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A Overview

The supplementary material is organized as follows. Sec. B shows more dataset and implementation
details. Sec. C provide more ablation studies of our FST, including the ablation on SYNTHIA
→ Cityscapes and evaluation of various segmentation decoders. Sec. D and Sec. E present more
comparisons of our FST with state-of-the-art methods on both UDA and SSL benchmarks. Sec. F
analyzes the training process of our method and shows more visualization comparisons with classical
self-training. Sec. G discusses the social impact and potential negative impact of our work. Sec. H
shows the pseudo-code of our FST.

B More details

Dataset detail. GTAV [23] contains 24, 966 labeled synthetic images with the size of 1914× 1052.
SYNTHIA [24] consists of 9, 400 labeled synthetic images with the size of 1280× 760. Cityscapes
has 2, 975 training and 500 validation images with size of 2048 × 1024. PASCAL VOC 2012 [6]
consists of 21 classes with 1, 464, 1, 449, and 1, 456 images for the training, validation, and test
set, respectively. Following the common practice in semantic segmentation, we use the augmented
training set [10] that consists of 10, 582 images for training.

Implementation detail. We adopt a dynamic re-weighting approach from [28] to weigh the labeled
and unlabeled data, which takes the proportion of pixel-wise reliable predictions as the quality
estimation of the pseudo-label:

λ =

∑H×W
j=1 Imaxc gϕ(xu)j>τ

H ×W
, (S1)

where τ is the confidence threshold and is set to 0.968 for all experiments, j indexes each pixel in xu.

The ClassMix augmentation [28] randomly selects 1/2 classes in the source image and paste their
pixels onto the target image. The error rate of the pseudo-label is calculated by

ϵ = 1− 1

N × C

N∑
i=1

C∑
c=1

∑H×W
j=1 Iŷj,c

i =1;yj,c
i =1∑H×W

j=1 Iyj,c
i =1

. (S2)
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Table S1: Comparison. Comparison with state-of-the-art methods on SYNTHIA → Cityscapes UDA
benchmark. The mIoU and the mIoU* indicate we compute mean IoU over 16 and 13 categories,
respectively. The results are averaged over 3 random seeds.
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mIoU mIoU*

SourceOnly 56.5 23.3 81.3 16.0 1.3 41.0 30.0 24.1 82.4 − 82.5 62.3 23.8 77.7 − 38.1 − 15.0 23.7 42.4 47.7

CorDA [33] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 − 90.4 69.7 41.8 85.6 − 38.4 − 32.6 53.9 55.0 62.8
ProDA [40] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 − 84.4 74.2 24.3 88.2 − 51.1 − 40.5 45.6 55.5 62.0
CPSL [17] 87.2 43.9 85.5 33.6 0.3 47.7 57.4 37.2 87.8 − 88.5 79.0 32.0 90.6 − 49.4 − 50.8 59.8 57.9 65.3
DAFormer [13] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 − 89.8 73.2 48.2 87.2 − 53.2 − 53.9 61.7 60.9 67.4

FST (ours) 88.3 46.1 88.0 41.7 7.3 50.1 53.6 52.5 87.4 − 91.5 73.9 48.1 85.3 − 58.6 − 55.9 63.4 61.9 68.5

Table S2: Ablation. Improvements on SYNTHIA → Cityscapes UDA Benchmark. Mean and SD are
reported over 3 random seeds. The mIoU and the mIoU* indicate we compute mean IoU over 16 and
13 categories, respectively.

Method Backbone K mIoU ∆ mIoU* ∆*

ST MiT-B5 - 60.9 - 67.4 -
FST MiT-B5 2 62.0± 0.9 ↑ 1.1 68.8± 1.1 ↑ 1.4
FST MiT-B5 3 61.9± 0.4 ↑ 1.0 68.5± 0.5 ↑ 1.1
FST MiT-B5 4 61.3± 1.1 ↑ 0.4 68.0± 1.4 ↑ 0.6

Following the common practice in UDA [13], we resize the images to 1024×512 pixels for Cityscapes
and to 1280×720 pixels for GTAV, then a random crop of size 512×512 is used for training. ImageNet
pretrained weights are used to initialize the backbones. The exception is the UPerNet with BEiT,
which is initialized with the official self-supervised trained weights. The UDA models are trained on
1 Telsa A100 GPU, and the semi-supervised models are trained on 4 Telsa V100 GPUs. Our work is
built on the MMSegmentation framework.

C More ablation

Improvements on 13 classes. Previous works also compare the performance on 13 classes (denoted
by mIoU*), which discards three (i.e., wall, fence and pole) of the 16 classes in SYNTHIA →
Cityscapes benchmark. As shown in Tab. S1, compared with previous state-of-the-art model
DAFormer, our method exceeds it by 1.1% mIoU.

Ablation on SYNTHIA. We also provide ablation results on SYNTHIA → Cityscapes UDA
benchmark and the results are shown in Tab. S2. In the main paper, we provide experiment results
with K = 3 to keep the same settings with the GTA → Cityscapes benchmark. However, it can be
seen that K = 2 performs better in SYNTHIA → Cityscapes benchmark.

Ablation on decoder. We compare our FST with ST with various popular decoder architectures,
including Atrous Spatial Pyramid Pooling (ASPP) [2], Pyramid Pooling Module (PPM) [42], PPM
with Feature Pyramid Network (PPM + FPN) [35], an MLP decoder [36], and the decoder of
DAFormer (SepASPP) [13]. The MLP head fuses multi-level features and upsamples the feature
map to predict the segmentation mask, which is designed for Transformer-based segmentation
model [36]. SepASPP is a multi-level context-aware feature fusion decoder which uses depth-wise
separable convolutions to reduce over-fitting. As shown in Tab. S3, our method shows consistency
improvements with these decoders.

D More comparisons on UDA benchmark

Most studies use CNN as the backbone. In this section, we also compare category performance of
our method with other state-of-the-art CNN-based methods. As shown in Tab. S4, our FST with
ResNet-101 achieves competitive performance among existing methods. Note that, we report the
performances of ProDA [40] and CPSL [17] in Tab. S4 without knowledge distillation (which uses
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Table S3: Ablation. Ablation on popular segmentation decoders. Experiments are done on GTA →
Cityscapes benchmark. Mean and SD are reported over 3 random seeds.

Method Encoder Decoder mIoU ∆

ST ResNet-101 MLP [36] 55.4± 1.1 -
FST ResNet-101 MLP [36] 56.4± 0.3 ↑ 1.0

ST ResNet-101 ASPP [2] 56.3± 0.4 -
FST ResNet-101 ASPP [2] 59.8± 0.1 ↑ 3.5

ST ResNet-101 SepASPP [13] 56.4± 0.4 -
FST ResNet-101 SepASPP [13] 57.6± 0.4 ↑ 1.2

ST ResNet-101 PPM [42] 56.3± 0.8 -
FST ResNet-101 PPM [42] 58.5± 0.8 ↑ 2.2

ST ResNet-101 PPM+FPN [35] 56.6± 0.9 -
FST ResNet-101 PPM+FPN [35] 60.1± 0.3 ↑ 3.5

Table S4: Comparison. Category performance comparison with state-of-the-art CNN-based methods
on UDA benchmark. Methods use ResNet-101 [11] as the backbone. The results are averaged over 3
random seeds.
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AdaptSeg [29] 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4
ADVENT [31] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
CBST [44] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
PCLA [15] 84.0 30.4 82.4 35.5 24.8 32.2 36.8 24.5 85.5 37.2 78.6 66.9 32.8 85.5 40.4 48.0 8.8 29.8 41.8 47.7
FADA [32] 92.5 47.5 85.1 37.6 32.8 33.4 33.8 18.4 85.3 37.7 83.5 63.2 39.7 87.5 32.9 47.8 1.6 34.9 39.5 49.2
MCS [4] 92.6 54.0 85.4 35.0 26.0 32.4 41.2 29.7 85.1 40.9 85.4 62.6 34.7 85.7 35.6 50.8 2.4 31.0 34.0 49.7
CAG [41] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2
FDA [39] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
IAST [21] 93.8 57.8 85.1 39.5 26.7 26.2 43.1 34.7 84.9 32.9 88.0 62.6 29.0 87.3 39.2 49.6 23.2 34.7 39.6 51.5
DACS [28] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
RCCR [43] 93.7 60.4 86.5 41.0 32.0 37.3 38.7 38.6 87.2 43.0 85.5 65.4 35.1 88.3 41.8 51.6 0.0 38.0 52.1 53.5
MetaCo [9] 92.8 58.1 86.2 39.7 33.1 36.3 42.0 38.6 85.5 37.8 87.6 62.8 31.7 84.8 35.7 50.3 2.0 36.8 48.0 52.1
CTF [20] 92.5 58.3 86.5 27.4 28.8 38.1 46.7 42.5 85.4 38.4 91.8 66.4 37.0 87.8 40.7 52.4 44.6 41.7 59.0 56.1
CorDA [33] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
ProDA [40] 91.5 52.4 82.9 42.0 35.7 40.0 44.4 43.3 87.0 43.8 79.5 66.5 31.4 86.7 41.1 52.5 0.0 45.4 53.8 53.7
CPSL [17] 91.7 52.9 83.6 43.0 32.3 43.7 51.3 42.8 85.4 37.6 81.1 69.5 30.0 88.1 44.1 59.9 24.9 47.2 48.4 55.7

FST (ours) 95.0 65.1 88.4 40.1 36.8 38.0 50.2 55.9 88.1 45.8 88.7 70.1 45.0 87.4 45.3 54.8 37.2 45.6 58.9 59.8

self-supervised trained models) for a fair comparison. On the SYNTHIA → Cityscapes benchmark,
we set µ′ = 0.9999 for our FST. As shown in Tab. S5, our method also demonstrates competitive
performance, which is slightly lower than CPSL, a class-balanced training approach that is orthogonal
to our work.

E More comparisons on SSL benchmark

We compare our FST with previous state-of-the-art semi-supervised semantic segmentation
frameworks, including CCT [22], GCT [16] and CPS [3]. These frameworks do not use CutMix
Augmentation [7] for fair comparisons. Experiments are conducted on both the PASCAL VOC
2012 and Cityscapes, with 1/16, 1/8 and 1/4 samples as the labeled data. The comparisons are
shown in Tab. S6. Note that some works such as AEL [14] are not included here, since we compare
our FST with the basic SSL frameworks. However, AEL focuses on the long tail problem under
a ST framework, which is orthogonal to our work. On PASCAL VOC 2012, our FST achieves
the best performance among these SSL frameworks. On Cityscapes, our method exceeds CCT
and GCT by large margins. Compared to CPS, our FST also achieves competitive results. Our
FST uses minimal data augmentations, thus its performance could be further boosted by advanced
augmentation strategies. These results show the effectiveness of the proposed FST on the traditional
SSL benchmark.
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Table S5: Comparison. Comparison with state-of-the-art CNN-based methods on SYNTHIA →
Cityscapes UDA benchmark. Methods use ResNet-101 [11] as the backbone. The results are averaged
over 3 random seeds. The mIoU and the mIoU* are calculated over 16 and 13 categories, respectively.
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AdaptSeg [29] 79.2 37.2 78.8 − − − 9.9 10.5 78.2 − 80.5 53.5 19.6 67.0 − 29.5 − 21.6 31.3 − 45.9
ADVENT [31] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 − 84.1 57.9 23.8 73.3 − 36.4 − 14.2 33.0 41.2 48.0
CBST [44] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 − 78.3 60.6 28.3 81.6 − 23.5 − 18.8 39.8 42.6 48.9
FDA [39] 79.3 35.0 73.2 − − − 19.9 24.0 61.7 − 82.6 61.4 31.1 83.9 − 40.8 − 38.4 51.1 − 52.5
FADA [32] 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 − 84.0 53.5 22.6 85.4 − 43.7 − 26.8 27.8 45.2 52.5
MCS [4] 88.3 47.3 80.1 − − − 21.6 20.2 79.6 − 82.1 59.0 28.2 82.0 − 39.2 − 17.3 46.7 − 53.2
PyCDA [18] 75.5 30.9 83.3 20.8 0.7 32.7 27.3 33.5 84.7 − 85.0 64.1 25.4 85.0 − 45.2 − 21.2 32.0 46.7 53.3
PLCA [15] 82.6 29.0 81.0 11.2 0.2 33.6 24.9 18.3 82.8 − 82.3 62.1 26.5 85.6 − 48.9 − 26.8 52.2 46.8 54.0
RCCR [43] 79.4 45.3 83.3 − − − 24.7 29.6 68.9 − 87.5 61.1 33.8 87.0 − 51.0 − 32.1 52.1 − 56.8
IAST [21] 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 − 85.0 65.5 30.8 86.5 − 38.2 − 33.1 52.7 49.8 57.0
SAC [1] 89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 − 89.3 63.6 25.4 86.9 − 35.6 − 30.4 53.0 52.6 59.3
ProDA [40] 87.1 44.0 83.2 26.9 0.7 42.0 45.8 34.2 86.7 − 81.3 68.4 22.1 87.7 − 50.0 − 31.4 38.6 51.9 58.5
CPSL [17] 87.3 44.4 83.8 25.0 0.4 42.9 47.5 32.4 86.5 − 83.3 69.6 29.1 89.4 − 52.1 − 42.6 54.1 54.4 61.7

FST (ours) 68.5 28.9 85.5 21.1 3.3 40.4 46.3 53.0 77.6 − 85.3 69.5 42.4 87.0 − 48.5 − 46.4 60.0 54.0 61.5

Table S6: Comparison. Comparison with state-of-the-art semi-supervised semantic segmentation
methods on the validation set. We use FST-D with K = 3 and † means results reported by [34].

Method 1/16 1/8 1/4

SupOnly† 67.87 71.55 75.80

CutMix† [7] 71.66 75.51 77.33
CCT [22] 71.86 73.68 76.51
GCT [16] 70.90 73.29 76.66
CPS [3] 72.18 75.83 77.55

FST (ours) 73.88 76.07 78.10

(a) PASCAL VOC 2012 [6].

Method 1/16 1/8 1/4

SupOnly† 65.74 72.53 74.43

CutMix† [7] 67.06 71.83 76.36
CCT [22] 69.32 74.12 75.99
GCT [16] 66.75 72.66 76.11
CPS [3] 70.50 75.71 77.41

FST (ours) 71.03 75.36 76.61

(b) Cityscapes [5].

F More analyses

Fig. S1 presents more performance (mIoU) curves of various network architectures. We calculate
mIoU on the validation set every 2, 000 iterations and plot the mean and standard deviation over 3
random seeds. During training, our FST quickly achieves the performance of classical ST, benefiting
from the guidance of the estimated future model states. Moreover, to verify the effect on reducing the
confirmation bias, we further observe the training loss on the labeled data (i.e., the training data of
source domain), which serves as a complementary to Fig. S1. The confirmation bias is considered to
mislead the model training. Here, inspired by [19], we empirically observe the bias issue through
the model’s own training error on the labeled data, since a biased model struggles to fit the labeled
samples. As shown in Fig. S2, our FST shows lower cross-entropy loss value of each iteration,
especially in the early training stages. This phenomenon further proves that our FST indeed mitigates
the bias problem to some extent. Note that the presented value in the figure maintains an EMA of
the CE loss during training and we plot the mean and standard deviation over 3 random seeds. As a
comparison, we also plot the training error on the unlabeled data of each iteration, which is shown in
Fig. S3. Our FST generates higher-quality pseudo-labels on unlabeled samples and achieves lower
training error on these samples. On the one hand, better pseudo-labels make the learning process
easier. On the other hand, due to the mitigation of the confirmation bias, the model reduces the
over-fitting to noise pseudo-labels. Finally, we show more visualization results in Fig. S4 for more
qualitative comparisons between ST and our FST.
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Figure S1: Analyses. Performance curve on validation set during training.
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Figure S2: Analyses. Cross-entropy loss on the labeled (training) data during training.
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Figure S3: Analyses. Cross-entropy loss on the unlabeled (training) data during training.

G More discussion

Broader impact. This work mainly focuses on semantic segmentation and its widely adopted
momentum teacher-based self-training framework. However, our approach is a general framework
that could be applied to other tasks such as image recognition [27], object detection [38], few-shot
learning [26] and unsupervised representation learning [8]. When it comes to other popular online
self-training frameworks such as FixMatch [25], Noisy student [37] and Cycle self-training [19], our
method is easy to extend by modifying the way of exploiting a model’s own future model states.
Besides, our work is compatible with existing appealing technologies such as contrastive learning [12]
and active learning [30]. We hope our approach can inspire further research about new algorithms,
theoretical analyses and applications.

Potential negative impact. Our work improves the utilization of unlabeled data for semantic
segmentation, which could benefit many useful applications such as autonomous driving and remote
sensing image analysis. However, this technology may also be applied to some controversial
applications such as surveillance. This is a potential risk and a common problem of existing deep
learning algorithms and is gaining public attention. Another possible negative impact is that the
learned model could be biased if there was bias in the training data. Besides, the corresponding
carbon emission problem should be considered due to the large-scale data and long-time training of
our work.

H Pseudo-code

To makes our FST easy to understand, we provide pseudo-code in a Pytorch-like style. To simplify,
the improved version of FST (i.e., Eq. (4)) is implemented in Alg. S1.
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Algorithm S1 Pseudo-code of FST in a PyTorch-like style.
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4
5 g_t.params = g_s.params # initialize
6
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10 # cache the current student
11 g_tmp = g_s.copy()
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18 loss_u = CrossEntropyLoss(g_tmp.forward(x_u), y_u)
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22 update(g_tmp.params) # SGD update: temp network
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25 g_t.params = mu_prime * g_t.params + (1-mu_prime) * g_tmp.params
26 # pseudo label prediction: for student network
27 with no_grad ():
28 y_u = argmax(g_t.forward(x_u))
29
30 # train the student
31 loss_l = CrossEntropyLoss(g_s.forward(x_l), y_l)
32 loss_u = CrossEntropyLoss(g_s.forward(x_u), y_u)
33 loss = loss_l + Lambda * loss_u # calculate loss for student model
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35 loss.backward ()
36 update(g_s.params) # SGD update: student network
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38 # delete cache
39 del(g_tmp)
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