
A Details on the Solver Strategy

In Figure 7, we provide some detailed pseudocode for the solver strategy that we implemented for
the purpose of the experiments in Section 4. This strategy is similar to the simple one introduced in
Figure 2 but it comes with the following extensions:

• Ability to abduct disjunctive invariants: Imagine a proof obligation fails and the abduct
function returns a1, . . . , an as possible missing assumptions. In some cases, none of those
can be proved invariant but the disjunction of a subset of them can. This is why the
suggest_missing function defined on line 28 is used to build an invariant candidate as a
disjunction of at most 3 (atomic) abduction candidates.

• Ability to strengthen abducted invariants: An abducted invariant candidate may have
to be strengthened before it can be proved invariant. For example, the abduction engine
may suggest x 6= 0 as a missing assumption but x 6= 0 may not be a valid invariant
whereas x > 0 (or x < 0) is. The call to strengthen on line 47 is used to optionally and
nondeterministically strengthen an invariant candidate. Our current strategy supports two
kinds of strengthening: replacing a formula of the form A 6= B by either A > B or A < B
or weakening an inequality of the form A ≤ B into A ≤ B + c? where c? is a nonnegative
constant whose exact value is to be determined later (see next point).

• Ability to instantiate constants lazily via abduction: Invariant candidates can feature
metavariables that denote unknown constants. The constrs variable defined in line 8
collects global constraints about these metavariables. If a missing assumption is suggested
that only features metavariables, then it is added as a constraint rather than as a new
invariant candidate (line 42). After an invariant is proved, the metavariables it contains
are instantiated using concrete values in a way to satisfy all global constraints (see call
to abduct_refinement on line 57). A metavariable that appears in the invariant as an
upper bound is instantiated with a value that is as low as possible, whereas a metavariable
that appears as a lower bound is instantiated with a value that is as high as possible (this
information is contained in the btype variable).

• Ability to conjecture invariant templates: In some cases, abduction alone is not enough
to discover a missing invariant. For example, if two disjunctive invariants I1 and I2 are
needed for proving the postcondition, one may have to conjecture the first one and then use
abduction to find the other. The strategy in Figure 7 allows conjecturing invariant templates
with metavariables to be instantiated via abduction (see previous point). The conjectures
function called on line 29 returns three kinds of conjecture candidates: i) conjectures of the
form t� c? where � ∈ {≥,=} and t =

∑
i aixi is a linear combination of variables that is

preserved by the loop body, ii) relaxations of the loop guard (e.g. x ≤ 10 + c? with c? > 0
if the loop guard is x ≤ 10) and iii) initial assumptions that only contain variables that are
not modified by the loop body.

The solver strategy also emits two types of events (see Section 2.5) at lines 38 and 36 respectively.
Conjecturing events are associated with a reward of −0.3 and abduction events are associated with a
reward of −0.2. Both kinds of events are counted at most four times (me = 4) and the minimum
total reward delivered in case of a success is rmin = 0.

Hints on how to use our proposed solver strategy to solve Code2Inv benchmark problems are available
in Appendix C.

B Details on the Teacher Strategy

The teacher strategy we use for loop invariant generation follows the structure introduced in Figure 3.
We provide additional details below:

• Sampling constraints: The full list of available constraints is available in Table 3. Values
are sampled mostly independently for each constraint types. In our implementation, we
hardcode a small number of correlations (e.g. we are more likely to sample a disjunctive
formula for inv_main if inv_lin is not used in order to keep things interesting). We also
reject a number of constraint combinations that are clearly uninteresting or unsatisfiable.

15

1 def solver(
2 init: Formula,
3 guard: Formula,
4 body: Program,
5 post: Formula) -> List[Formula]:
6
7 invs_proved: List[Formula] = []
8 constrs: List[Formula] = []
9 pending: List[Pending] = []
10
11 def prove_post():
12 pending[-1].status = TO_PROVE
13 to_prove = Implies(
14 constrs + invs_proved + [Not(guard)],
15 post)
16 match abduct(to_prove):
17 case Valid:
18 pending[-1].status = PROVED
19 case [*suggs]:
20 assum = suggest_missing(suggs)
21 closing = implies(assum, to_prove)
22 pending[-1].status = \
23 PROVED_COND if closing
24 else TO_PROVE_NEXT
25 prove_missing(assum, as_inv=True)
26 prove_post()
27
28 def suggest_missing(suggs: List[Formula]):
29 suggs += conjectures(guard, body)
30 num_disjs = choose([1, 2, 3])
31 disjs = []
32 for i in range(num_disjs):
33 d = choose(suggs)
34 disjs.append(d)
35 if is_conjecture(d):
36 event(CONJECTURING_EVENT)
37 else:
38 event(ABDUCTION_EVENT)
39 return Or(*disjs)
40
41 def prove_missing(f: Formula, as_inv: bool):
42 if meta_only(f):
43 constrs.append(f)
44 assert sat(constrs)
45 else:
46 assert as_inv
47 inv, fresh = strengthen(f)

48 for c, _ in fresh:
49 constrs.append(Ge(Metavar(c), 0))
50 pending.append(
51 Pending(INV, inv, TO_PROVE))
52 prove_init(inv)
53 prove_preserved(inv)
54 invs_proved.append(inv)
55 pending.pop()
56 for c, btype in fresh:
57 cval = abduct_refinement(
58 c, btype, constrs)
59 subst(invs_proved, c, cval)
60 subst(constrs, c, cval)
61
62 def prove_init(inv: Formula):
63 pending[-1].status = TO_PROVE
64 to_prove = Implies(
65 constrs + proved_invs + [init],
66 inv)
67 match abduct(to_prove):
68 case Valid: return
69 case [*suggs]:
70 assum = choose(suggs)
71 prove_missing(assum, False)
72
73 def prove_preserved(inv: Formula):
74 pending[-1].status = TO_PROVE
75 to_prove = Implies(
76 constrs +
77 proved_invs + [guard, inv],
78 loop_body.wlp(inv))
79 match abduct(to_prove):
80 case Valid: return
81 case [*suggs]:
82 suggs = suggest_missing(suggs)
83 closing = implies(assum, to_prove)
84 pending[-1].status = \
85 PROVED_COND if closing
86 else TO_PROVE_NEXT
87 perform(action)
88 prove_inv_inductive(inv)
89
90 pending.append(
91 Pending(POST, post, TO_PROVE))
92 prove_post()
93 pending.pop()
94 return invs_proved

Figure 7: Strategy for the solver agent. The code in gray is only useful for providing the network with
contextual information and can be disregarded on first reading. Every call to choose is implicitly
passed the program counter along with the value of all global parameters and all variables that are
defined in lines 2 to 9. In particular, the pending variable summarizes all information from the
program stack that is relevant to the neural network.

• Fixed constraints: In addition to penalizing the violation of sampled constraints, the teacher
implements fixed hard constraints that are always enforced. A list of all such constraints is
available in Table 4. Violating one of these constraints leads to an immediate failure along
with a reward of -1.

• Refining formulas and using abduction: Different parts of the problem template shown
in Figure 3 are nondeterministically refined in turn. To refine an atomic formula, a template
is first selected of the form x? � c? or x? � y? where x? and y? are variable placeholders, c?
is a constant placeholder and � ∈ {<,≤, >,≥,=, 6=}. Each variable placeholder is then
nondeterministically substituted by an existing or a fresh variable. Constant placeholders
are either instantiated with concrete constants (a set of 6 available numerical constants is
sampled at the start of the teacher strategy along with constraints) or parameters (special
variables that cannot be modified by the program). Constant placeholders can also be
left as-is and refined later using abduction (e.g. before invariant preservation is checked,
abduction is used to suggest values for the remaining constant placeholders). Abduction
is also used to suggest required parameter assumptions that are added to init (e.g. n > 0
where n is a variable not modified in the program).

16

• Refining programs: Subprograms are refined by selecting a sequence of assignment tem-
plates of the form: x? := c?, x? := y?, x? := x? + d?, x? := x? − d?, x? := x? + y? and
x? := c? − y? (d? is a placeholder for a strictly positive constant). A special skip template
can be selected to stop adding assignments. Variable and constant placeholders are handled
in the same way they are handled in formulas. Which templates are available is determined
by the assignment-templates constraint (see Figure 3).

• Extra refinement suggestions: Extra suggestions are added to the standard templates when
refining some formulas. When adding a disjunct to the main invariant, the loop guard itself is
added as a suggestion along with a relaxed version of it (using a placeholder constant). When
refining the last disjunct of the postcondition, abduction is used to suggest candidates that
are consequences of the current assumptions in the associated proof obligation. Abduction
is also used to suggest conjuncts for init.

• Detecting constraint violations early: Constraint violations are detected as early as pos-
sible to allow early feedback during search. For example, whether or not the invariant is
satisfiable is checked right after the invariant has been refined and before the loop body
is refined in turn. Most constraints must be checked again whenever a new parameter
assumption is added. For example, an invariant 0 ≤ x ∧ x < n may be initially judged
as satisfiable. However, abduction may later on suggest n < 0 as a parameter assumption,
making it unsatisfiable.

• Applying random transformations to generated problems: For increased diversity, a
sequence of random transformations is applied to any problem generated by the teacher
before it is returned. We provide a list of all such transformations in Table 5.

C Examples of Code2Inv Problems

We show examples of Code2Inv benchmark problems in Table 6, along with some hints on how they
can be solved using the strategy detailed in Appendix A.

D Examples of Generated Teacher Problems

We show examples of challenge problems generated by our trained teacher agent in Table 7.

E Looprl UI Screenshots

We show examples of using the Looprl user interface to inspect the solver and teacher strategies in
Figures 8 and 9 respectively.

F Implementing Abduction

Both the teacher and solver strategies we use as examples in this paper rely on an abduct function
that takes as an input a formula F and then either proves it valid or returns a (possibly empty) set of
assumptions A such that A → F can be proved to be valid.

Implementing such a function is hard in the general case and so an implementation of abduct
may leverage nondeterminism. However, because we are only dealing with arithmetic of limited
complexity in this work, we implemented a fully-specified abduction procedure for linear integer
arithmetic that relies on Fourier-Motzkin elimination [45].

When given a formula F , our abduction procedure first rewrites it in conjunctive normal form as
F =

∧n
i=1

∨
j Fij where Fij are atomic formulas of the form

∑
k akxk � c where � ∈ {≥,=} and

c, ak are integer constants.

F.1 Case where n = 1

If F can be expressed as a disjunction of atomic formulas, we can compute abduction suggestions
as follows: i) one considers the negation of F , obtaining a set of atomic assumptions and ii) one

17

Name Type Description

num-preserved-term-vars none|2|3 If an integer n, then inv_lin is refined with an invariant
of the form

∑n
i=1 aixi = c.

num-inv-main-disjuncts none|1|2 If an integer n, then inv_main is refined with a disjunc-
tion of n atomic formulas.

num-inv-aux-conjuncts none|1|2 If an integer n, then inv_aux is refined with a conjunc-
tion of n atomic formulas.

num-post-disjuncts 1|2 Number of desired atomic disjuncts for post.

has-conditional bool Whether body must include a conditional statement.

has-else-branch bool Whether the conditional in body has an else branch.

has-cond-guard bool Whether the conditional in body has a guard. If not, the
guard is refined with the nondeterministic expression *.

body-implies-main-inv bool If true, then inv_main always holds after executing
body regardless of whether or not it holds before.

loop-guard-useful-for-inv bool Whether assuming the loop guard is useful in proving
that inv_main is preserved.

loop-guard-useful-for-post bool Whether assuming the negation of the loop guard is
useful in proving the postcondition post.

use-params bool Whether or not to use variables that have a constant
value throughout the program.

eq-only-for-init bool Whether or not to use equalities only in init.

loop-guard-template template The template to be used to refine the loop guard (e.g. a
constant upper bound on a variable).

assignment-templates templates Allowed assignment templates for the body (e.g. con-
stant var increment, assigning a var to another one. . .)

allow-vcomp-in-inv-main bool Whether inv_main’s first disjunct can feature a compar-
ison between two variables modified by the program.

Table 3: Complete list of teacher constraints. Every constraint type is associated with a separate
violation event. The associated reward is −0.5 for all constraint types except the last four ones where
it is −0.2. A total reward of at least rmin = −0.5 is delivered in case of a success.

Name Description

correctness

The problem is correct, meaning that the invariant (i.e. the conjunction
of inv_lin, inv_main and inv_aux) respects the three properties
defining a valid invariant (i.e holds initially, preserved by the loop body
and implies the postcondition).

{inv_main,post,init}-not-
valid-unsat-or-redundant

Disjunctive or conjuctive formulas such as inv_main, post and init
must not be valid, unsatisfiable or redundant in the sense that they can
be simplified (e.g. x > 0 ∨ x = 0 is redundant because it simplifies to
c ≥ 0 and x > 1 ∧ x > 2 is redundant because it simplifies to x > 2).

inv-sat The invariant must be satisfiable.

loop-terminates
The loop guard must not be preserved by the loop body when assuming
the invariant, in which case the loop would never terminate once entered.
(Note this constraint only rules out a subset of nontermination cases.)

loop-entered The init formula does not imply the negation of the loop guard.

Table 4: Table of fixed teacher hard constraints. Violation of such a constraint leads to an immediate
failure and to a reward of -1.

18

(a) Showing the proof obligation associated with the abduction call along with the neural network policy prior.

(b) Showing event predictions along with MCTS statistics.

Figure 8: Visualizing the solver strategy with the Looprl UI. In the screenshots above, the UI is used
to examine a choice point in the solver strategy where the current invariant candidate x ≥ y cannot be
proved to be inductive and the user must choose between proving one of several abduction candidates
or making a conjecture (this roughly corresponds to the call to choose on line 33). Here, one can
see the network assigning a high prior probability to the optimal proof action, which is to try and
prove x > 0 as an invariant. The network also predicts a value of 0.46 for this state, which is close
to the truth of 0.4 (proving this problem requires three abduction events with cost 0.2 each). The
details of how the value is estimated can be consulted in screenshot 8b. Here, we can see that the
network predicts a 0.95 probability of success along with a probability of 0.94 for not requiring any
conjecture and a probability of 0.85 for needing two more abduction events.

19

Name Description

add-useless-loop-guard If the loop guard is irrelevant, assign a random formula in its place.

add-useless-init Add a random conjunct to init.

add-useless-post Add a random disjunct to post.

add-useless-cond Replace body by if(cond){body} where cond is a random formula.

rearrange-commutative Shuffle the order of disjunctions and conjunctions.

move-conditional Commute the conditional statement in body with other instructions.

shuffle-instrs Shuffle the order of consecutive assignments.

randomize-comparisons Randomize comparisons by changing variable order or converting strict
inequalities to nonstrict inequalities and vice versa.

move-param-assum Remove a parameter assumption and add its negation to post.

make-post-assums
Rewrite a disjunctive final assertion into a sequence of atomic assump-
tions with a final atomic assertion (e.g. rewrite “assert x>0||y>0”
into “assume x<=0; assert y>0”).

make-init-instrs Replace the init conjunctive assumption by a sequence of variable
assignments ad atomic assumptions.

weaken-post Weaken the final (atomic) postcondition (e.g. replace “assert x>0”
by “assert x!=0”).

Table 5: Complete list of the final problem transformations implemented by the teacher. Some
transformations may trigger or not based on a fixed probability. A transformation application is
cancelled if it leads to violating a hard constraint or increasing the number of soft constraint violations.

derives as many consequences as possible from those assumptions using Fourier-Motzkin elimination
(linearly combining inequalities so as to eliminate variables). If a contradiction is derived, then F is
valid. If no contradiction is dervied given some timeout, then the negation of any derived consequence
can be considered as an abduction candidate.

Example Suppose we want to compute abduction candidates for F = x ≥ 0 → x+ y ≥ 1. The
conjunctive normal form of F is (x < 0∨ x+y ≥ 1). Taking the negation yields (x ≥ 0∧ x+y < 1),
which we normalize into the set of assumptions {x ≥ 0,−x − y ≥ 0} (all variables are integers).
Then, we can take a Fourier-Motzkin step by adding these two assumptions and derive the following
consequence: −y ≥ 0. After this, no other reasoning step is applicable end we end up with the
following set of facts: {x ≥ 0,−x− y ≥ 0,−y ≥ 0}. We therefore suggest the following abduction
candidates: x < 0, x+ y > 0 and y > 0.

F.2 Case where n > 1

If the conjunctive normal form of F has two conjuncts or more, we apply the procedure above on
each conjunct separately. For example, suppose that F = G ∧ H , G admits a set of abduction
candidates {Ai}i and H admits a set of abduction candidates {Bi}i. One possibility would be to
return all {Ai ∧Bj}ij combinations as abduction candidates for F . However, doing so can quickly
result in a combinatorial explosion. Therefore, our implementation does something different and
returns the union of the {Ai}i and {Bi}i instead. Doing so, it cannot provide the guarantee that
any resulting abduction candidate A is sufficient in implying F . Rather, abduction candidates are
seen as suggestions to unblock one part of the proof (i.e. enable proving one conjunct of F) but not
necessarily the whole proof.

G Training Hyperparameters

We provide an exhaustive list of all hyperparameter values used in our experiments in Table 8.

20

x = 0;
while (x < 5) {
x = x + 1;
if (y > z) {
y = z;

}
}
assert y <= z;

Problem 3
Invariant: x < 5 ∨ y ≤ z.

This problem can be solved using our proposed strategy by directly
abducting the correct disjunctive invariant when attempting to prove
the postcondition.

assume x <= 10;
assume y >= 0;
while (*) {
x = x + 10;
y = y + 10;

}
assume x == 20;
assert y != 0;

Problem 7
Invariant: x− y ≤ 10.

The star (*) corresponds to a nondeterministic boolean value. In this
case, the loop body can be executed an arbitrary number of times.

This problem can be solved by conjecturing an invariant of the form
x− y ≤ c? and then using abduction to refine c?.

assume n >= 0;
i = 0;
x = 0;
y = 0;
while (i < n) {
i = i + 1;
if (*) {
x = x + 1;
y = y + 2;

} else {
x = x + 2;
y = y + 1;

}
}
assert 3*n == x + y;

Problem 93
Invariant: 3i = x+ y ∧ i ≤ n.

This problem can be solved by conjecturing an invariant of the form
3i − x − y = c?, refining c? through abduction and then abducting
i ≤ n as a missing invariant while trying to prove the postcondition.

s = 0;
i = 1;
while i <= n:
i = i + 1
s = s + 1

assume s != 0
assert s == n

Problem 110
Invariant: i− s = 1 ∧ (i ≤ n+ 1 ∨ s = 0).

This problem can be solved by first conjecturing an invariant of the
form i− s = c?, then using abduction to refine c? and finally abducting
the disjunctive invariant i ≤ n+ 1 ∨ s = 0 while trying to prove the
postcondition.

Table 6: Some examples of Code2Inv problems.

21

main-inv 1
body-structure no-cond
loop-guard-useful-for-post
available-consts -9 -6 4 8

assume y == x;
while (x < 1) {

invariant y == x;
y = y + 1;
x = x + 1;

}
assert y > 0;

In this example, the network has been tasked
to generate an example of a program with a
single atomic invariant and a loop guard that
is useful to establish the postcondition but not
the invariant itself.

main-inv 1
use-aux-inv 2
body-structure no-cond
allow-vcomp-in-prim-inv
no-var-const-assign
available-consts -8 -7 2 6

assume x < y;
assume x >= 5;
while (*) {

invariant x < y;
invariant y >= 6 && x >= -1;
x = x + 6;
y = y + x;

}
assert x < y;

In this example, the network has been tasked
to generate an example that involves an auxil-
liary event with two conjuncts. The auxilliary
event can be useful to prove the main invari-
ant but not the postcondition. Assignments of
the form x = y or x = c where x and y are
variables and c is a constant are not allowed.

preserved-term 2
disjunctive-post
body-structure no-cond
only-constr-incr
available-consts -55 -52 21 21

assume x == 21;
assume y == -52;
while (*) {

invariant -x - 3*y == 135;
y = y - 21;
x = x + 63;

}
assert y != 21 || x == -198;

In this example, the network has been tasked
to find an example of a problem involving a
linear invariant with two variables, no loop
guard and a disjunctive postcondition. Note
that an irrelevant loop guard may be added in
the final transformation stage of the teacher.

Table 7: Some examples of problems generated by the teacher. We show the associated invariants
for clarity but those should of course be hidden before problems are sent to the solver agent. These
invariants only provide one way to solve the associated problems and alternative invariants may exist.
We disable the final random transformations applied by the teacher for clarity and to avoid clutter
from useless formulas and instructions. Finally, some problem constraints are not listed for brevity
unless their value is different from the default with highest probability.

22

Figure 9: Visualizing the teacher strategy with the Looprl UI. This screenshot captures a choice point
where the network is tasked with adding an assignment to the true branch of the conditional within
the loop body. Several templates are proposed, which are going to be refined in turn. The upper left
pane (i.e. the Probe pane) features all contextual information that is sent to the network to help it
make a choice. Among this information, we can see a list of all constraints that the generated problem
should ideally satisfy. The Info pane gives us some insights into the network’s prediction about future
events and outcome. For example, the network estimates with 0.97 probability that a valid problem
will be generated (along with a 0.02 probability that a failure will be encountered due to the invariant
not being preserved by the loop body). The network also estimates a 31% risk that the generated
problem will violate the soft constraint according to which the loop guard should be relevant for
proving the invariant.

Parameter Value Description

params All hyperparameters.

* teacher Hyperparameters for the teacher agent.

* * agent
Hyperparameters common to all AlphaZero
agents.

* * * num-iters 20 Total number of training iterations.

* * * num-problems-per-iter 8000 Number of data generation episodes per itera-
tion.

* * * num-validation-problems 800
Number of validation-data generation episodes
per iteration.

* * * num-workers 600
Number of episodes simulated in parallel or
asynchronously during data generation.

* * * num-processes none
Number of distinct CPU processes spawned for
data generation (by default, this value is set to
the number of available physical CPU cores).

* * * search Proof search limits.

23

* * * * max-proof-length 60
Maximum number of allowed environment steps
before failing automatically.

* * * * max-probe-size 80
Maximum allowed size of state encodings. Big-
ger state encodings result in immediate failures.

* * * * max-action-size 12
Maximum allowed size of action encodings. Ac-
tions with bigger encodings are discarded.

* * * encoding State and action encoding hyperparameters.

* * * * d-model 128 Embedding size for tokens, which is also equal
to the neural network’s state dimension.

* * * * pos-enc-size 32
Maximal size of the tree positional encoding
added to each token embedding.

* * * * uid-emb-size 16 Maximum number of unique identifiers that can
be encoded.

* * * * const-emb-size 0
Maximum number of bits used to encode the bi-
nary value of numerical constants. No encoding
is done if a value of 0 is provided.

* * * * enable-numerical-edges true Add comparison edges between numerical con-
stants.

* * * * add-reverse-edges true Add reverse edges for all edge types.

* * * network Hyperparameters for the Dynamic Graph Trans-
former network.

* * * * num-heads 4 Number of transformer attention heads.

* * * * probe-encoder-layers 6 Number of transformer blocks used to encode
states.

* * * * action-encoder-layers 3 Number of transformer blocks used to encode
actions

* * * * combiner-layers 1
Number of transformer blocks used in the com-
biner network that combines state and action
encodings.

* * * * dropout-rate 0.05 Dropout rate.

* * * * num-head-layers 2
Number of layers in the feed-forward networks
used for the value and policy heads.

* * * * head-dim 256
Hidden dimension of layers in the feed-forward
networks used for the value and policy heads.

* * * mcts MCTS hyperparameters.

* * * * num-simulations 64
Number of MCTS simulations used for planning
every environment step.

* * * * num-considered-actions 8
The number of top-ranked actions that are con-
sidered in the sequential halving Gumbel explo-
ration process.

* * * * value-scale 0.1
The cscale hyperparameter (see original Gumbel
AlphaZero paper).

* * * * max-visit-init 50
The cvisit hyperparameter (see original Gumbel
AlphaZero paper).

* * * * fpu-red 0.1

Value estimates for unvisited children are de-
creased by this value so as to encourage deeper
search trees (see LC0 AlphaZero implementa-
tion).

* * * * reset-tree true Whether the MCTS tree is reset after an environ-
ment move is taken.

* * * * max-tree-size 256
Maximal size of the MCTS tree. This parameter
is relevant to avoid out-of-memory errors when
reset-tree if false.

24

* * * * dirichlet-alpha 10
Concentration parameter for the Dirichlet explo-
ration noise (see original AlphaZero paper).

* * * * dirichlet-eps 0.25

Magnitude of the Dirichlet exploration noise. No
Dirichlet exploration noise is normally used with
Gumbel AlphaZero but we add some anyway in
the teacher for increased diversity.

* * * training Network training hyperparameters.

* * * * max-epochs 6 The maximum number of training epochs.

* * * * improvement-required 1
Gradient updates are stopped if the validation
loss fails to decrease for more than this number
of epochs.

* * * * batch-size 400 Training batch size.

* * * * lr-base 0.0005
Maximal learning rate used in a cosine learning
rate schedule with warm-up.

* * * * warmup-epochs 0.2
Length of the warm-up part of the learning rate
schedule (in epochs).

* * * * weight-decay 0.01 Weight decay parameter.

* * * * outcome-loss-coeff 0.7
Coefficient for the loss term evaluating outcome
prediction accuracy (e.g. success or failure).

* * * * event-loss-coeff 3
Coefficient for the loss term evaluating event
prediction accuracy.

* * * * policy-loss-coeff 1
Coefficient for the loss term evaluating the diver-
gence from policy priors to their targets.

* * * training-window

1, 2, 2, 3,
3, 3, 4, 4,
4, 5, 5, 5,
6, 6, 6, 7

The number of previous iterations from which
samples are used to update the network at each
iteration. If the provided list is shorter than the
total number of iterations, the last number in this
list is duplicated as many times as necessary.

* solver Hyperparameters for the solver agent.

* * agent
Hyperparameters common to all AlphaZero
agents.

* * * num-iters 20 Total number of training iterations.

* * * num-problems-per-iter 20000 Number of data generation episodes per itera-
tion.

* * * num-validation-problems 5000
Number of validation-data generation episodes
per iteration.

* * * num-workers 600
Number of episodes simulated in parallel or
asynchronously during data generation.

* * * num-processes none
Number of distinct CPU processes spawned for
data generation (by default, this value is set to
the number of available physical CPU cores).

* * * search Proof search limits.

* * * * max-proof-length 12
Maximum number of allowed environment steps
before failing automatically.

* * * * max-probe-size 80
Maximum allowed size of state encodings. Big-
ger state encodings result in immediate failures.

* * * * max-action-size 12
Maximum allowed size of action encodings. Ac-
tions with bigger encodings are discarded.

* * * encoding State and action encoding hyperparameters.

* * * * d-model 128 Embedding size for tokens, which is also equal
to the neural network’s state dimension.

25

* * * * pos-enc-size 32
Maximal size of the tree positional encoding
added to each token embedding.

* * * * uid-emb-size 16 Maximum number of unique identifiers that can
be encoded.

* * * * const-emb-size 0
Maximum number of bits used to encode the bi-
nary value of numerical constants. No encoding
is done if a value of 0 is provided.

* * * * enable-numerical-edges true Add comparison edges between numerical con-
stants.

* * * * add-reverse-edges true Add reverse edges for all edge types.

* * * network Hyperparameters for the Dynamic Graph Trans-
former network.

* * * * num-heads 4 Number of transformer attention heads.

* * * * probe-encoder-layers 6 Number of transformer blocks used to encode
states.

* * * * action-encoder-layers 3 Number of transformer blocks used to encode
actions

* * * * combiner-layers 1
Number of transformer blocks used in the com-
biner network that combines state and action
encodings.

* * * * dropout-rate 0.1 Dropout rate.

* * * * num-head-layers 2
Number of layers in the feed-forward networks
used for the value and policy heads.

* * * * head-dim 256
Hidden dimension of layers in the feed-forward
networks used for the value and policy heads.

* * * mcts MCTS hyperparameters.

* * * * num-simulations 32
Number of MCTS simulations used for planning
every environment step.

* * * * num-considered-actions 8
The number of top-ranked actions that are con-
sidered in the sequential halving Gumbel explo-
ration process.

* * * * value-scale 0.1
The cscale hyperparameter (see original Gumbel
AlphaZero paper).

* * * * max-visit-init 50
The cvisit hyperparameter (see original Gumbel
AlphaZero paper).

* * * * fpu-red 0

Value estimates for unvisited children are de-
creased by this value so as to encourage deeper
search trees (see LC0 AlphaZero implementa-
tion).

* * * * reset-tree false Whether the MCTS tree is reset after an environ-
ment move is taken.

* * * * max-tree-size 256
Maximal size of the MCTS tree. This parameter
is relevant to avoid out-of-memory errors when
reset-tree if false.

* * * * dirichlet-alpha 10
Concentration parameter for the Dirichlet explo-
ration noise (see original AlphaZero paper).

* * * * dirichlet-eps none

Magnitude of the Dirichlet exploration noise. No
Dirichlet exploration noise is normally used with
Gumbel AlphaZero but we add some anyway in
the teacher for increased diversity.

* * * training Network training hyperparameters.

* * * * max-epochs 1 The maximum number of training epochs.

26

* * * * improvement-required 1
Gradient updates are stopped if the validation
loss fails to decrease for more than this number
of epochs.

* * * * batch-size 300 Training batch size.

* * * * lr-base 0.0003
Maximal learning rate used in a cosine learning
rate schedule with warm-up.

* * * * warmup-epochs 0.2
Length of the warm-up part of the learning rate
schedule (in epochs).

* * * * weight-decay 0.01 Weight decay parameter.

* * * * outcome-loss-coeff 1
Coefficient for the loss term evaluating outcome
prediction accuracy (e.g. success or failure).

* * * * event-loss-coeff 1
Coefficient for the loss term evaluating event
prediction accuracy.

* * * * policy-loss-coeff 1
Coefficient for the loss term evaluating the diver-
gence from policy priors to their targets.

* * * training-window

1, 2, 2, 3,
3, 3, 4, 4,
4, 5, 5, 5,
6, 6, 6, 7

The number of previous iterations from which
samples are used to update the network at each
iteration. If the provided list is shorter than the
total number of iterations, the last number in this
list is duplicated as many times as necessary.

* num-teacher-iters-used-by-solver 5
The number of teacher training iterations from
which solver training samples are collected.

* extra-teacher-problems 10000
Number of extra teacher problems that are gen-
erated once the teacher is trained, with no explo-
ration noise.

Table 8: Training hyperparameters for the experiments described in Section 4. Hyperparameters are
organized according to a hierarchichal structure that is represented using indentation.

H Network Architecture and Choice Points Encoding

H.1 Network Architecture

Neural networks that are used as oracles for nondeterministic strategies take as an input a choice
point and return i) a probability distribution over all available choices, ii) some success and failure
probability estimates and iii) some event occurence probability estimates (see Section 2.5). In turn, a
choice point is represented as i) a probe [10] that encodes all relevant state information provided to
choose (see Figure 7 for examples) and ii) a list of possible choices that were passed as arguments to
choose.

Our proposed network architecture works as follows. Given a choice point, the probe is encoded
using a Dynamic Graph Transformer (DGT) neural network [32]. DGT networks are similar to
Transformers [46] but they allow leveraging some additional graph structure over the source tokens
by associating edge types to learned attention biases. Each choice is encoded separately using another
DGT. It is then concatenated with the probe encoding and passed to a combiner network that outputs
a score. Scores are normalized into a probability distribution using a softmax operation. The probe
encoding is also passed to a value head that produces outcome and event predictions. Batches of
choice points can be evaluated efficiently in parallel using scatter operations [47].

H.2 Encoding Programs and Formulas

All data that is to be passed to the neural network must be encodable into a sequence of tokens with
an optional graph structure. This is the case of programs and formulas in particular. We use standard
techniques to encode those [48, 49]:

• Abstract syntax trees (ASTs) are encoded into a sequence of tokens in polish notation order
(e.g. x + 3y is encoded as “PLUS VAR(x) MUL CONST(3) VAR(y)”). The edges in the
original AST are preserved as graph edges to be passed to the DGT network.

27

Edge type Description
PARENT Connect any token to its parent in the syntax tree.
PREV_SIBLING Connect any token to its previous sibling in the syntax tree.
PREV_LEXICAL_USE Connect any token associated with name s to the previous occurence of s.

LAST_READ Connect a variable occurence to places where it was possibly read last.
LAST_WRITE Connect a variable occ. to places where it was possibly written last.
GUARDED_BY Connect a variable occ. to assumptions made about it.
GUARDED_BY_NEG Connect a variable occ. to negated assumptions made about it.
COMPUTED_FROM Connect the lhs of any assignment to the variables in its rhs.

SAME_CONST Connect two identical numerical constants.
SMALLER_CONST Compare two different numerical constants.

Table 9: Edge types used to encode formulas and programs. We organize these edges into three
groups: syntactic edges, semantic edges and numerical edges. Within a conditional statement, every
variable in the if branch is connected to the guard using a GUARDED_BY edge whereas every variable
in the else branch is connected to the guard using a GUARDED_BY_NEG edge.

• We use a different positional encoding scheme for tokens that leverages the tree structure of
the underlying AST [49]. Doing so has been demonstrated to result in better generalization
capabilities [50].

• Identifier names are randomly mapped into a finite number of unique ids for each choice
point. Unique ids are encoded using a one-hot encoding scheme. If a choice point introduces
more names than there are unique ids available (rare), the last occuring names are made to
share a single uid that is flagged to indicate a naming conflict.

• Numerical constants with an absolute value greater than 3 are represented with generic
POS_CONST and NEG_CONST tokens. A binary encoding of their value is also provided to the
network. Moreover, special edges are added to compare all numerical constants involved in
a program or formula (see Table 9).

• Following [48], we also add semantic edges to the encoding of programs and formulas that
reflect the way information flows within them. Details can be consulted in Table 9.

28

	Details on the Solver Strategy
	Details on the Teacher Strategy
	Examples of Code2Inv Problems
	Examples of Generated Teacher Problems
	Looprl UI Screenshots
	Implementing Abduction
	Case where n = 1
	Case where n > 1

	Training Hyperparameters
	Network Architecture and Choice Points Encoding
	Network Architecture
	Encoding Programs and Formulas

