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Abstract

Theorem proving in natural mathematical language Ð the mixture of symbolic and
natural language used by humans Ð plays a central role in mathematical advances
and education, and tests aspects of reasoning that are core to intelligence. Yet
it has remained underexplored with modern generative models. We study large-
scale language models on two new generation tasks: suggesting the next step in a
mathematical proof, and full proof generation. We developNATURAL PROVER, a
language model that generates proofs by conditioning on background references
(e.g. theorems and deÞnitions that are either retrieved or human-provided), and
optionally enforces their presence with constrained decoding. On theorems from
the NATURAL PROOFSbenchmark,NATURAL PROVER improves the quality of
next-step suggestions and generated proofs over Þne-tuned GPT-3, according to
human evaluations from university-level mathematics students.NATURAL PROVER
is capable of proving some theorems that require short (2-6 step) proofs, and
providing next-step suggestions that are rated as correct and useful over 40% of
the time, which is to our knowledge the Þrst demonstration of these capabilities
using neural language models.1

Figure 1:NATURAL PROVER proves Even Integer Plus 5 is Odd. At training time,NATURAL PROVER
obtains background knowledge about references (e.g. theorems or deÞnitions) viareference recon-
struction: learning to map a referenceÕs title to its content. At test time,NATURAL PROVER grounds
its generations through in-context reference constraints that are retrieved or human-provided, and
optionally enforced withstepwise constrained decoding. This theoremÕs human-written proof in
ProofWiki contains an error and differs substantially from NATURAL PROVERÕs correct proof.

1Code and data available athttps://github.com/wellecks/naturalprover .

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



1 Introduction

Constructing a rational argument that justiÞes a claim is a key aspect of explaining, verifying, and
communicating ideas in situations ranging from everyday interactions, to legal and political discourse,
to science and mathematics [10, 42, 24]. Within the latter context, amathematical proofÐ a sequence
of logical arguments expressed in a mixture of symbolic and natural language Ð assumes this role by
providing justiÞcation and insight into why a claim is true [12]. Proofs operate on a relatively explicit
and objective set of ground knowledge, isolating a subset of reasoning that is desirable for models
that form the foundation of machine learning systems [3]. Moreover, we envision assistive systems
that provide suggested proofs or next-steps, analogous to language-model-based code suggestions
(e.g. GitHub CoPilot [6]) or formal proof assistants (e.g. GPT-f [20]), which could make learning or
using mathematics more productive and accessible.

To this end, we study the capabilities of large-scale language models (e.g. GPT-3 [5]) on two new
theorem proving tasks in natural mathematical language:next-step suggestion, in which a model
suggests the next step of a proof, andfull-proof generation, in which a model fully proves a claim. As
proofs are grounded in knowledge from past results (e.g. theorems, deÞnitions), analogous to facts
deployed in a conversation [13], prior rulings used in a legal opinion [16], or articles used to justify
an answer [30], we develop a methodology for obtaining and using background knowledge to prove
theorems with a generic language model.

We developNATURAL PROVER, a language model that generates proofs by conditioning on back-
ground references (e.g. theorems and deÞnitions that are either retrieved or human-provided), and
optionally enforces their presence with a constrained decoding algorithm that leverages the multi-step
structure of proofs. On a collection of theorems from theNATURAL PROOFSbenchmark [45], NAT-
URALPROVER improves the quality of next-step suggestions and generated proofs over Þne-tuned
GPT-3, according to human evaluations from university-level mathematics students.NATURAL -
PROVER is capable of proving some theorems that require short (2-6 step) proofs, and providing
next-step suggestions that are rated as correct and useful more than 40% of the time, which is to our
knowledge the Þrst demonstration of these capabilities using neural language models.

Along with these successes, we study deÞciencies in our current models. We Þnd that models
can struggle with logical coherence on longer proofs, with providing valid justiÞcations, and with
performing multi-step symbolic derivations. Taken together, our tasks, methodology, and evaluation
show the feasibility of language models as interactive aids in mathematics, along with open challenges.

2 NATURAL PROOFS-GEN Dataset and Tasks

We create aNATURAL PROOFS-GEN dataset adapted fromNATURAL PROOFS [45], and use the
dataset for two tasks: suggesting the next step of a proof, and fully proving a theorem.

NATURAL PROOFS-GEN. NATURAL PROOFS-GEN adapts data fromNATURAL PROOFS, which
contains theorem statements, proofs, deÞnitions, and additional pages (e.g. axioms, corollaries)
sourced from ProofWiki, an online compendium of community-contributed mathematical proofs. In
NATURAL PROOFS-GEN, each example(x, y ) ! D pairs a theoremx with a gold proofy , both of
which are a mixture of text and LATEX. [45] split the examples and reference sets into training, dev,
and test splits to ensure that no theorem in the dev or test splits was mentioned in the training split.
We adopt these splits of roughly 12.5k training, 1k validation, and 1k test examples, and sampled
core evaluation setswith 100 dev and 100 test theorems that are used for human evaluation. The
proofs contain additional structure, discussed next.

Multi-step proof structure. Each proof has amulti-stepstructure, meaning that a proofy =
(y1, . . . , y|y | ) is a variable-length token sequence that is segmented intoproof steps, where each step
yt is itself a variable-length sequence of tokens (either text or Latex). The segmentation is largely
determined by ProofWikiÕs formatting and community standards for structuring proofs, and we
additionally merge steps to ensure that each step contains non-trivial semantic content. For example,
Figure 1 shows a 4-step (generated) proof with each step highlighted in green.

References.Each proof mentions a variable-number ofreferences{ r 1, . . . , r R y } from a setR of
roughly 33k theorems and deÞnitions, analogous to how Wikipedia articles reference other pages.
For example, Figure 1 shows a proof with reference mentions in blue. Each mention identiÞes a
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reference by its title and provides a natural language surface form. For instance, in Figure 1, the
Þrst proof step mentions the deÞnition of even integer aseven, which is formatted in the proof as
[[Definition:Even_Integer|even]] and tokenized along with the rest of the proof.

Tasks. We consider two tasks that are motivated by an assistive system that provides suggested
proofs or next-steps to a user. Thefull proof generation task is to generate a proofy given a theorem
x. Thenext-step suggestiontask is to generate a set of next steps{ yk

t } K
k=1 given theoremx and

proof historyy<t from a gold proof. In each case, we consider an additionalprovided reference
setting where the model is also given the set of references{ r !

1, . . . , r !
R y

} from a gold proof of the
theorem. The next-step task simulates a human correctly proving the theorem up to a point, then
querying a system for suggested next-steps when stuck, while the provided reference setting simulates
a human specifying a plan for a system that writes a proof.

3 NATURAL PROVER: Grounded Proof Generation via Language Modeling

We describeNATURAL PROVER, a language model which generates grounded proofs by conditioning
on references and optionally enforcing their presence with constrained decoding.

Setup. Our objective is to generate correct proofs,öy = arg maxy correct(x , y ). Unfortunately,
evaluating proof correctness is costly, and is only done once at test time. A naive approach is to
approximate the objective,öy " arg maxy logp! (y |x), by Þne-tuning a language modelp! on (x, y )
examples and using a decoding algorithm (e.g. greedy decoding). We instead investigate conditioning
on background knowledge in the form of reference documents,p! (y |x , R), which is beneÞcial
in related generation settings (e.g. [38]), and offers control over the generated proof. To do so,
NATURAL PROVER uses in-context references and a reference reconstruction objective.

In-context references.Language models have a limited context window that prevents conditioning
on full documents. Instead,NATURAL PROVER conditions on a set of reference titles,p! (y |x , Rtitle).
Concretely, we Þne-tune on (theorem, reference titles, proof) sequences of the form,

<theorem> <title> {theorem-title} </title> <content> {theorem-content} </content> </theorem>

<ref> {ref-title-1} </ref> ... <ref> {ref-title-R} </ref> <proof> {proof} </proof> (1)
with new-lines and{} tokens omitted, relevant strings inserted, and loss only on tokens after<proof> .

Reference reconstruction.Reference titles do not capture all of the information contained in the
reference documents. We learn a mapping between each reference title and its underlying document
with a reference reconstruction objective,p! (r |r title) for referencesr in the training reference set.
Concretely, we Þne-tune on additional (title, content) pairs of the form,

<{type}> <title> {title} </title> <content> {content} </content> </{type}> , (2)
where the{type} is theorem/deÞnition/other, and the loss is only on tokens after<content> . Intuitively,
this lets the model associate each reference title with the referenceÕs underlying content.

The joint objective. For training, we minimize the joint loss,

L (! ) =
1

|Dtrain| + |R train|

! "

(x ,y ) "D train

# logp! (y |x , Rtitle) +
"

r "R train

# logp! (r |r title)
#
. (3)

Evaluation-time references. We consider two settings for evaluation-time references: (i)retrieved
references, from a retrieval modelf (x) $ { r 1, . . . , r k } , and (ii)human-providedreferences from
the ground-truth proof. The retrieval setting simulates a fully automated proof assistant, while the
second simulates a human specifying a plan for an assistant that writes a proof, and acts as an upper
bound for a retrieval system optimized to predict references in a ground-truth proof.

3.1 Stepwise constrained decoding

In the provided-reference setting, the conditioned references are known to be relevant to a correct
proof. We hypothesize that explicitly encouraging generated proofs to contain the references will
improve correctness, by placing lexical constraints on the reference-titles at decoding time,

öy " arg max
y

logp! (y |x , Rtitle), subject to
"

r title" R title

I [r title ! y ] = |Rtitle|, (4)
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whereI [á] is an indicator function. To approximate this objective, we generate step-by-step by
sampling multiple proof-step candidates, retaining those with high value (reference coverage and
log-probability) in a beam, and continuing to the next step, which we call stepwise beam search.

Value function. The search supports any function of the proof-so-far,v(y# t ) $ R. We use a value
function that is a weighted combination of constraint satisfaction and log-probability,

v" (y# t ) = "v constraint(y# t ) + (1 # " )vLM (y# t ), (5)

wherevconstraint(y# t ) is the number of unique in-context reference-titles iny# t , andvLM (y# t ) is
logp! (y# t ). We normalize each term by dividing by the maximum absolute value among candidates.

Stepwise beam search.The procedure generates a proofy = ( y1, . . . , yT ) by iteratively sampling
and pruning next-proof-step candidatesyt . Each iteration expands a size-K beam of proofs-so-far,
St $ 1 = { yk

<t } K
k=1 , by generatingN next-step candidates,

S%
t = %y<t " St ! 1

$
(y<t &yn

t ) | yn
t ' q(á|y<t , x , Rtitle)

%N
n =1 , (6)

whereq is a decoding algorithm (e.g. temperature sampling) and& is concatenation. The next
iterationÕs beam is formed by selecting the top scoring candidates,St = arg top -Ky" t " S#

t
v" (y# t ).

When a proof in the beam terminates, it is not expanded further. The search ends when the beam
consists ofK terminated proofs. The highest value proof is returned as the Þnal output.

Stepwise++.We add two mechanisms for promoting exploration at each step. First, we expand each
preÞx in the beam (Eqn. 6) by sampling with multiple temperatures,{ yn

t ' q# (á|y<t , x , Rtitle) | # !
{ #i } m

i =1 } , whereq# is sampling with temperature#. This relaxes the commitment to a single
temperature for all proof steps, balancing exploration (higher#) with exploitation (lower#).

Second, rather than selecting the top-K candidates, we select clusters based on different value weights:
St = %" "{ " j } !

j =1
topK #(S"

t ), whereS"
t is the set of candidates scored withv" , andK %= K/$ . This

interpolates between selecting steps based on likelihood (low" ) and constraint satisfaction (high" ).

Full proof sampling and greedy decoding.An alternative is to sample full proofs and select the best
one according to the value function. This can be viewed as expansion (Eqn. 6) done at the full proof,
rather than the step level. Moreover, greedy decoding corresponds to expanding only 1 candidate
with temperature$ 0. We formalize this in ¤D as a segment-level search that contains stepwise++,
full proof sampling, and greedy decoding as special cases.

4 Proof Evaluation

A proofÕs correctness is contingent on a variety of factors, including reasoning with past results,
performing symbolic derivations, and altogether providing sufÞcient evidence that the claim is true.
We design a human-evaluation schema that isolates these aspects at the proof-step level, along with a
full-proof summary. Table 1 summarizes the schema, which we overview below.

References.First, proofs involve deploying statements from references, such as applying a deÞnition
or adapting it to Þt the context. Deployments should be consistent with the reference, e.g. deploying
the deÞnition of even integer as Ô...by deÞnition,( k ! Z : x = 2k...Õ, rather than Ô...( k ! Z : x =
2k + 1Õ, and are a common source of errors in student proofs [15].

Second, proofs use references as justiÞcation for steps of reasoning; for instance, Real Addition is
Commutative provides justiÞcation for the statementx + y = y + x wherex, y ! R, but not for
xy = yx. This aspect is analogous to using an article to justify a claim (e.g. [30]). Finally, proofs
should not hallucinate references, or Ôbeg the questionÕ by self-referencing the current theorem.

Equations. Proofs contain a variety of multi-step derivations, ranging from simple arithmetic to
more sophisticated derivations (e.g. see Table 17). A derivation should start with a valid equation
given the surrounding context (e.g.x + x = 2x in Table 1 versusx + x = 3x). Each subsequent step
should be a valid derivation from the previous step, e.g. stating= (2 k + 6) # 1 aftery = 2k + 5 .

Other reasoning , language, & symbolic errors. A proof should provide sufÞcient evidence
that a claim is true to a human reader; it should not skip steps. Proof steps should make progress
towards proving the goal; in particular, they should not repeat known conditions in the theorem or
conclusions made in a prior step. Finally, our schema leaves room for any other reasoning errors, as
well as symbol errors (e.g. undeÞned symbols) and language errors (e.g. incomplete statements).
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Error Type Example

Reasoning: Reference
Invalid Deployment Sincex is aneven integer, ! k " Z : x = 2 k + 1 .
Invalid JustiÞcation E(X 2) =

! n
k =1 k2Pr(X = k) Power Series for Exponential Function

HallucinatedRef. From Powerof NumberareIrrational , 3
#

2 is irrational.

Self Loop (Proving PythagorasÕs Theorem:)FromPythagorasÕs Theorem, c2 = a2 + b2.

Reasoning: Equation
Invalid Equation $x " R, x + x = 3 x.
Invalid Derivation (Sincex is an even integer,x + 1 = 2 r + 1 ) = 2( r + 1)

Reasoning: Other
SkipsSteps (x " Z is not a multiple of 3.) Therefore,x3 % 1 or 8(mod9)
Repetition (Let & ABC be a right triangle.) Then& ABC is a right triangle.
Invalid (Other) (x is an even integer.) So,x + 1 is an even integer.

Language Let c =
#

a2\addb2 be the ( incompletestatement; unknownsymbol \ add)

Symbolic (Let x " R.) Let y = x' x! 1. ( undeÞnedoperator ' for real numbers)

Table 1: Overview of human evaluation error schema. See Table 24 for full schema.Reference.
Hallucinatedreference. The necessary context (e.g. known conditions, prior steps).

Usefulness and correctness. To judge the potential utility of language models as assistive systems
in natural mathematics, we measure whether generated next-steps and full proofs are potentially
useful hints for proving the theorem on oneÕs own. Additionally, we measure a summary judgment of
correctness. Note that an incorrect statement can still be helpful; for instance, it could give a hint for
the type of reference to use, derivation to perform, argument to make, etc.

Human evaluation protocol. We measure these aspects through human annotation at astep-wiseand
anoverall level. For a step-wise annotation, an annotator is presented with the theorem, proof-so-far,
and a generated next-step. The annotator labels the{ 0, 1} correctness, usefulness, and presence of
Þne-grained errors outlined above. After labeling each step of a proof, the annotator rates the full
proofÕs overall correctness and usefulness on a 0-5 scale. A rating of 4 or 5 is needed to be considered
as correct, and a rating of 3 or above is needed to be considered as useful.

Automatic metrics: lexical content. As automatic proxies for quality, we compare each generated
proof against its ground-truth counterpart using the sentence-leveln-gram matching metricGLEU
[29], and following work in knowledge-grounded dialogue [38] we use F1 overlap between generated
and ground-truth tokens. Prior to computing the metrics, we normalize the generated and ground-
truth proofs by only keeping the surface form of references, removing formatting characters with a
MediaWiki parser, and collapsing any consecutive whitespace into a single space.

Automatic metrics: knowledge grounding. We deÞne knowledge grounding as meaning that a
generated proof contains the same references as those found in the ground-truth proof. To measure
this, we use precision, recall, and F1-score between the reference sets contained in the generated and
ground-truth proofs; i.e.m({ ör 1, . . . , ör öR } , { r !

1, . . . , r !
R $

} ), wherem(á) is precision, recall, or F1. We
also use Knowledge Token-F1 (kF1) ([38]), the overlap of the generated proofÕs tokens with tokens
contained in the references mentioned in the ground-truth proof.

5 Experiments

We use the training and dev splits ofNATURAL PROOFS-GEN during Þne-tuning, and thecore
evaluation setsconsisting of 100 theorems from the validation set and 100 from the test set for
evaluation (see ¤2). These theorems were selected by the authors such that by looking at the theorem
title each author could recall its content and sketch a proof. While this may shift the evaluation
towards an easier slice of the dataset, it was necessary to make human evaluation at a meaningful
scale feasible. We also use the core sets for explorations and ablations.

We Þnetune three GPT-3 [5] (Curie) models, using the OpenAI API (see Appendix E for details):
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Reasoning Errs(( ) Lexical Errs(( ) Per-Step() ) Full Proof () )
Ref. Eqn. Other Lang. Sym. Useful Correct Useful Correct

GPT-3 30.92 32.54 40.15 5.61 5.24 25.69 28.18 20% 13%
NATURAL PROVERRETRIEVE 23.52 37.55 23.66 4.54 6.19 41.54 33.56 32% 24%

NATURAL PROVER 25.84 35.93 25.23 8.41 5.35 39.60 26.30 35% 24%
NATURAL PROVER++ 23.61 28.54 18.45 5.58 3.65 46.57 35.41 45% 32%

Next-step(NATURAL PROVER) 19.70 26.32 19.10 8.57 5.86 51.43 42.86 Ð Ð

Table 2: Human evaluation results on the core test set for full proof generation and next-step
suggestion (bottom row). All models are Þne-tuned onNATURAL PROOFS-GEN. Knowledge Ð either
retrieved or human provided Ð and constrained decoding improve proof generation, with 46% of
proof steps rated as useful and 35% correct according to university-level mathematics students.

1. Baseline GPT-3.We Þnetune a baseline GPT-3 model,p! (y |x), on theorem-proof examples
{ (x, y )} from the training split. At test time, we condition the model on a test theorem.

2. NATURAL PROVERRETRIEVE . We Þnetune GPT-3 with retrieved references,p! (y |x , ör 1, . . . , ör 20).
We use a pretrained joint retrieval modelf (x) $ (r 1, . . . , r |R| ) from [45], which was trained to
retrieve an input theoremÕs ground truth references. At test time, the model receives a theorem
and the top-20 reference titles that are retrieved given the theorem.

3. NATURAL PROVER. We Þnetune GPT-3 with human-provided references,p! (y |x , r !
1, . . . , r !

R y
),

where{ r !
1, . . . , r !

R y
} is the set of reference-titles in the ground-truth proof. We use reference-title

conditioned examples (Eqn. 1) and reference-reconstruction (Eqn. 2) on the training split/reference
set. At test time, the model receives a theorem and reference titles from its ground-truth proof.

Fornext-step suggestionwe use the human-provided knowledge model (NATURAL PROVER).

Decoding. For full proof generation, we use stepwise++ decoding with the provided knowledge
model, which we refer to asNATURAL PROVER++ , and otherwise use greedy decoding. We do not
use stepwise constrained decoding with retrieved references since these references introduce noisy
constraints, nor for next-step prediction since the algorithm is designed for multi-step proofs. See ¤E
for additional experimental details.

Human evaluation setup.To evaluate the proofs generated byNATURAL PROVER, we recruited
15 students from the Department of Mathematics and Applied Mathematics at the University of
Washington, including undergraduate, masters, and Ph.D. students. The annotators were trained on
how to evaluate proof correctness and compensated according to IRB requirements; see ¤F.2. For
each task, we Þrst reveal the theorem and its gold proof to the annotator. If they cannot understand
a theorem or its gold proof, they may skip evaluating it. Otherwise, they may proceed to see the
model-generated proof, one step at a time, and annotate each step under the step-wise evaluation
schema (outlined in ¤4). After all the steps are shown and evaluated, for the full-proof generation
task, the annotator is asked to annotate the entire proof under the overall evaluation schema.

5.1 Main Results

Our best method is capable of generating correct and useful proofs.According to human
evaluation results (Table 2), our best method isNATURAL PROVER with human-provided references
and stepwise++ inference. 32% of the proofs generated by this method are rated ascorrect and 45%
are rated asuseful as an aid for human proof writers. On the per-step level, 35% of the proof steps
are correct and 47% areuseful . Taking a more granular view, our best method makes signiÞcantly
less reference, equation , and otherreasoning errors than other baselines. It makes very few
languageand symbolic errors, meaning it produces mostly complete, well-formatted mathematical
statements, and deÞnes and uses symbols accordingly. It mostly avoids hallucinating references or
creating circular proofs. On the other hand, despite improving over the other methods, the model
often struggles with correctly deploying and using references (23.6% reference error rate), as well as
symbolic computations (28.5% equation error rate), especially multi-step derivations (21.9% invalid).

What do the modelÕs correct proofs look like?We inspected the proofs labeled as correct and
found three main categories: (1)reference-assemblyproofs whose correctness is heavily determined
by reference statements (e.g. Table 18, Table 20); (2)template-adaptationproofs in which the model
adapts the structure and content of a training theoremÕs proof to prove the unseen evaluation theorem
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Theorem Singleton Set is not Dense-in-itself
Let T = ( S, # ) be a topological space.
Let x " S.
Then the singleton set{ x } is not dense-in-itself.

GPT-3 Let x " S. !
From ClopenPointsin TopologicalSpacewe have that

{ x } is openin T .

"

From Pointis Openiff it is notDense-in-itself , it follows

that{ x } is not dense-in-itself.
"

NATURAL PROVER++ FromSingleton Point is Isolated, { x } has an isolated point. !
Hence the result by deÞnition ofdense-in-itself. !

Singleton Point is Isolated
Let T = ( S, # ) be a topological space.
Let x " S.
Thenx is an isolated pointof

the singleton set{ x } ,
but not necessarily anisolated pointof T .

Dense-in-itself
Let T = S, # be a topological space.
Let H & S.
ThenH is dense-in-itselfiff it contains
no isolated points.

Table 3: GPT-3hallucinatesreferences, while the knowledge-groundedNATURAL PROVER++ with
constrained decodingcorrectly uses references, resulting in a correct and useful proof.

(e.g. Table 21, Table 22); (3)complexproofs that are not fully determined by reference statements and
differ signiÞcantly from training proofs (e.g. Figure 1, Table 3). In terms of techniques, our method
demonstrates some ability to produce direct proofs (Table 19), proofs by cases (Table 22), proofs by
induction (Table 23), utilize references (Table 20) and do symbolic computations (Table 21).

Vanilla Þne-tuned GPT-3 struggles with proof generation.The vanilla Þne-tuned GPT-3 model
yielded feweruseful and correct proofs, with morereference-basedand otherreasoning errors
than all three knowledge-grounded settings. The model showed severe reference hallucination (18%)
and repetition (23%). It also makes signiÞcantly more reasoning errors related to reference usage.
Language and symbolic error rates roughly stay the same. Overall, naively Þne-tuning GPT-3 on
theorem-proof examples alone is suboptimal for proof generation.

Human-provided knowledge improves proof generation.Grounding the generations with human-
provided references signiÞcantly raisescorrectness and usefulness of the proofs in both full-
proof and per-step evaluation. It most substantially reducesreferenceerrors , especially invalid
deployments and hallucinated references. For example, Table 3 shows the model grounding a proof
with information from the theorem Singleton Point is Isolated and the deÞnition of Dense-in-itself, in
contrast to the vanilla GPT-3 model which hallucinates references.

Retrieved knowledge also improves proof generation.Retrieved knowledge also turns out to be
very helpful, and even comparable to human-provided knowledge in some metrics. Although the
retrieval model is far from perfect, the proof generation model is capable of narrowing down the
retrieved reference titles provided in its context, assembling proofs that areuseful and correct more
often than the no-knowledge model. Qualitatively, we found examples where grounding in retrieved
references eliminates repetition, enables multi-step derivations justiÞed by references (Table 21),
and assembles references into a correct proof (Table 20). This paves a promising path towards fully
automated mathematical proof generation in natural mathematical language.

In-context Stepwise++ PPL (( ) Ref-F1 () )

" " 1.0639 26.33
" ! 1.0549 30.07

! " 1.0644 89.43
! ! 1.0549 94.25

Table 4: Stepwise++ decoding approximates
the constrained objective better than greedy
decoding, resulting in both lower perplexity
and better reference coverage, regardless of
whether knowledge is provided in-context.

Constrained decoding further improves proof gen-
eration. Table 4 conÞrms that stepwise++ decoding
approximates the constrained objective (Eqn. 4) bet-
ter than greedy search, yielding proofs with lower
perplexity and higher constraint satisfaction (Ref-F1).
This translates to generations that are correct and
useful more often according to the annotators. Intu-
itively, the constraints encourage the model to include
references that help prove the claim (e.g. Table 18).

Next-step suggestion. The next-step suggestion
task characterizes a modelÕs performance on mak-
ing a single proof step given a correct proof-so-far.
In Table 2 we use the provided-knowledge model with greedy decoding for next-step sugges-
tion, and Þnd that reasoning errors decrease and per-step usefulness and correctness improve
compared to the full proof setting, with 51% of the proof steps rated as useful and 43% cor-
rect. Although we used a single suggestion in our human evaluation study, in Table 5 we
simulate a user choosing from among multiple suggestions by sampling 10 next-steps from
our model and computing automatic metrics on the sample with the best sum of metrics. Us-
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Lexical Grounding

GLEU Token F1 kF1 Ref-P Ref-R Ref-F1 Halluc (( )

GPT-3 24.40 49.96 49.30 29.93 24.73 23.69 17.92
NATURAL PROVERRETRIEVE 26.58 53.02 55.88 38.17 28.48 27.10 2.25
NATURAL PROVER 35.27 66.00 90.07 93.05 86.05 87.08 1.60
NATURAL PROVER++ 34.49 65.61 96.39 94.66 95.00 93.92 1.71

Table 6: Automatic metrics on the core test set for full-proof generation, and correlation between
human metrics and automatic metrics on the core validation set.

ing 10 samples instead of greedily decoding a single sequence substantially improves each
metric, suggesting that utility might be increased further by presenting multiple suggestions.

Decoding GLEU Ref-F1

Greedy 47.87 65.50

Temp (t=.6) 60.60 84.44
Temp (t=.8) 61.89 86.74
Temp (t=1.0) 62.12 86.87

Table 5: Next-step suggestion:
Sampling 10 suggestions improves
over a single greedy suggestion.

How good are Automatic Metrics? We study how well the
automatic lexical and grounding metrics introduced in (¤4) can
reßect the real quality of proofs, as a guide for using them as
a proxy evaluation protocol forNATURAL PROOFS-GEN. We
compute the Pearson correlation coefÞcient between each pair
of human and automatic metrics, with data from the four exper-
iment settings for full-proof generation. Results are shown in
the lower part of Table 6, with error metrics negated, meaning
positive correlation is desired.

The lexical and grounding metrics positively correlate with full
proof correctness and usefulness () 0.8). At the step-level,
the metrics show (i) high correlation with step-levelcorrectnessand languageerrors; (ii) varied, but
positive, correlations with aggregate reasoning errors; (iii) negative correlation withsymbolic errors
(though symbolic errors are relatively low for all models). The results suggest that optimizing for
automatic metrics may be a viable strategy, albeit without guarantees on how Þner-grained reasoning
aspects vary across proofs.

5.2 Ablations and error analysis.

Recon. Gleu Ref-F1 Halluc.

" 33.03 82.85 3.32
! 35.93 84.15 2.68

Table 7: Effect of reference re-
construction inNATURAL PROVER
(greedy decoding, full validation set).

Reference reconstruction.We Þne-tune an additional GPT-3
model that is provided with in-context reference titles, but
without reference reconstruction. As seen in Table 7, refer-
ence reconstruction improves content and reference usage.

Constrained decoding.First, Table 9 compares the step-level
search in stepwise++ with searching at the full-proof level
through sampling multiple proofs and selecting the best with
theNATURAL PROVER value function (rerank (n)). Rerank-
ing 60 samples matches the cost of stepwise++ in terms of
number of decoded tokens. Full-proof reranking yields the best Gleu, though with lower reference-F1.
Second, Table 8 shows that the expansion and selection mechanisms together result in the best
reference matching, while holding Gleu at a similar level. Finally, Table 13 shows that both terms in
theNATURAL PROVER value function"v constraints+ (1 # " )vLM are needed: increasing the constraint
weight" increases reference-matching, with a tradeoff in Gleu at high values.

Language model comparison.Table 10 varies the language model used to parameterizeNATU-
RALPROVER . The content and reference usage metrics improve with larger models. Separately, we
Þnd that increasing inference-time compute closes the gap in reference-matching between GPT-2
and the larger GPT-3 model (Table 11): sampling 10 full-proofs from GPT-2 and selecting the best
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Expand Select GLEU Ref-F1

" " 40.62 (.84) 91.78 (.49)
! " 41.12 (.58) 92.61 (.63)
" ! 39.14 (.55) 93.11 (.34)
! ! 40.11 (1.55) 94.13(.45)

Table 8: Ablation of the stepwise++ expansion
and selection mechanisms. Mean (std) over 3
runs shown on the core dev set.

Decoding Gleu Ref-F1

Greedy 41.12 (Ð) 89.30 (Ð)
Rerank (10) 43.88(.29) 91.72 (.28)
Rerank (60) 42.23 (.80) 93.16 (.27)
Stepwise++ 40.11 (1.55)94.13(.45)

Table 9: Stepwise versus full-proof search. Mean
(std) over 3 runs on the core dev set.

using theNATURAL PROVER value function achieves the same reference-F1 as GPT-3 with a single
greedily-decoded proof. However, Gleu remains much higher with the larger GPT-3 model.

Challenge: Reasoning with references.Although reference reasoning errors were decreased through
knowledge-grounding and constrained decoding, NATURAL PROVER still commits a reference error
on 23.6% of test steps (27% dev), with 15% of steps containing invalid deployments and 10% invalid
justiÞcations. For next-step prediction, the reference error rate remains nontrivial (19.7% test, 13%
dev). , meaning that the model can struggle to correctly deploy references or use them as justiÞcation
even in the absence of compounding errors from previous steps. Table 15 shows example invalid
deployments and justiÞcations; the errors are at times subtle, and require reasoning about the theorem
statement, reference content, and proof context.

Challenge: Equations and derivations. NATURAL PROVER commits an equation-related er-
ror on 28.5% of test steps (22.8% dev), including invalid equations (9.4%) and derivations
(21.9%). Though an improvement over vanilla Þne-tuned GPT-3 (32.5%), the errors occur fre-
quently and remain high for next-step prediction (26%). Table 17 shows representative errors,
which range from simple ÔcommonsenseÕ mistakes (e.g.24 = 23) to making invalid steps
with false justiÞcation within more sophisticated multi-step proofs. Investigating the role of
pretraining, in-context techniques [31], and autoformalization [39] is interesting future work.

Figure 2: Per-step correctness and usefulness
as a function of step number, for full-proof
generation withNATURAL PROVER++ and
next-step prediction withNATURAL PROVER.

Challenge: Proof length. Although NATURAL -
PROVER demonstrates some ability to write long
proofs (e.g. Table 23), the 42% next-step correctness
suggests that compounding errors are likely as proof
length increases. Indeed, our best modelÕs full-proof
correctness is 48% on 1-4 step proofs (n = 102),
decreasing to 15.6% on proofs with 5 or more steps
(n = 64), with lower per-step usefulness and cor-
rectness at later steps (Figure 2). Our Þndings are
analogous to recent work on language modeling for
formal theorem proving [32], where current models
are typically limited to chaining 2 or 3 non-trivial
steps of mathematical reasoning.

5.3 Additional discussion

Finally, we provide higher-level comments on future work related to interactive systems, mathematical
assistants, and generating proofs in informal versus formal mathematics.

Interactive & improving systems. Currently, our tasks are at two ends of a spectrum: in next-step
generation, we always assume previous steps are from a human-written proof, while in full proof
generation they are always from the model. Our results with multiple next-step suggestions suggest
that users might Þndsomesuggestion among the multiple returned useful at a high rate, pointing to
a middle ground: a human-in-the-loopNATURAL PROVER, in which a human picks the next step
from among the returned suggestions, or writes one based on the suggestions. The selected or written
next-step could then be used as feedback to improve the system, enabling an iteratively improving
NATURAL PROVER. This notion of a continuously improving, teachable system is an emerging (e.g.
[9]) and interesting future direction.

Assistants for mathematics.Our tasks were motivated by an assistant that helps a user write a proof,
either from scratch or when stuck part of the way through. Our study here focuses oncapability:
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investigating whether neural language models are capable of performing the underlying mathematics
that would be expected from such an assistant. A further challenge is to also ensurereliability Ð a
user should have conÞdence that the model is not deceptive or incorrect, and is robust to changes
in domain, on nearby problems, and on alternative ways of expressing a problem. Even further, we
would likeßexibilityÐ human teachers can interact with a student ßexibly through dialogue, natural
language, and diagrams, rather than the strict input-output format deÞned by a dataset. Our work
provides an initial step towards this larger vision.

Informal and formalized mathematics. Our work investigates theorem proving entirely in natural
mathematical language (i.e. ÔinformalÕ mathematics), as it reßects an interface that a student typically
uses when working with mathematics. An alternative is proving theorems in a formalized system,
in which proof steps are expressed in a programming language (e.g. Lean [11]). Operating purely
in a formalized system allows for verifying correctness Ð unlike our setting which must be veriÞed
by a human Ð arguably at the cost of ßexibility and interpretability, as the mathematics is no longer
expressed in natural language and must adhere to constraints of the formal system. Investigating
combinations of the two Ð e.g. expressing a theorem in natural language, receiving a veriÞed formal
proof, then providing an interpretation in natural language Ð presents a wide range of interesting
directions for future work.

6 Related Work

Formalized mathematics with neural language models. A large portion of work on machine
learning for mathematics focuses on formalized mathematics. Language models have been used for
interactive theorem proving, including in GPT-f [33, 32], PACT [20], and in [41]. In these settings
proof steps are expressed in a programming language (e.g. Lean [11]) and there is access to a veriÞer,
which differs from our setting of theorem proving in natural mathematical language.

Informal mathematics with neural language models. Previous work on theorem proving in
natural mathematical language focuses on retrieving relevant premises (e.g. theorems, deÞnitions)
[17, 18, 45, 21], or informal-to-formal translation [43], which differ from our setting of generating
next-steps or full proofs. Outside of theorem proving, various works use sequence models for problem
solving, including benchmarking language models on arithmetic [37] or competition problems [22],
symbolic mathematics [25, 46], augmenting LMs with veriÞers [7] or in-context rationales [44]
for math word problems, or using language models for math-related program synthesis [2, 14]
and competitive programming [26]. These settings focus on generating executable programs or a
numerical answer, which differ from our theorem proving setting, where the goal is to generate sound
and convincing arguments on a range of topics in natural mathematical language.

Related areas in NLP. Systematic reasoning in natural language (outside of math) has been studied
with synthetic proofs [36, 40], single-step deductions [4], or entailment trees [8], which differ from
proving real-world mathematical theorems. Augmenting LMs with knowledge reduces hallucinations
in dialogue [38] which has an analogous step-wise structure, while [30] use references within long-
form answers; these and related NLP Þndings differ from improving the utility of mathematical
proofs. Lexically-constrained decoding algorithms include variants of (token-level) beam search
(e.g. [1, 23, 28, 27]) which assume access to per-token logits, and gradient-based decoding [34]; our
segment-level decoding only assumes a sampler that returns text and its log-probability, making it
compatible with recent language model API interfaces (e.g. the GPT-3 API).

7 Conclusion

We describedNATURAL PROVER, a knowledge-grounded language model that generates mathematical
proofs by conditioning on background theorems and deÞnitions, and optionally enforces their presence
with constrained decoding. Our system improves the quality of next-step suggestions and generated
proofs over Þne-tuned GPT-3, demonstrating an ability to correctly prove theorems and provide
useful suggestions to human proof writers.
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