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Abstract

We formulate the first differentiable analog quantum computing framework with
specific parameterization design at the analog signal (pulse) level to better exploit
near-term quantum devices via variational methods. We further propose a scalable
approach to estimate the gradients of quantum dynamics using a forward pass
with Monte Carlo sampling, which leads to a quantum stochastic gradient descent
algorithm for scalable gradient-based training in our framework. Applying our
framework to quantum optimization and control, we observe a significant advantage
of differentiable analog quantum computing against SOTAs based on parameterized
digital quantum circuits by orders of magnitude.

1 Introduction

Quantum computing has promised unprecedented improvement in our computational ability to tackle
classically intractable problems. Despite of the rapid development of quantum hardware [2, 66], near-
term quantum computers are still likely to have very restricted hardware resources, where the limited
number of “qubits” and non-negligible machine noises would impede the implementation of large-
scale quantum algorithms. Recent research results in both computer science [60] and physics [43]
suggest a promising approach of designing resource-efficient Noisy Intermediate-Scale Quantum
(NISQ) [51] applications by breaking quantum circuit abstractions and directly designing applications
at the pulse-level control of quantum machines.1 The benefits of this analog-oriented approach have
been witnessed in the history of classical analog computing that predates digital computing due to
relaxed hardware requirement and plays an important role in domain applications such as simulation.

One leading algorithmic paradigm on NISQ computers is the Variational Quantum Algorithm
(VQA) with a few prominent examples like the Variational Quantum Eignensolver (VQE) [50],
quantum approximate optimization algorithm (QAOA) [20], and more in [4]. Specifically, VQA
uses parametrized quantum models to characterize loss functions, in particular those from quantum
physics, which are potentially intractable for classical computing [26]. These parameters will
then be optimized, usually through gradient-based approaches, to minimize the given loss function.
Conventionally, parameterized quantum models are typically quantum circuits where each gate is
parameterized by classical variables. Moreover, auto-differentiation techniques have been recently
developed (e.g., [47, 59, 67]) for a scalable quantum gradient calculation on parameterized quantum
circuits. We henceforth refer this existing framework as differentiable digital quantum computing.

Although parameterized quantum circuits are designed for NISQ applications, implementing (digital)
quantum circuits still incurs non-negligible overheads, which significantly restricts the size of

1Pulse-level control is available on IBMQ computers.
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parametrized circuits that can be executed faithfully on NISQ machines. Moreover, the current
parameterization in VQAs is also largely restricted by available parameterized gates and how they
compose circuits, which in turn limits the expressive power of VQAs. A natural alternative to the
current digital parameterization is to perform VQA directly on parametrized analog signals (pulses),
either on digital quantum machines with pulse-level controls, or on general analog quantum hardware.
Indeed, parameterized analog pulses have the potential for more efficient NISQ implementation and
better expressiveness as suggested in a recent perspective paper [43], which could be a more favorable
parameterization for NISQ applications even when digital quantum gates are available.

However, there is not yet a systematic study of the analog parameterization for VQAs, its scalable
training, and its quantitative benefits in achieving high-quality solutions in VQA applications.

Diff. Quantum Neural ODE Diff. Physics
d
dt
x(t) =? −iH(v, t)x(t) f(x(t),v) f(x(t),v)

Parametrization Basis Function Neural Network Dynamics Equation
Forward Time Evolution Forward Pass Time Integration
Backward MC Integration Autodiff Auto/Manual Diff.
Device Quantum Classical Classical

Table 1: Machine learning in different dynamical systems. A
diagram in Appendix A illustrates their connections.

Contributions. We conduct the first
systematic study of the parameteri-
zation and scalable training of ana-
log VQAs, which we call differen-
tiable analog quantum computing.
We also leverage our scalable training
to demonstrate the quantitative ben-
efits of the analog parameterization
for specific VQA applications.

Specifically, we formulate the general differentiable analog quantum computing as a control problem,
minv L(v), where the loss function L(v) is calculated from the v-parametrized quantum state
x(T ;v) generated by quantum machines at the evolution time t = T . Intuitively, this control problem
is no different from any classical ones except that the evolution of the quantum state in [0, T ] is
governed by the Schrödinger equation

d

dt
x(t) = −iH(v, t)x(t), (1)

where the Hamiltonian operator H(v, t) can be much more flexibly parameterized in v compared
with parameterized quantum circuits (detailed in Section 3.2), and i is the imaginary unit.

We also develop a scalable Monte Carlo integration technique of computing quantum-related gradients
from the loss function L(v). A well-known difficulty in computing quantum-related gradients by
classical means is the exponential cost associated with classical simulation of the quantum system.
Thus, any scalable solution must leverage quantum machines to compute the gradients for themselves.
Existing “auto-differentiation” techniques for parameterized quantum circuits (e.g., [47, 59, 67])
are designed for discrete-time evolution and the basic parameterized units (i.e., gates) are described
by finite-dimensional matrices. Differential analog quantum computing exploits parameterization
of continuous-time evolution and H(v, t) refers to a parameterized model from a functional space.
Our Monte Carlo integration technique is designed to bridge this technical gap, which is later
integrated with the stochastic gradient descent (SGD) for the entire framework for fast convergence
and robustness against empirical noise. We further illustrate that our quantum stochastic gradient
descent could still work with approximate descriptions of H(v, t) for domain applications.

An analogy could be drawn between our approach and classical deep learning, as summarized
in Table 1. Neural ODEs [41, 10] view the structure of ResNet [27], xn+1 = xn + f(xn, θ), as the
solving of an ordinary differential equation,

d

dt
x(t) = f(x(t),v), (2)

with f(·) as the network layer, v the network parameter, and x(t) the hidden state. This formula
is similar to our system in (1), although we adopt a different parametrization than neural networks.
Similarly, differentiable physics (e.g., [31]), which incorporates physical simulation into learning
process, leverages existing numerical solvers and the autodiff functionality of deep learning with
backpropagation to compute gradients of a physical or dynamical system, then integrates them into a
neural network. This approach has proven to accelerate learning and generalization.

Differentiable analog quantum computing can be deemed as a special form of differentiable physics
at the quantum scale. Similar to the promise of differentiable physics or neural ODEs, we have also
observed the advantageous performance of differentiable analog quantum computing against the
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conventional parameterized quantum circuits by orders of magnitude in major VQA applications
like optimization (Section 4) and control (Section 5). Our auto-differentiation technique in quantum
is however less efficient than classical ones that leverage the chain rule and the forward/backward
propagation. This is due to the quantum no-cloning theorem [65] which prevents us from storing
any arbitrary immediate state during quantum computation. So, we develop a sampling technique to
compute gradients. To sum up, the key contributions of this work include:

• A formulation of differentiable, resource-efficient analog quantum computing framework (Sec. 3),
• A scalable technique of computing gradients by Monte Carlo sampling with SGD (Sec. 3.3),
• Formal analysis on correctness, efficiency, and robustness that showcases exponential reduction of

computational complexity and bounded errors with approximate machine description (Sec. 3.4-3.6),
• Applications of our framework on quantum optimization (Sec. 4) and control (Sec. 5), with demon-

strated advantages by orders of magnitude against parameterized quantum circuits. Our code is
available here: https://github.com/YilingQiao/diffquantum

2 Related work

Learning for dynamics and control. Dynamical systems have widely been used to interpret and
improve the design of machine learning algorithms. Compared to traditional discrete layers, Neural
ODEs [24] demonstrate that continuous modeling of neural network can better learn the continuous
structures [22, 57] with infinite depth [45] and constant memory cost [70]. Besides neural networks,
differentiable physics [16] also computes analytic gradients of classical dynamical systems like rigid
body [14, 53], articulated body [23, 64, 55], soft body [19, 21, 54], and fluids [62, 63, 29, 61]. Those
methods have made great success on design [42], control [28] and system identification [38] tasks in
the macroworld. Our framework, as the first differentiable dynamics for quantum computing, could
have tremendous potential in chemistry and physics applications.

Quantum machine learning & optimal control. Quantum machine learning is a fast-developing
emerging field (e.g., see the survey [5]) where variational quantum algorithms (VQAs) (e.g., see
the survey [4] are one of the most promising candidates for NISQ applications. Quantum optimal
control (succinctly, quantum control) aims to achieve a desired response from the quantum system by
controlling the system parameters [18, 6]. Quantum control theory has empowered the growth of
quantum technologies and found applications in several fields, ranging from molecular chemistry to
quantum computing [56, 13]. The connection between quantum control theory and VQAs has been
discussed recently [43, 46]. Several optimization algorithms have been developed to solve quantum
control problems, including the Krotov method [49], monotonically convergence algorithms [69],
non-iterative algorithms [68], the GRadient Ascent Pulse Engineering (GRAPE) algorithm [34], the
Chopped RAndom-Basis (CRAB) algorithm [8], etc. The development of quantum computing also
opens up the possibility of solving quantum control problems with quantum computers [17, 9]. These
proposals take the approach of hybridizing quantum simulations with classical optimization routines.
Nevertheless, they either do not support gradient-based methods or compute the gradients in a non-
scalable way (e.g., via classical simulation), which significantly limits their performance especially
comparing to ours. Existing pulse-level variational algorithms [39, 46, 40, 15] do not discuss their
direct application to quantum analog machines and can not compute gradients analytically on quantum
machines, while our paper resolves this problem.

3 Differentiable Analog Quantum Computing

Similar to classical dynamical systems, quantum systems also have states, governing equations,
and observations, so there naturally exist plenty of optimization [48], control [12], and learning [5]
problems for quantum computing. Inspired by the success of gradient-based approach in the classical
domain, we propose a differentiable framework to compute the gradients of parametrized analog
control signals on quantum computers, based on a “forward simulation with stochastic sampling”
(see the workflow in Figure 1).

3.1 Quantum preliminaries

A qubit (or quantum bit) is the analogue of a classical bit in quantum computation. It is a two-level
quantum-mechanical system described by vectors in the Hilbert space C2. We use Dirac notation
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Figure 1: The workflow of differentiable analog quantum computing. In this 2-qubit example,
the system starts with an initial ground state ψ0 of dimension 4 = 22 and evolves through the
time following the Schrödinger equation (1). We control the dynamics of this quantum system by
specifying the time-dependent Hamiltonian H(v, t), parameterized by trainable variables v. In the
end of the process, we measure the system and get a real-valued loss value, L. The derivatives
are computed as in the right box. Quantum computers cannot store computational graphs, so we
propose to sample a time t in the forward simulation and apply the parameter shift rule to compute
the gradients. The derivatives are then used in the feedback loop to update v optimizing L.

|ψ〉 to denote quantum states (i.e., unit vectors) ψ inH. For example, the classical “0” and “1” are

represented by |0〉=
[
1
0

]
and |1〉=

[
0
1

]
. One qubit states could be in any linear combination of |0〉 and

|1〉, which is called superposition. An n-qubit state is a unit vector in the Kronecker tensor product ⊗
of n single-qubit Hilbert spaces, i.e.,H = ⊗ni=1C2 ∼= C2n , whose dimension is exponential in n. For
an n by m matrix A and a p by q matrix B, their Kronecker product is an np by mq matrix where
(A⊗B)pr+u,qs+v = Ar,sBu,v. The complex conjugate transpose of |ψ〉 is denoted as 〈ψ|= |ψ〉†
(† is the Hermitian conjugate). Therefore, the inner product of φ and ψ could be written as 〈φ|ψ〉.
The time evolution of quantum states under Schödinger equation is specified by the (time-dependent)
Hermitian matrix H(t) over the corresponding Hilbert space, known as the Hamiltonian of the
quantum system. Typical single-qubit Hamiltonians include the famous Pauli matrices:

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (3)

Similarly, a multi-qubit Hamiltonian can be built from the Pauli group consisting of tensor products
of Pauli matrices. Conventionally we write Xj (Yj , Zj) for a multi-qubit Hamiltonian to indicate the
tensor product of multiple identity matrices while the j-th operand is X (Y , Z), which represents
operations on the j-th subsystem.

Quantum measurement refers to the procedure of extracting classical information from quantum
systems. It is characterized by an Hermitian matrix M called the observable. Measuring a quantum
state |ψ〉 with observable M is modelled as a random variable whose expectation value is 〈ψ|M |ψ〉.

3.2 Problem formulations

Most computational tasks in quantum simulation and control, like finding the ground state of a physics
system, can be formulated as the following optimization problem. Given a quantum observable M
and an initial state |ψ(0)〉 = |ψ0〉, we seek for a parameter vector v by minimizing the loss function

L = 〈ψ(T )|M |ψ(T )〉 , (4)

where the evolution of |ψ(t)〉 from t = 0 to t = T subject to the Schrödinger equation (1). Here,
H(v, t) is a Hamiltonian parametrized by v with form

H(v, t) = Hc +
∑m

j=1
uj(v, t)Hj , (5)

where m is the number of control pulses, Hc is a time-independent Hamiltonian (e.g. Pauli matrices),
Hj are tensor products of Pauli matrices, and the range of uj(v, t) is R. We also require uj(v, t) to
be differentiable with respect to v for any t ∈ [0, T ]. The loss function L is hence differentiable.
We can loosen the restriction of Hj to general time-independent Hamiltonians if we have powerful
enough quantum simulators. We keep it in this paper for the convenience of presenting our algorithm.
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With specific M and |ψ0〉, optimization problem minv L with post-processing can encode many
essential classical and quantum problems. For example, any classical optimization of f(x) over n-bit
integers x can be formulated as M =

∑
x f(x) |x〉 〈x| . More examples like Max-Cut problem and

quantum state preparation are discussed in details in Sec. 4, 5.

Abstract Quantum Analog Machines (AQAMs). We propose AQAMs as our computational model.
An AQAM optimizing the above loss function should be capable of consecutively: (1) evolving under
H(v, t) for any v and time interval [t1, t2] ⊂ [0, T ]; (2) evolving under constant Hamiltonian Hj

for time duration τ (effectively applying unitary transformation e−iHjτ ); (3) preparing |ψ0〉 ; (4)
measuring with observable M . For realistic quantum devices, we need to design AQAMs accordingly.

Remark 3.1. A trivial AQAM directly employs the Hamiltonian of a quantum device as H(v, t),
parameterized by tunable pulses. In most realistic quantum devices, multi-qubit interactions are not
tunable and weak compared to tunable single-qubit Hamiltonians. Thus Hj can be simulated with
high fidelity. Our method is robust against imprecise simulations of H(v, t) and Hj (discussed in
Section 3.6). Hence the trivial AQAMs are usually suitable for realistic quantum devices.

Our formulation of the problem via analog quantum computing is a generalization of the formulation
via parameterized circuits. For example, a series of parameterized Pauli rotation gates RPj (θj) =
exp{−i(θj/2)Pj} can be realized by H(v, t) =

∑
j vj1j(t)Pj with valuation vj = θj/2, where 1j

is the indicator function of [j, j + 1]. However, simulating analog quantum computing via quantum
circuits requires much longer time on nowadays devices [43], hence is unrealistic. So direct analog
quantum computing can exploit near-term quantum devices much better than quantum circuits.

3.3 Quantum stochastic gradient descent

Algorithm 1 Estimating gradients on an AQAM

Classical inputs: bint, bobs (batch sizes), m (number of
control pulses), uj (parametrized pulses), T (evolution
duration), v (parameters)
Quantum inputs: E|ψ0〉 (preparation of initial state),
H (parametrized system Hamiltonian), Hj (pulse-
controllable Hamiltonian), EM (measurement procedure
with observable M )
Output: a gradient estimation of L to v

for k ∈ {1, ..., bint} do
Draw τ ∼ Uniform(0, T )
for j ∈ {1, ...,m}, s ∈ {−1,+1} do

for l ∈ {1, ..., bobs} do
Prepare |ψ0〉 via E|ψ0〉
Evolve under H(v, t) for time [0, τ ]
Evolve under Hj for duration (1 + 3

4
s)π

Evolve under H(v, t) for time [τ, T ]
xl ← observation sample from EM

end for
p̃

sign(s)
j ← 1

bobs

∑bobs
l=1 xl

end for
f̃k ←

∑m
j=1

∂uj
∂v

(v, τ)(p̃−j − p̃
+
j )

end for
∂̃L
∂v
← T

bint

∑bint
k=1 f̃k

Our quantum SGD scheme for computing gra-
dients on AQAMs is illustrated in this section,
with its correctness, efficiency, and robustness
discussed in the following sections.

We borrow the idea of mini-batches from classi-
cal SGD to deal with the gradients, and set two
layers of mini-batches: (1) an integration mini-
batch with size bint; (2) an observation mini-
batch with size bobs. The integration mini-batch
updates parameters according to the estimation
of derivatives on the sampled time. The observa-
tion mini-batch repeats experiments to generate
more precise measurement results. The scheme
is displayed in Algorithm 1.

The forward and backward propagation of our
SGD scheme is depicted in Figure 1. Notice that
the inner loop is the only procedure on quan-
tum machine. The difference of this procedure
compared with the estimation of loss function
L is the inserted evolution under Hj , which is
beneficial in the error analysis in Section 3.6.

With the estimation of gradients, various opti-
mizers designed for classical stochastic gradient
descent are suitable to optimize the objective
function. For example, Adam [35] is used in our
experiments.

3.4 Correctness of gradient estimation

We show that Algorithm 1 generates an unbiased estimation of the gradient ∂L∂v , and hence establishes
its correctness. The proof of the following theorem is postponed to Appendix B.1.

5



Theorem 3.2. The derivative of L to parameters v is

∂L
∂v

=

∫ T

0

dτ
∑m

j=1

∂uj
∂v

(v, τ)
(
p−j (τ)− p+j (τ)

)
. (6)

Here, p±j (t) = 〈ψ0|U†v(t, 0)eiHj(1±
3
4 )πU†v(T, t)MUv(T, t)e−iHj(1±

3
4 )πUv(t, 0) |ψ0〉, where

Uv(t2, t1) denotes the time evolution operator for time interval [t1, t2] under Hamiltonian H(v, t).

One can interpret the above formula as a direct application of the chain rule over functional derivatives
δL
δuj

and partial derivatives ∂uj
∂v , since δL

δuj
(v, t) = p−j (t)− p+j (t) by the parameter shift rule [47, 59],

which is a technique for evaluating commutators of Hermitian by quantum processes.

Algorithm 1 estimates the integral in (6) via Monte Carlo integration (MCI) technique. We prove that
the sampling of MCI has finite variances in Appendix B.1 when uj(v, t) has bounded derivatives to

v. Hence MCI converges of rate O(b
− 1

2

int ) [52]. Other numerical integral methods are also applicable
here for different conditions on uj and Hj , and may have better convergence rates than MCI. We
present it here because MCI has good generalization and simplicity. We also remark that similar
ideas developed in this section have also appeared in [3] in the circuit model, whereas we develop
everything in the analog quantum computing model.

Overall, the forward and backward propagation of differentiation of L are depicted in Figure 1. Since
the parameterization of uj is arbitrary, a typical treatment is using a Fourier basis or a Legendre basis
as the support of the parameterization. Neural networks are also suitable for pulse generation, whose
gradients are easy to compute via backpropagation.

3.5 Scalability analysis

The resource consumption of our classical-quantum hybrid approach has two aspects: the classical
and the quantum sides. The classical computation, as described in Algorithm 1, has O(bintbobsm)
numerical calculations. On the quantum side, the sampling process assessing the loss function
and its derivatives takes O(T ) time each. The total running time on a quantum computer then is
O(bintbobsmT ). Almost on every architecture of quantum devices, the number of control signals m
is at most quadratic in the number of qubits n (see some survey papers [36, 32, 7, 58]), showing
excellent scalability of our approach. We exhibit the scalability of our method for up to 11 qubits
in numerical experiments in Section 4.2. Our approach could in principle be readily applied to the
most advanced existing quantum systems (e.g., [1] with n ∼ 60). This is in sharp contrast to the case
of GRAPE and CRAB algorithms, which rely on classical simulation of quantum systems with an
exponential cost in n. For instance, the associated classical computation cost for n ∼ 60 (i.e. at least
260) is prohibitively high, almost reaching the limit of supercomputers today. Our approach makes it
feasible with only O(n2) complexity.

3.6 Robustness analysis

In this section, we analyze systematic errors of gradient estimation produced of Algorithm 1. Our
goal is to optimize the loss function assessed on a realistic and noisy quantum machine, whose
capabilities of evolving under H(v, t) and Hj are imperfect.

As a concrete example, when using the trivial AQAMs in Remark 3.1, the actual Hamiltonian of the
quantum device may deviate from the description H(v, t) in our understanding, and the simulation
of Hj may be imprecise due to weak non-tunable terms in Hc. We show that our algorithm well
approximates the gradient of loss function of the actual devices.

One major advantage of Algorithm 1 is that even though we have imperfect realization of Hamiltonian
H(v, t) built in the AQAM, the quantum part is executed on the actual quantum machine following
the accurate Hamiltonian Ĥ(v, t). As a result, the output of our algorithm well approximates the
gradient for the actual quantum machine.

Lemma 3.3. Let ∂̂L∂v denote the accurate gradient of the loss function of the quantum machine, ∂L∂v
denote the estimated gradient via Algorithm 1, and ‖·‖ represents the matrix spectral norm [30], then∣∣∣∂L∂v − ∂̂L

∂v

∣∣∣ ≤ 2‖M‖T maxτ∈[0,T ]

∥∥∥∂H∂v (v, τ)− ∂Ĥ
∂v (v, τ)

∥∥∥ .
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The proof of this lemma is detailed in Appendix B.2. In other words, one can use Algorithm 1
to optimize the control pulses without a precise understanding of the machine Hamiltonian, if the
difference H(v, t)− Ĥ(v, t) varies slowly w.r.t. v (a rather mild condition to satisfy).

On the contrary, if one relies solely on the Hamiltonian H(v, t) built in the abstract quantum analog
machine (e.g., the classical simulation of quantum systems in GRAPE or CRAB), the approximation
error could be as large as the difference H(v, t)− Ĥ(v, t) itself, a potentially large term compared
with its derivative w.r.t. v. An example is illustrated in Appendix B.3. This particular advantage
of Algorithm 1 exists exactly because of its execution on the real machine, which is potentially
applicable in general scenarios where only approximate machine descriptions are obtainable.

Similar to the circuit case, the systematic error caused by the imprecise evolution underHj is bounded
by the error sum in each evolution under Hj for duration (1± 3

4 )π, which is usually small.

4 Quantum optimization

Many important optimization problems in both physics and combinatorics that allow variational
solutions can be formulated easily in our framework. For example, finding the ground state of
physics systems can be solved by variational quantum eigensolver (VQE) (e.g. [50, 33]), and
searching for the max-cut of graphs can be approximated by quantum approximate optimization
algorithms (QAOA) [20]. Replacing parameterized circuits by AQAMs in existing variational
quantum algorithms leads to significantly improved convergence based on numerical experiments on
a classical simulator.

4.1 Variational quantum eigensolver

We exhibit our approach via an AQAM comparable to existing circuit VQE in terms of the pulse
duration, with significantly better convergence and hardware efficiency in identifying the ground state
of the H2 molecule.

Problem setting. The Hamiltonian of H2 molecule is expanded with Pauli matrices in the form
HH2

= α0I + α1Z1Z2 + α2X1X2 + α3Z1 + α4Z2, where αi is a scalar weight calculated in [33].
The ground state |ψ〉 has the minimal energy, defined by argmin|ψ〉 〈ψ|HH2

|ψ〉 . This energy function
is computed on real machines by Pauli measurements and linearity.

H

H

Initial State

Input

H

H

Parameters

Modulation Output

Final State

Measure

Objective (Energy)

Time Evolution
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(a) Analog-ansatz-based VQE for the H2 system (b) Ground energy search
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Input

Parameters

Output

Final State

Measure

Objective (Cut)
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Update

1 2

34

1 2

34

(c) Analog-ansatz-based QAOA for a MaxCut problem (d) Cut size maximization

Figure 2: Experiments on quantum optimization problems. (a) Experiment results on the H2

ground energy search. Loss function is the difference of the evaluated energy to the ground energy of
H2, and the lower is the better. Our method with the same (720dt) or less (360dt) pulse duration
converges more than 10 times faster than the circuit model [33]. (b) Experiment results on finding the
max cut for 4 vertices circular graph. Loss function is the difference of the evaluated cut size to the
maximal cut size, the lower the better. Our method outperforms the others by orders of magnitude.
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AQAM design. We propose an IBM-AQAM mimicking IBM transmon system [44] (a detailed
introduction is given in Appendix C), and hence realizable on IBM’s machines. The IBM-AQAM
contains 2 qubits and 4 input pulses ujk(t), and can evolve under

H(t) = Hsys +
∑

j,k∈{0,1}
Mjk(ujk, t)Xj . (7)

Here Hsys is a constant Hamiltonian. The input pulses to IBM quantum devices are ujk(t) which
are complex values with norm less than 1. These pulses are modulated by the built-in modulation
procedureMjk of the IBM’s quantum devices when executed on the real machine. Since the tunable
terms have Hamiltonian Xj , we require the IBM-AQAM to be able to evolve under Xj . This is
realizable on IBM’s machines because in (7), Hsys is much weaker than the microwave input pulses
for each qubit in form Xj , ensuring a high fidelity simulation of Hamiltonian Xj on real machines.
We also require the IBM-AQAM to support initializing in state |00〉 and measuring with M = HH2

,
and these procedures are easy to implement for IBM’s machines. We adopt the parameterization

ujk(v, t) = N
(∑d

l=0
(vjkl0 + ivjkl1) · Pl

(
2t

T
− 1

))
(8)

to make the pulse norms less than 1, where N (0) = 0,N (z) = S(|z|)
|z| z for z 6= 0 is a differentiable

normalization function restricting the norm, S(x) = 1−e−x
1+e−x is the shifted sigmoid function, T is the

duration, and Pl is the l-th Legendre polynomial.

In [33], a parameterized circuit is proposed as layered tunable single qubit rotations and fixed cross-
resonance gates, which are compiled to pulses fitting in (7) and sent to the IBM quantum devices.
Their one-layer experiments over two qubits have cross resonance gates compiled to pulses with
duration around 720dt where dt=0.22ns. We match it in our experiments, setting T = 720dt.
Additionally, we test our approach with only half the duration, T = 360dt.

Comparisons. We compare our approach to circuit VQE, finite difference method, simultaneous
perturbation stochastic approximation (SPSA), and derivative-free methods (CMAES [25] and SLSQP
[37]) with the IBM-AQAM on a classical simulator. The experiment results are displayed in Figure 2b
with a detailed hyper-parameter settings in Appendix D.1.1.

The circuit VQE converges to L = 0.02, while our approach decreases lower: at 400 epoch, with
720dt it decreases to less than 0.002, and with 360dt it decreses to 0.01. In general, our approach is
over 10 times more accurate than the circuit VQE, and 100 times more accurate than the derivative-free
methods. The finite difference method and SPSA do not converge because of the intrinsic randomness
of quantum measurements at relatively small observation mini-batch (bobs = 100), which would be
amplified by the small difference length. With a large enough observation mini-batch, the gradients
evaluated by finite difference method has ∼ 3% relative difference to the gradients evaluated by our
approach. These results exhibit the advantages of our differentiable analog framework compared to
circuit model and derivative-free analog models.2

4.2 Quantum approximate optimization algorithm

We also investigate the application of QAOA to approximate solutions for the MaxCut problem, an
NP-complete problem. With a corresponding AQAM, we achieve a significantly better convergence.

Problem setting. Given a graph G = {E, V } where V is the vertex set and E = {(i, j)} contains
all the edges, our goal is to partition the vertices into two sets (V0, V1) so that the number of edges
between the two sets is maximized. A cut of an n-node graph G is represented by an n-bit string
s = b1b2...bn, with bj ∈ {0, 1} representing in which set the j-th vertex is. We use the computational
basis |s〉 in an n-qubit register to represent the cut s. A maximum cut |s〉 maximizes the expected
cut size 〈s|C |s〉, where C = 1

2

∑
(j,k)∈E Cj,k, Cj,k = I− ZjZk. We test the performance on the

circular graph shown in the leftmost of Figure 2c.

AQAM design. Farhi et al. [20] optimizes a p-layer circuit ansatz U(β, γ) = Πp
j=1e

−iβjBe−iγjC ,
where B=

∑n
j=1Xj . We set p=2 as a baseline.

2We note that the benefits of using analog controls in VQE for H2 molecule are also discovered in a recent
result [46], where the optimization is conducted based on GRAPE-like techniques.
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(a) |+〉 preparation (b)
∣∣Φ+

〉
preparation (c) X gate synthesis (d) CNOT gate synthesis

Figure 3: Quantum Control. We apply our differentiable analog quantum computing framework to
state preparation and gate synthesis. Four methods (SLSQP, CMAES, GRAPE, and ours) are used in
these tasks. In gate synthesis, the accuracy of the built-in gates from IBM Qiskit is shown in dashed
lines. Our method outperforms the other three algorithms in terms of convergence rate and accuracy
by up to orders of magnitude.

To have a fair comparison, we design a Cut-AQAM corresponding to the above circuit: H(t) =
1
2π

∑4
j=1 (uj0(t)Cj,j+1 + uj1(t)Xj).

The input pulses are real functions ujk(t), where we restrict the energy input by requiring |ujk| ≤ 1.
Cut-AQAM natively supports evolving merely under Cj,j+1 or Xj by setting ujk as indicator
functions. We also require it to support initializing in state |0〉 and measuring with observable
C. In our experiment, we set the duration T = 4 within which the circuit QAOA can be realized
by Cut-AQAM. Similar to (8), we parameterize ujk(v, t) by a normalized linear combination of
Legendre’s polynomial.

Comparisons. The experiments are set up in a similar way as in Section 4.1, with details in
Appendix D.1.2. Results are shown in Figure 2d. The circuit QAOA and SLSQP converges to 0.08 at
200 epoch, while our method converges to 2.6× 10−6. Finite difference method, SPSA, and CMAES
do not converge to a value less than 1. The analysis is similar to Section 4.1. Since Cut-AQAM
does not have a high frequency modulation, SLSQP also converges close to 0, but is slower than
our approach. We conduct larger experiments for up to 11 qubits, which shows good scalability and
better performance compared to circuit QAOA. For details, see Figure 5 in Appendix D.1.2.

5 Quantum Control

Quantum control problems fall into two categories: 1) state preparation: to steer a given initial state
into a target final state; 2) gate synthesis: to effect a specific unitary transformation (quantum gate)
in the system. In what follows, we discuss how to formulate and solve quantum control problems
using our differentiable analog quantum computing framework. We demonstrate our methodology by
numerical experiments on the IBM-AQAM.

5.1 State Preparation

To prepare the target state |ψtar〉 from certain fixed initial state, we desire a parameter vector v that
minimizes the loss function defined in (4) with the observable M = I− |ψtar〉 〈ψtar|. We consider
two tasks: 1) to prepare the state |+〉 from |0〉; 2) to prepare the two-qubit maximally entangled state
|Φ+〉 from |00〉.3 In both tasks, the loss function is readily computed as the measurement merely
involves local Pauli operators (see Appendix D.2.1), and can be carried out on the IBM-AQAM.

In the numerical experiments, the pulse duration is fixed as T = 20dt for the |+〉 state, and
T = 1200dt for the |Φ+〉 state. We also compare our method with two gradient-free methods
(SLSQP, CMAES) and the GRAPE algorithm. In both tasks, ours achieves faster convergence than
all other three methods. In the |+〉 task, the final loss value from our method reads approximately
10−5, which is 18 times better than the second best result (i.e., SLSQP), as in in Figure 3 (a). In the
|Φ+〉 task, the final loss value from our method reads 0.034, which is 3 times better than GRAPE and
6 times better than SLSQP, as shown in Figure 3 (b).

3|+〉 = 1√
2
(|0〉+ |1〉) and

∣∣Φ+
〉

= 1√
2
(|00〉+ |11〉).
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5.2 Gate Synthesis

Gate synthesis is more challenging than state preparation because we hope to engineer a full unitary
gate Utar instead of just mapping a single state to a target state. To this end we first specify a set
of pairs S = {(|xj〉 , |yj〉)}kj=1 that completely determines Utar in the sense that no unitary map U

other than Utar satisfies
∣∣∣ 〈yj |U |xj〉 ∣∣∣ = 1 for all j = 1, 2, .., k. Then, we consider the loss function

L = 1
k

∑k
j=1 Lj , where each Lj is defined as in (4) with quantum observable M = I − |yj〉 〈yj |

and initial state |xj〉. When L(v) is close to 0, the time evolution controlled by the parameter v is
approximately Utar.

The X gate and CNOT gate are widely used in digital quantum computing and supported by IBM
Qiskit. We now exemplify our method by recovering these two gates on the IBM-AQAM. In both
cases, the loss function can be readily computed on IBM machines. See Appendix D.2.2 for detail.

The pulse duration is chosen to be comparable to the built-in ones in IBM Qiskit: T = 160dt for X
gate, and T = 1200dt for CNOT gate.4 We apply four methods (SLSQP, CMAES, GRAPE, ours)
to the gate synthesis tasks. The results are shown in Figure 3 (c), (d). In the synthesis of X gate,
the final loss value from our method is 1.17 × 10−7, which is over 104 times more accurate than
the other three methods. In the more involved task of synthesizing CNOT gate, our method returns
a pulse sequence with loss 0.0172, while the results from other methods are no less than 0.2. It is
worth noting that the loss of IBM built-in calibrated pulses evaluated on IBM machines are 0.019 for
X gate and 0.043 for CNOT gate when no measurement error mitigation or state preparation error
mitigation technique is applied.

6 Conclusion and Future Work

We have introduced the first differentiable analog quantum computing framework with a quantum
stochastic gradient descent algorithm that allows directly optimizing the analog pulse control signal
on quantum computers. Since the computation history in a quantum system cannot be stored or reused
for the purpose of computing gradient, we construct a novel formulation for derivatives on quantum
computers based on a forward pass with Monte Carlo sampling. With the proposed algorithm,
our method outperforms prior methods by orders of magnitude with better hardware efficiency on
quantum optimization and control tasks.

Generalization. This work suggests a larger scope of differentiable physics that extends beyond
classical cases to quantum scale, where insights and techniques from one scale could potentially be
translated to the other. For instance, our quantum differentiable framework is largely inspired by the
classical counterpart. We also believe some of our findings for quantum computing could also be
generally applicable in the classical paradigm: e.g., our differentiation technique is likely extendable
to general linear dynamical systems and our robustness analysis also holds in general when only
approximate machine descriptions are known.

Limitations and Future Work. As a first step, we only describe our framework with a few important,
but small, demonstrating examples running on simulators. The great promise of our framework lies in
implementing large-scale VQA applications on real quantum machines and bringing useful quantum
applications to practice. To that end, we plan to incorporate real-world quantum machines into our
framework, and solve large-scale VQA tasks.
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