). We then involved more layers of features and see further
performance gains. We empirically choose to use three layers for its best performance.

Table 4: Comparison between our proposed ATM
module with other methods. ‘CE loss’ indicates
the cross-entropy loss that is commonly used in se-
mantic segmentation. The experiments are carried
out on the ViT-Base backbone using ADE20K
dataset.

Decoder Loss mIoU (ss)

SETR CE loss 46.5
ATM CE loss 47.0 (+0.5)
ATM Lmask loss 49.6 (+3.1)

Table 5: Ablation results of using differ-
ent layer inputs to the SegViT structure on
ADE20K dataset using ViT-Base as the back-
bone. Involving multi-layer features can bring
obvious performance gain.

Used layers mIoU (ss)

Single [12] 49.6
Cascade [6, 12] 50.9 (+1.3)
Cascade [6, 8, 12] 51.3 (+1.7)
Cascade [3, 6, 9, 12] 51.2 (+1.6)

Ablation for the ATM Decoder. We conduct experiments to show the effectiveness of the proposed
ATM decoder

SegViT on hierarchical backbones. Shown in Table 6, the SegViT structure is also able to
apply to hierarchical backbones. We choose the most competitive methods Maskformer [15] and
Mask2former [48] for comparison. Results indicate that even though our method is not designed for
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Table 6: The experiments use the Swin-Tiny [18]
backbone and are carried out on the ADE20K
dataset. The GFLOPs are measured at single scale
inference with a crop size of 512 × 512. QD:
query-based down-saumping. QU: query-based
upsampling.

Method mIoU (ss) GFLOPs

Maskformer [15] 46.7 57.3
Mask2former [48] 47.7 73.7

SegViT (Ours) 47.1 48.0

Table 7: Ablation of the QD module in terms of
the targets and methods to down-sample. The
experiments are carried out on the ViT-Large
backbone of ADE20K dataset.

Applied to Methods mIoU (ss)

Q Conv 44.5
Q, K, V Nearest 52.6
Q Nearest 53.9

hierarchical backbones, we can still achieve competitive performance while being efficient in terms
of computational cost.

Ablation for the QD module. The motivation to use QD is to make use of the pre-train weights
of the backbone. As in Table 7, if we use a stride 2 convolution with learnable parameters to down-
sample the query, it will destroy the pre-train weights and dramatically decrease the performance. If
the down-sampling is applied to both Q and (K, V), there will be an inevitable loss in information
during the down-sampling process which is reflected in the weaker performance. We found that
applying 2× 2 nearest down-sampling on query only for the QD module is the better option.

Ablation of the components in Shrunk structure. Shown in Table 8, we studied the effect of
each component (QD and QU) in the Shrunk structure. The results presented matches the structures
illustrated in Fig. 3. When QD is applied, the performance decreases by 2.7% from the ‘Single’
ATM head. However, by applying QU, the performance is recovered. QD learns a non-linear down-
sampling by the attention mechanism between key and query. One query will attend to several keys.
QU is used to preserve the resolution and at the same time provide low-level feature information. We
can see that by using QD and QU jointly, the performance can be retained and the computational
cost is reduced. ATM module can also be used as the decoder to form our Shrunk structure to further
boost performance.

Table 8: Ablation results of Shrunk version on the ADE20K dataset. The GFLOPs are measured at
single scale inference with a crop size of 512× 512 on ViT-Base backbone.

Structure QD QU Head mIoU (ss) GFLOPs

Single SETR 46.5 107.3
Single ATM 49.6 (+3.1) 115.8
Naive Shrunk ✓ ATM 46.9 (+0.4) 74.1
Shrunk ✓ ✓ ATM 50.0 (+3.5) 97.1

5 Conclusion

We proposed an effective structure using plain ViT transformer backbones termed SegViT for the
semantic segmentation task. For the first time, we utilize spatial information in attention maps for
semantic segmentation. To implement this idea, we proposed an Attention-to-mask (ATM) module
that can derive mask predictions during the attention calculation process. We show on a number
of semantic segmentation benchmarks that our method is efficient and achieves state-of-the-art
performance. We also proposed a Shrunk structure which is applied to the backbone and capable of
reducing 40% of the computational cost while still maintaining competitive performance. We believe
both structures can be strong paradigms, especially for semantic segmentation using ViT backbones.
Last but not the least, our method still has some limitations. One of the limitations is that the large
amount of GPU memory consumed by the global attention mechanism might not be supported by
some devices, which might restrict the applicability of our structures.
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