
Appendix

Roadmap. In this appendix, we provide omitted details and proofs for our main paper. In partic-
ular, section A of our appendix corresponds to section 3 of our main paper, section B to section 5,
section C to section 6.1, section D to section 6.2, and section E to section 6.3.

A Background

In this section, we provide definitions for some terms used in the main paper and rest of the appendix.
Definition A.1 (Statistical Dimension). For any � � 0 and any positive semidefinite matrix M 2
Rn⇥n, the �-statistical dimension of M is

sd�(M) := tr[M(M + �In)
�1

]

Definition A.2 (Oblivious Subspace Embedding [Sar06, AKK+20]). Let ", � 2 (0, 1), µ > 0, and
d, n � 1 be integers. An (", �, µ, d, n)-Oblivious Subspace Embedding (OSE) is a distribution over
m ⇥ d matrices with the guarantee that for any fixed matrix A 2 Rd⇥n with sd�(A>A)  µ, we
have for any vector x 2 Rn, with probability at least 1� �,

k⇧Axk2 + �kxk2 = (1± ")(kAxk2 + �kxk2).

Definition A.3 (Approximate Matrix Product). Given ", � > 0, we say that a distribution D over
m ⇥ d matrices ⇧ has the (", �)-approximate matrix product property if for every C,D 2 Rd⇥n,
with probability at least 1� �,

kC>
⇧

>
⇧D � C>DkF  "kCkF kDkF .

Definition A.4 (OSNAP matrix [NN13]). For every sparsity parameter s, target dimension m, and
positive integer d, the OSNAP transform with sparsity s is defined as

Sr,j =
1p
s
· �r,j · �r,j ,

for all r 2 [m], j 2 [d], where �r,j 2 {±1} are independent and uniform Rademacher random
variables and �r,j are Bernoulli random variables satisfying

• For every i 2 [d],
P

r2[m] �r,i = s. In other words, every column has exactly s nonzero
entries.

• For all r 2 [m] and all i 2 [d], E[�r,i] = s/m.

• The �r,i’s are negatively correlated: 8 T ⇢ [m]⇥[d], E[
Q

(r,i)2T �r,i] 
Q

(r,i)2T E[�r,i] =
(
s
m)

|T |.

Definition A.5 (TENSORSRHT [AKK+20]). We define the TENSORSRHT S : Rd ⇥ Rd ! Rm

as S =
1p
m
P · (HD1 ⇥HD2), where each row of P 2 {0, 1}m⇥d contains only one 1 at a random

coordinate, one can view P as a sampling matrix. H is a d ⇥ d Hadamard matrix, and D1, D2

are two d⇥ d independent diagonal matrices with diagonals that are each independently set to be a
Rademacher random variable (uniform in {�1, 1}).
Definition A.6 (COUNTSKETCH matrix [CCFC02]). Let h : [n] ! [b] be a random 2-wise inde-
pendent hash function and � : [n] ! {�1,+1} be a random 4-wise independent hash function.
Then R 2 Rb⇥n is a COUNTSKETCH matrix if we set Rh(i),i = �(i) for all i 2 [n] and all the other
entries of R to zero.
Definition A.7 (TENSORSKETCH matrix [Pag13, PP13]). Let h1, h2 : [m] ! [s] be 3-wise inde-
pendent hash functions, also let � : [m] ! {±1} be a 4-wise independent random sign function.
The degree two TENSORSKETCH transform, S : Rm ⇥ Rm ! Rs is defined as follows: for any
i, j 2 [m] and r 2 [s],

Sr,(i,j) = �1(i) · �2(j) · 1[h1(i) + h2(j) = r mod s].

15

Definition A.8 (Subsampled Randomized Hadamard Transform (SRHT) matrix [LDFU13]). We
say R 2 Rb⇥n is a subsampled randomized Hadamard transform matrix4 if it is of the form
R =

p
n/b · SHD, where S 2 Rb⇥n is a random matrix whose rows are b uniform samples

(without replacement) from the standard basis of Rn, H 2 Rn⇥n is a normalized Walsh-Hadamard
matrix, and D 2 Rn⇥n is a diagonal matrix whose diagonal elements are i.i.d. Rademacher random
variables.

B Proofs for Dynamic Tree Data Structure (section 5)

In this section, we provide proofs for the running time and approximation guarantees of our dynamic
tree data structure (Algorithm 1).

B.1 Running Time of Algorithm 1

Theorem B.1 (Formal version of Theorem 5.1). There is an algorithm (Algorithm 1) that has the

following procedures:

• INITIALIZE(A1 2 Rn1⇥d1 , A2 2 Rn2⇥d2 , . . . , Aq 2 Rnq⇥dq ,m 2 N+, Cbase, Tbase):

Given matrices A1 2 Rn1⇥d1 , A2 2 Rn2⇥d2 , . . . , Aq 2 Rnq⇥dq , a sketching dimension

m, families of base sketches Cbase and Tbase, the data-structure pre-processes in time

eO(
Pq

i=1 nnz(Ai) + qmd) where d = d1d2 . . . dq .

• UPDATE(i 2 [q], B 2 Rni⇥di): Given a matrix B and an index i 2 [q], the data structure

updates the approximation to A1 ⌦ . . .⌦ (Ai +B)⌦ . . .⌦Aq in time eO(nnz(B) +md).

Note: We will assume that n1 = n2 = · · · = nq and d1 = d2 = · · · = dq for the following
computations. To modify our DYNAMICTENSORTREE to work for the non-uniform case, we only
need to choose the base sketches at the leaves of the appropriate dimension and also have different
dimensions for the internal nodes.

Proof. Proof of INITIALIZATION. The initialization part has 2 key steps - applying the Tbase

sketches to the leaves and applying Sbase sketches to each of the internal nodes.

• Applying a COUNTSKETCH matrix Ci : Rm⇥ni to any matrix Ai : Rni⇥di takes input
sparsity time O(nnz(Ai)). Therefore, the total time for this step is O(

Pq
i=1 nnz(Ai)). If

OSNAP is used, this is true up to polylogarithmic factors.

• For all internal nodes, let us consider the time of computing one node at level ` 2 [log2 q]

using TENSORSRHT. Consider the computation of Jk,` 2 Rm⇥d2`

1 , we pick a TEN-
SORSRHT Tk,` 2 Rm⇥m2

and apply it to J2k,`�1 ⌦ J2k+1,`�1. This can be viewed as
computing the tensor product of column vectors of J2k,`�1 and J2k+1,`�1: each column
of Jk,` is a tensor product of two columns of its two children after applying Tk,`. Each
column takes time O(m logm) and the total number of columns of Jk,` is d2

`

1 . Hence, the
time of forming Jk,` is O(md2

`

1 logm).

• For each level, there are q/2` nodes, so O(q/2`md2
`

1) time in total for level `.

• Sum over all levels for ` 2 [log q], we have

m logm(

log qX

`=1

q

2`
d2

`

1) m logm(

log qX

`=1

q

2`
dq1)

= md logm(

log qX

`=1

q

2`
)

 2qmd · logm.
4In this case, we require log n to be an integer.

16

• Thus, the total time for initialization is

eO(

qX

i=1

nnz(Ai) + qmd).

Proof of UPDATE. We note that UPDATE can be decomposed into the following parts:

• Apply COUNTSKETCH Ci to the update matrix B, which takes O(nnz(B)) time. If OS-
NAP or SRHT are used, then this is true up to polylogarithmic factors.

• Updating the leaf node takes O(mdi) time because CiB 2 Rm⇥di .

• For each level ` 2 [log2 q], we first compute the update tree by applying TENSORSKETCH

Tk,` 2 Rm⇥m2

to J2k,`�1 ⌦ J2k+1,`�1 which takes time O(md2
`

1 logm).

• We also need to update one internal node for each level, which takes eO(md2
`

1) time. This
is at most O(md logm) for the root. Since there are log q levels, the total time for updating
all internal nodes is also eO(md).

Hence, the total runtime of UPDATE is

eO(nnz(B) +md1 +md)

= eO(nnz(B) +md).

B.2 Approximation Guarantee of Algorithm 1

In this section, we provide the approximation guarantee of Algorithm 1.
Theorem B.2. Let A1 2 Rn1⇥d1 , . . . , Aq 2 Rnq⇥dq be the input matrices, m 2 N+ be the sketching

dimension, let Cbase, Tbase be appropriate family of sketching matrices. Let ⇧
q

be the sketching

matrix generated by Algorithm 1. Then for any x 2 Rd
, we have that with probability at least 1� �,

k⇧q
qO

i=1

Aixk2 = (1± ")k
qO

i=1

Aixk2,

if

• Cbase is COUNTSKETCH, Tbase is TENSORSKETCH and m = ⌦("�2qd21/�).

• Cbase is OSNAP, Tbase is TENSORSRHT and m = e⌦("�2q4d log(1/�)).

• Cbase is OSNAP, Tbase is TENSORSRHT and m = e⌦("�2qd2 log(1/�)).

First we will discuss the theorems of [AKK+20] which lead to our approximation guarantees and
then discuss the specifics for each choice of base sketches seperately.
Lemma B.3 (Theorem 1 of [AKK+20]). For every positive integers n, q, d, every ", sd� > 0, there

exists a distribution on linear sketches ⇧
q 2 Rm⇥dq

such that: 1). If m = ⌦("�2q sd2�), then ⇧
q

is

an (", 1/10, sd�, dq, n)-OSE (Def. A.2). 2). If m = ⌦("�2q), then ⇧
q

has the (", 1/10)-approximate

matrix product (Def. A.3).

Lemma B.4 (Theorem 2 of [AKK+20]). For every positive integers n, q, d, every ", sd� > 0, there

exists a distribution on linear sketches ⇧
q 2 Rm⇥dq

such that: 1). If m = e⌦("�2q sd2�), then ⇧
q

is

an (", 1/poly(n), sd�, dq, n)-OSE (Def. A.2). 2). If m = e⌦("�2q), then ⇧
q

has the (", 1/poly(n))-
approximate matrix product (Def. A.3).

Lemma B.5 (Theorem 3 of [AKK+20]). For every positive integers n, q, d, every ", sd� > 0, there

exists a distribution on linear sketches ⇧
q 2 Rm⇥dq

which is an (", 1/poly(n), sd�, dq, n)-OSE

(Def. A.2), provided that the integer m satisfies m = e⌦(q4 sd� /"2)

17

We note that the 3 results due to [AKK+20] are actually stronger than what we need here, since
the statements say that they are subspace embedding for all matrices of proper size. Also, when the
statistical dimension sd� is smaller than the rank of the design matrix, the sketching dimension is
even smaller, which is important in our Spline regression application.

We then proceed to prove the individual guarantees for different choice of base sketches item by
item.

• By Lemma B.3, we know that in order for ⇧
q to be an OSE, we will require m =

⌦("�2qd21/�). Note that the statistical dimension sd� is d in this case. We point out
that the dependence on success probability is 1/�, this means that we can not obtain a high
probability version. This is the main reason that Lemma B.3 only provides an OSE with
constant probability.

• By Lemma B.5, we need m = e⌦("�2q4d log(1/�)). We get a nearly linear dependence on
d in the expense of worse dependence on q.

• By Lemma B.4, we will require m = e⌦("�2qd2 log(1/�)). In this scenario, the dependence
on � is log(1/�), hence we can aim for a high probability guarantee for our OSE.

C Proofs for Dynamic Tensor Product Regression (section 6.1)

Algorithm 2 Dynamic Tensor Product Regression
1: data structure DTREGRESSION
2:
3: members

4: DYNAMICTENSORTREE DTT
5: A1 2 Rn1⇥d1 , . . . , Aq 2 Rnq⇥dq

6: eb 2 Rm

7: end members

8:
9: procedure INITIALIZE(A1 2 Rn1⇥d1 , . . . , Aq 2 Rnq⇥dq ,m,Cbase, Tbase, b 2 Rn)

10: DTT.INITIALIZE(A1, . . . , Aq,m,Cbase, Tbase)

11: A1 A1, . . . , Aq Aq

12: Let ⇧q 2 Rm⇥n be the sketching matrix corresponds to DTT
13: eb ⇧qb
14: end procedure

15:
16: procedure QUERY()
17: M DTT.J0,0
18: ex argminx2Rn kMx�ebk22
19: return x
20: end procedure

Theorem C.1 (Formal version of Theorem 6.1). There is a dynamic data structure for dynamic

Tensor product regression problem with the following procedures:

• INITIALIZE(A1 2 Rn1⇥d1 , A2 2 Rn2⇥d2 , . . . , Aq 2 Rnq⇥dq ,m 2 N+, Cbase, Tbase, b 2
Rn1...nq): Given matrices A1 2 Rn1⇥d1 , A2 2 Rn2⇥d2 , . . . , Aq 2 Rnq⇥dq ,, a sketching

dimension m, families of base sketches Cbase, Tbase and a label vector b 2 Rn1...nq , the

data-structure pre-processes in time eO(
Pq

i=1 nnz(Ai) + qmd+m · nnz(b)).

• UPDATE(i 2 [q], B 2 Rni⇥di): Given a matrix B and an index i 2 [q], the data structure

updates the approximation to A1 ⌦ . . .⌦ (Ai +B)⌦ . . .⌦Aq in time eO(nnz(B) +md).

• QUERY: Query outputs an approximate solution bx to the Tensor product regression prob-

lem where k
Nq

i=1 Aibx� bk2 = (1± ")k
Nq

i=1 Aix⇤ � bk2 with probability at least 1� �
in time O(md!�1

+ d!) where x⇤
is an optimal solution to the Tensor product regression

problem i.e. x⇤
= argminx2Rd k

Nq
i=1 Aix� bk2.

18

Proof. Proof of INITIALIZATION. The initialization part has 3 steps:

• Initializing DTT takes time eO(
Pq

i=1 nnz(Ai) + qmd) from Theorem B.1.

• Initializing all the matrices Ai, i 2 [q] takes time eO(
Pq

i=1 nnz(Ai)).

• Computing bb takes time eO(m · nnz(b)).

Therefore, the total time for initialization is

eO(

qX

i=1

nnz(Ai) + qmd+
qX

i=1

nnz(Ai) +m · nnz(b))

= eO(

qX

i=1

nnz(Ai) + qmd+m · nnz(b))

Proof of UPDATE. We just update our DTT data structure. This takes time eO(nnz(B) + md3/2)
from Theorem B.1.

Proof of QUERY time. We can view the Query part as having the following 5 steps:

• Initializing M takes time eO(md) since M 2 Rm⇥d.

• M>
(eb), this takes O(md) time because we are multiplying a d ⇥m matrix with a m ⇥ 1

vector.

• M> ·M , this step takes Tmat(d,m, d) time as we are multiplying an d⇥m matrix with an
m⇥ d matrix.

• (M>M)
�1 this step takes Tmat(d, d, d) time as it is inverting M>M which is of size d⇥d.

• (M>M)
�1

(M>eb). In this step, we are multiplying (M>M)
�1 which is a d ⇥ d matrix

with a vector M>eb of size d. This takes time O(d2).

Overall, the total running time of QUERY is

eO(md+md+ Tmat(d,m, d) + Tmat(d, d, d) + d2)

= eO(md+md(!�1)
+ d! + d2)

= eO(md(!�1)
+ d!)

Proof of Correctness for QUERY. The proof of correctness for Query follows from Theorem B.2
identically to the proof of Theorem 3.1 in [DSSW18].

D Omitted details and proofs for Dynamic Tensor Spline Regression

(section 6.2)

To specify the sketching dimension m needed , we use the following definition of Statistical Dimen-

sion for Splines [DSSW18]:
Definition D.1 (Statistical Dimension for Splines). For the Spline regression problem specified by
Eq. 1, the statistical dimension is defined as sd�(A,L) =

P
i 1/(1+�/�2

i)+d�p. Here {�i, i 2 [p]}
are the generalized singular values of (A,L) which are defined as follows.

Definition D.2 (Generalized singular values). For matrices A 2 Rn⇥d and L 2 Rp⇥d

such that rank(L) = p and rank

✓
A
L

�◆
= d, the generalized singular value de-

composition (GSVD) [GVL13] of (A,L) is given by the pair of factorizations A =

19

U


⌃ 0p⇥(d�p)

0(d�p)⇥p Id�p

�
RQ> and L = V

⇥
⌦ 0p⇥(d�p)

⇤
RQ>, where U 2 Rn⇥d has or-

thonormal columns, V 2 Rp⇥p, Q 2 Rd⇥d are orthogonal, R 2 Rd⇥d is upper triangular and
nonsingular, and ⌃ and ⌦ are p ⇥ p diagonal matrices: ⌃ = diag(�1,�2, . . . ,�p) and ⌦ =

diag(µ1, µ2, . . . , µp) with 0  �1  �2  . . .  �p < 1 and 1 � µ1 � µ2 � . . . � µp > 0,
satisfying ⌃

>
⌃+⌦

>
⌦ = Ip. The generalized singular values �i of (A,L) are defined by the ratios

�i = �i/µi for i 2 [p].

We prove that for the spline regression, our sketching matrix can have even smaller dimension. The
following is due to [DSSW18].
Lemma D.3. Let x⇤

= argminx2Rd kAx�bk22+�kLxk22, A 2 Rn⇥d
and b 2 Rn

. Let U1 2 Rn⇥d

be the first n rows of an orthogonal basis for


Ap
�L

�
2 R(n+p)⇥d

. Let sketching matrix S 2 Rm⇥n

have a distribution such that with probability 1� �,

• kU>
1 S>SU1 � U>

1 U1k2  1/4,

• kU>
1 (S>S � I)(b�Ax⇤

)k2 
p
" OPT/2.

Let ex denote argminx2Rd kS(Ax� b)k22 + �kLxk22. Then with probability at least 1� �,

kAex� bk22 + �kLexk22 = (1± ")OPT.

Lemma D.4. For U1 as in Lemma D.3, we have

kU1k2F = sd�(A,L).

Algorithm 3 Dynamic Tensor Spline Regression
1: data structure DTSREGRESSION
2:
3: members

4: DYNAMICTENSORTREE DTT
5: A1 2 Rn1⇥d1 , . . . , Aq 2 Rnq⇥dq

6: eb 2 Rm

7: end members

8:
9: procedure INITIALIZE(A1 2 Rn1⇥d1 , . . . , Aq 2 Rnq⇥dq ,m,Cbase, Tbase, b 2 Rn)

10: DTT.INITIALIZE(A1, . . . , Aq,m,Cbase, Tbase)

11: A1 A1, . . . , Aq Aq

12: Let ⇧q 2 Rm⇥n be the sketching matrix corresponds to DTT
13: eb ⇧qb
14: end procedure

15:
16: procedure QUERY()
17: M DTT.J0,0
18: ex argminx2Rn kMx�ebk22 + kLxk22
19: return x
20: end procedure

We are now ready to prove the main theorem.
Theorem D.5 (Formal version of Theorem 6.4). There exists an algorithm (Algorithm 3) with the

following procedures:

• INITIALIZE(A1 2 Rn1⇥d1 , . . . , Aq 2 Rnq⇥dq): Given matrices A1 2 Rn1⇥d1 , . . . , Aq 2
Rnq⇥dq , the data structure pre-processes in time eO(

Pq
i=1 nnz(Ai) + qmd+m · nnz(b)).

• UPDATE(i 2 [q], B 2 Rni⇥di): Given an index i 2 [q] and an update matrix B 2 Rn⇥d
,

the data structure updates in time eO(nnz(B) +md).

20

• QUERY: Let A denote the Tensor product
Nq

i=1 Ai. Query outputs a solution ex 2 Rn
with

constant probability such the ex is an " approximate to the Tensor Spline Regression problem

i.e. kAex�bk22+�·kLexk22  (1+")·OPT where OPT = minx2Rn kAx�bk22+�·kLxk22.

Query takes time eO(md(!�1)
+ pd(!�1)

+ d!).

Moreover, we have that if

• Cbase is COUNTSKETCH, Tbase is TENSORSKETCH, then m = ⌦("�1qsd2�(A,L)1/�).

• Cbase is OSNAP, Tbase is TENSORSRHT, then m = e⌦("�1q4 sd�(A,L) log(1/�)).

Proof. Proof of Correctness for QUERY.

To prove that it is enough to use sketching whose dimension depends on sd�(A,L), we just need to
show that the sketching matrix related to the dynamic tree satisfies the two guarantees of Lemma D.3.
We will use approximate matrix product (Def. A.3) to prove this guarantee. By Lemma D.4, we
have that kU1k2F = sd�(A,L), and consider an (

p
"/ sd�(A,L), �)-approximate matrix product

sketching, we have that

kU>
1 S>SU1 � U>

1 U1k2  kU>
1 S>SU1 � U>

1 U1k2

p
"kU1k2F / sd�(A,L)

=
p
",

setting "  1/2, we obtain desired result. For the second part, we set C = U1 and D = b � Ax⇤,
then

kU>
1 (S>S � I)(b�Ax⇤b)k2  kU>

1 (S>S � I)(b�Ax⇤b)kF

p
"/ sd�(A,L) · kU1kF kb�Ax⇤k2

=

p
"/ sd�(A,L)

p
OPT


p

" OPT/2.

This means that to obtain good approximation for Spline regression, it is enough to employ
(
p
"/ sd�(A,L), �)-approximate matrix product. The dimension follows from Lemma B.3 and B.4.

We note that even though the definition of statistical dimension in [AKK+20] and ours is different,
our definition is more general and the [AKK+20] definition can be viewed as picking L>L to be the
identity matrix. Hence, one can easily generalize the conclusion of Lemma B.3, B.4 and B.5 to our
definition of statistical dimension via the argument used in [ACW17, DSSW18, AKK+20].

Proof of INITIALIZATION. The initialization part of Algorithm 3 is identical to the initialization
part of Algorithm 2. Therefore, the time for initialization is eO(

Pq
i=1 nnz(Ai)+ qmd+m · nnz(b))

from Theorem C.1.

Proof of UPDATE. We just update our DTT data structure. This takes time eO(nnz(B) +md) from
Theorem B.1.

Proof of QUERY time. As mentioned in Section 6.2, we can compute ex argminx2Rn kMx �
ebk22 + kLxk22 by ex (M>M +�L>L)�1M>eb. We can view Query as consisting of the following
5 steps:

• Initializing M takes time eO(md) since M 2 Rm⇥d.

• M>
(eb), this takes O(md) time because we are multiplying a d ⇥m matrix with a m ⇥ 1

vector.

• M> ·M , this step takes Tmat(d,m, d) time as we are multiplying a d⇥m matrix with an
m⇥ d matrix.

• L>L, this step takes Tmat(d, p, d) time as we are multiplying a d ⇥ p matrix with a p ⇥ d
matrix.

21

• M>M + �L>L, this takes O(d2) time as we are adding two d⇥ d size matrices.

• (M>M + �L>L)�1, this step takes Tmat(d, d, d) time as it is inverting a matrix of size
d⇥ d.

• (M>M + �L>L)�1
(M>eb). In this step, we are multiplying (M>M + �L>L)�1 which

is a d⇥ d matrix with a vector M>eb of size d. This takes time O(d2).

Overall, the total running time of QUERY is

eO(md+md+ Tmat(d,m, d) + Tmat(d, p, d) + d2 + Tmat(d, d, d) + d2)

= eO(md+md(!�1)
+ pd(!�1)

+ d! + d2)

= eO(md(!�1)
+ pd(!�1)

+ d!)

E Omitted details and proofs for Dynamic Tensor Low Rank

Approximation (section 6.3)

For low rank approximation, we show it is enough to design sketching matrix whose dimension
depends on k instead of d.
Definition E.1 (Projection Cost Preserving Sketch). Let A 2 Rn⇥d, we say a sketching matrix
S 2 Rm⇥n is a k Projection Cost Preserving Sketch (PCPSketch if for any orthogonal projection
P 2 Rd⇥d of rank k, we have

(1� ")kA�APk2F  kSA� SAPk2F + c  (1 + ")kA�APk2F
where c � 0 is some fixed constant independent of P , but may depend on A and SA.

For low rank approximation, we note that the optimal low rank approximation for A is projecting
onto the top k left singular vectors. Hence, if we can prove that the sketching corresponds to the
dynamic tree is a k-PCPSketch, then we are done. We will require a few technical tools.
Lemma E.2 (Theorem 12 of [CEM+15]). Let A 2 Rn⇥d

. Suppose S 2 Rm⇥n
is an (", �, k, d, n)-

OSE and ("/
p
k, �)-approximate matrix product, then S is a k-PCPSketch for A.

Theorem E.3 (Formal version of Theorem 6.5). There exists an algorithm (Algorithm 4) that has

the following procedures

• INITIALIZE(A1 2 Rn1⇥d1 , . . . , Aq 2 Rnq⇥dq): Given matrices A1 2 Rn⇥d, . . . , Aq 2
Rn⇥d

, the data structure processes in time eO(
Pq

i=1 nnz(Ai) + qmd+m · nnz(b)).

• UPDATE(i 2 [q], B 2 Rni⇥di): Given an index i 2 [q] and an update matrix B 2 Rn⇥d
,

the data structure updates the approximation for A1 ⌦ . . .⌦ (Ai +B)⌦ . . .⌦Aq in time

eO(nnz(B) +md)).

• QUERY: Let A denote the tensor product
Nq

i=1 Ai. The data structure outputs a rank-k
approximation C such that

kC �AkF  (1 + ") min
rank�k A0

kA0 �AkF .

The time to output C is eO(md!�1
).

Moreover, we have that if

• Cbase is COUNTSKETCH, Tbase is TENSORSKETCH and m = ⌦("�2qk21/�).

• Cbase is OSNAP, Tbase is TENSORSRHT and m = e⌦("�2qk2 log(1/�)).

22

Algorithm 4 Our low rank approximation algorithm
1: data structure LOWRANKMAINTENANCE
2:
3: members

4: DYNAMICTENSORTREE DTT
5: A1 2 Rn1⇥d1 , . . . , Aq 2 Rnq⇥dq

6: end members

7:
8: procedure INITIALIZE(A1 2 Rn1⇥d1 , . . . , Aq 2 Rnq⇥dq)
9: DTT.INITIALIZE(A1, . . . , Aq)

10: A1 A1, . . . , Aq Aq

11: end procedure

12:
13: procedure UPDATE(i 2 [q], B 2 Rni⇥di)
14: DTT.UPDATE(i, B)

15: end procedure

16:
17: procedure QUERY
18: M DTT.J0,0
19: Compute SVD of M such that M = U⌃V >

20: Uk top k right singular vectors of M
21: return A1 ⌦ . . .⌦AqU>

k Uk in factored form
22: end procedure

Proof. Proof of Correctness for QUERY.

We first show that if we have a k-PCPSketch for A, then we can compute a matrix C that is a good
approximation to rank-k low rank approximation. Recall that for any projection matrix, we have

(1� ")kAP �Ak2F  kSAP � SAk2F + c  (1 + ")kAP �Ak2F ,
we need to design the projection P . Let SA = U⌃V > be the singular value decomposition of SA,
and let Uk 2 Rk⇥d be the top k left singular vectors of SA. Set P = U>

k Uk, we note that SAU>
k Uk

is the optimal rank-k approximation for SA. On the other hand, let Q 2 Rd⇥d be the projection
such that AQ is the optimal rank-k approximation for A. We have

kSAU>
k Uk � SAk2F + c  kSAQ� SAk2F + c = (1± ") min

rank-k projection P
kAP �Ak2F .

By Lemma E.2, to obtain a k-PCPSketch, we need (", �, k, d, n)-OSE and ("/
p
k, �)-approximate

matrix product, choosing dimension according to Lemma B.3 and B.4 gives the desired result.

Proof of INITIALIZATION. The initialization part of Algorithm 3 is identical to the initialization
part of Algorithm 2. Therefore, the time for initialization is eO(

Pq
i=1 nnz(Ai)+ qmd+m · nnz(b))

from Theorem C.1.

Proof of UPDATE. We just update our DTT data structure. This takes time eO(nnz(B) +md) from
Theorem B.1.

Proof of QUERY time. We can view Query as consisting of the following 5 steps:

• Initializing M takes time eO(md) since M 2 Rm⇥d.

• Computing the SVD of M takes time O(md!�1
) since M is m⇥ d matrix and m � d.

• Uk can be obtained directly from the SVD computation so this step doesn’t take any addi-
tional time.

• Once the algorithm has Uk, it can terminate as it outputs (A1, ..., Aq, Uk) in factored form.

Overall, the total running time of QUERY is
eO(md+md!�1

)) = eO(md!�1
).

23

	Introduction
	Related Work
	Preliminaries
	Notation
	Problem Formulation

	Technical Overview
	Dynamic Tree Data Structure
	Faster Dynamic Tensor Product Algorithms with Dynamic Tree
	Dynamic Tensor Product Regression
	Dynamic Tensor Spline Regression
	Dynamic Tensor Low Rank Approximation

	Conclusion & Future Directions
	Background
	Proofs for Dynamic Tree Data Structure (section 5)
	Running Time of Algorithm 1
	Approximation Guarantee of Algorithm 1

	Proofs for Dynamic Tensor Product Regression (section 6.1)
	Omitted details and proofs for Dynamic Tensor Spline Regression (section 6.2)
	Omitted details and proofs for Dynamic Tensor Low Rank Approximation (section 6.3)

