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Abstract

Variational Bayesian posterior inference often requires simplifying approximations
such as mean-field parametrisation to ensure tractability. However, prior work has
associated the variational mean-field approximation for Bayesian neural networks
with underfitting in the case of small datasets or large model sizes. In this work,
we show that invariances in the likelihood function of over-parametrised models
contribute to this phenomenon because these invariances complicate the structure
of the posterior by introducing discrete and/or continuous modes which cannot be
well approximated by Gaussian mean-field distributions. In particular, we show that
the mean-field approximation has an additional gap in the evidence lower bound
compared to a purpose-built posterior that takes into account the known invariances.
Importantly, this invariance gap is not constant; it vanishes as the approximation
reverts to the prior. We proceed by first considering translation invariances in
a linear model with a single data point in detail. We show that, while the true
posterior can be constructed from a mean-field parametrisation, this is achieved
only if the objective function takes into account the invariance gap. Then, we
transfer our analysis of the linear model to neural networks. Our analysis provides
a framework for future work to explore solutions to the invariance problem.

1 Introduction

Bayesian neural networks (BNNs) have several appealing advantages compared to deterministic
neural networks (NN) such as improving generalization [38], capturing epistemic uncertainty [17],
and providing a framework for continual learning methods [18, 23]. Unfortunately, reaping these
theoretical benefits has so far been impeded [37]. In particular, several practical issues with variational
Bayesian inference methods—which are the de-facto standard technique for scaling inference in
BNNs to large datasets [15, 2]—have been identified to be partially responsible for a performance gap
compared to deterministic NNs[16]. The most common variational approximation of the posterior is a
product of independent Normal distributions, commonly referred to as the mean-field approximation.
It has been observed that mean-field variational BNNs (VBNNs) suffer from severe underfitting for
large models and small dataset sizes [13]. Recent work [5] showed that under certain assumptions
such as an odd Lipschitz activation function and a finite dataset with bounded likelihood, the optimal
mean-field approximation collapses to the prior as the NN width increases, ignoring the data.
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The goal of this work is to shed light on why the mean-field variational approximation collapses
and to provide a new angle for future works to address this shortcoming. To this end, we study
invariances in the likelihood function of overparametrised models and their detrimental effect on
variational inference. For instance, it is well known that NNs exhibit several invariances with respect
to their parameters, including node permutation invariance [19], sign-flip invariance (in the case
of odd activation functions) [29, 3], scaling invariance (in the case of piece-wise linear activations)
[26], and as we will show in Sec. 5, the parameter space of BNNs additionally has subspaces with
translation invariance.

Invariance in the likelihood function does not necessarily pose a challenge if maximum likelihood
point estimation through stochastic gradient descent is used, because convergence to any of the
equivalent optima (resulting from the invariance) suffices for prediction. However, these invariances
are detrimental to the variational Bayesian approach. As a first step to show this, we isolate the impact
of the invariances in Sec. 3. To this end, we construct both a mean-field as well as an invariance-
abiding approximation which explicitly models the invariances by integrating over all transformations
that leave the likelihood invariant. Notably, both aforementioned posterior approximations are
constructed from the same (mean-field) likelihood approximation. We then prove that, under the
conditions outlined in Sec. 3, the mean-field approximation induces the same posterior predictive
distribution as the invariance-abiding approximation. However, we also prove that the ELBO objective
corresponding to these two approximations differs by the KL divergence between both posterior
approximations; we refer to this difference as invariance gap. Importantly, the gap vanishes if both
distributions are identical, which is the case if the mean-field approximation reverts to the prior.

We then demonstrate the detrimental effect of invariances in the likelihood function of an
overparametrised Bayesian linear regression model in Sec. 4. This model is purposely selected
as the canonical model exhibiting (only) translation invariance. We provide a detailed analysis of
this model, including a tractable solution for the invariance-abiding approximation. It turns out that
the optimal parameters w.r.t. the ELBO objective with the invariance-abiding distribution result in
the true posterior. In contrast, posterior approximations with parameters that are optimal w.r.t. the
mean-field ELBO revert to the prior as the number of dimensions increases.

Finally, we transfer our analysis of the linear model to VBNNs in Sec. 5, showing that subspaces
in BNNs exist that exhibit translation invariance. Combined with a previous analysis of the node
permutation invariance (cf. Kurle et al. [19] or App. E of the supplementary material), this provides
the basis for future work to approximate the (generally intractable) invariance gap and thereby
optimise for a tighter and favorable ELBO objective. We start in Sec. 2 by introducing the basic
concepts of VBNNs and recent results on which we build our contribution.

2 Background

2.1 Variational Bayesian Neural Networks

Neural network functional model. Deep NNs are layered models that progressively transform
their inputs in each layer. More formally, an L–layer NN computes algebraically

f(x) = hL

(
wT

L,1zL−1

)
, z1,i = h1

(
wT

1,ix
)
, zl,i = hl

(
wT

l,izl−1

)
,

where the hl : R → R are monotonic transfer functions that introduce non-linearities. Such a network
has n1 + n2 + · · ·+ nL many nodes zl,i, where i indexes the layer-wise vectors zl. These nodes are
each a weighted linear combination of either the input vector x (first hidden layer) or the value of the
hidden units zl (all other hidden layers and the output f(x)). We denote all learnable parameters of
the model by the stacked weight vectors of each layer and node, w = [wT

1,1, . . . ,w
T
L,nL

]T.

Variational Bayesian treatment. If the weights and biases w are treated as random variables
with a prior distribution p(w), then the posterior p(w | D)—induced by the dataset D through the
likelihood function ℓ(w;D) := p(D |w) that is defined via f(x)—is referred to as a Bayesian
neural network (BNN). The variational Bayesian method approximates the posterior by a distribution
qθ(w) ≈ p(w | D) with variational parameters θ, casting inference as an optimization problem

q∗θ(w) = argmin
qθ ∈Q

KL [qθ || p(· | D)] , (1)
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where KL [qθ || p(· | D)] := Ew∼qθ [ln qθ(w)− ln p(w|D)] and Q is a family of distributions over w.
The optimization of (1) is achieved by maximising a lower bound to the (log) model evidence ln p(D),

LELBO (qθ,D) = ln p(D)−KL [qθ || p(· | D)] = Ew∼qθ

[
ln

ℓ(w;D) p(w)

qθ(w)

]
= ELL (qθ, D)−KL [qθ || p] ,

(2)

where ELL (qθ, D) := Ew∼qθ [ln ℓ(w;D)] is the expected log-likelihood.
Definition 1 (Mean-field variational BNN). A mean-field variational BNN (VBNN) is the minimizer
of (1) where Q is the family of Gaussians with diagonal covariance matrix.

2.2 Data-related bound on the KL divergence

The term KL [qθ || p] in (2) admits a data-dependent upper bound that naturally occurs as a
consequence of the finite information provided by a finite dataset in the presence of noise. This result
has been shown in [5] and we recall the result for a Gaussian likelihood with homogeneous noise (for
other likelihood functions, we refer to App. F in [5]).

Assume a VBNN with Gaussian observation noise defined through y = fw(x)+ϵ, with ϵ ∼ N (0, σ2
y),

an isotropic Gaussian prior p(w) = N (w;0, I), and a mean-field variational approximation qθ(w) =
N (w;m,Diag(v)). Define the NN output variance σ2

L

(
x(n)

)
:= Vw∼p

[
f(x(n); w)

]
for some

fixed input x(n), where L indicates the last layer. Then,

KL [qθ || p] ≤ ELL (q∗,D)− ELL (p,D) =

N∑
n=1

σ2
L

(
x(n)

)
+
(
y(n)

)2
2σ2

y

, (3)

where q∗ is a hypothetical approximation that predicts the data perfectly up to the noise variance σ2
y

(see App. F for details). Prior work [5] has used the data-related bound to prove that the predictive
distribution of mean-field BNNs converges to the prior predictive distribution if the network width
is large and the activation function is odd, ultimately resulting in posterior collapse to the prior. In
contrast, we address the question why the mean-field approximation cannot approximate the posterior
by relating this data-related bound to invariances in neural network functions in the following section.

3 Invariance-abiding variational approximation

We develop a framework that enables modelling the invariances in the likelihood and understanding
their impact on the ELBO objective. To achieve this, we approximate the likelihood by a Gaussian
function with variational parameters and marginalise over all transformations to which the true
likelihood is invariant. By taking the product with the prior, we construct an invariance-abiding
posterior approximation qmix which can be related to a mean-field approximation q0 that does not
model invariances. We then describe conditions under which both approximations yield an identical
posterior predictive, while the KL regularisation term of q0 is lower bounded by the KL of qmix.

Variational likelihood and posterior approximations. Non-identifiability implies that the
posterior does not concentrate on a single set of parameters irrespective of the dataset size, because
the same likelihood is assigned to different parameter values [12]. We model this invariance through
transformations t(·, r) to which the likelihood ℓ(w;D) = p(D |w) is invariant via variables r:

∀r ∼ p(r) : ℓ(t(w, r);D)) = ℓ(w;D). (4)

From (4) it follows that the likelihood is also invariant w.r.t. the marginalisation

ℓ (w;D) = Er∼p [ℓ (t (w, r) ;D)] .

We assume that each of the equivalent parametrisations w′ = t(w, r) of the likelihood has the same
probability a priori. For discontinuous transformations such as node permutations (see App. E), p(r)
is a uniform distribution over discrete variables indexing these transformations. For the continuous
translation invariance (see Sec. 4), we model the uniform distribution as a Gaussian with infinite
variance. It is conceivable that the likelihood can be constructed by marginalising over these
transformations of a simpler function ℓ0(w;D) such that ℓ(w;D) = Er∼p [ℓ0(t(w, r);D)]. For
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instance, permutation invariance induces a factorial number of discontinuous modes that are each
equivalent (cf. [19], App. E); and as we show in Sec. 4, the full covariance Gaussian likelihood and
posterior of an over-parametrised Bayesian linear regression model can be constructed from a product
of independent Gaussians. Curiously, it may be sufficient to approximate ℓ0 while taking into account
the known invariances. To this end, we define a Gaussian variational likelihood approximation
g0(w;θ) ≈ ℓ0(w,D), with variational parameters θ. From this single mode approximation, we
model an invariance-abiding likelihood approximation using the same parametrisation through

gmix(w;θ) := Er∼p [g0(t(w, r);θ)] ≈ Er∼p [ℓ0(t(w, r),D)] = ℓ(w;D). (5)
We consider mean-field Gaussians for the prior p(w) and likelihood approximation g0(w;θ), where
θ = {m,λ} are means and variances of g0. We then define a mean-field posterior as the product

q0(w;θ) := Z−1
0 p(w) · g0(w;θ), Z0 =

∫
p(w) · g0(w;θ)dw. (6a)

Similarly, we define an invariance-abiding posterior as the product of prior and invariant likelihood:

qmix(w;θ) := Z−1
mix p(w) · gmix(w;θ), Zmix =

∫
p(w) · gmix(w;θ)dw, (6b)

where Z0 and Zmix are normalisation constants. While q0(w;θ) is a mean-field approximation, the
invariance-abiding approximation qmix(w;θ) is a mixture with infinite continuous or finite discrete
modes depending on the type of invariance. We will describe continuous translation invariance in
Sec. 4; for the discrete node permutation invariance, see App. E of the supplementary material.

Posterior predictive equivalence. Next, we discuss conditions under which we can construct
approximations qmix(w;θ) and q0(w;θ) that yield the same predictive distribution. We first write
the density qmix as an expectation of product densities,

qmix(w;θ) = Z−1
mix p(w) ·

∫
p(r) g0(t(w, r);θ)dr =

∫
p(r)

p(w) · g0(t(w, r);θ)

Zmix
dr.

Then, we assume that there exists a mapping r′ = φ(r) such that
∀r ∼ p(r) : p(w) · g0(t(w, r);θ) = p(t(w, φ(r))) · g0(t(w, φ(r));θ). (7)

The condition in (7) allows us to exploit the invariance property of the likelihood (approximation)
also for each product density q0(t(w, φ(r));θ) ∝ p(t(w, φ(r))) · g0(t(w, φ(r));θ), because then

qmix(w;θ) =

∫
Z0(r)

Zmix
p(r) · q0(t(w, φ(r));θ)dr,

where the normalisation constants are Z0(r) =
∫
p(w) · g0(t(w, φ(r));θ)dw, and Zmix is defined

in (6b). We show that the condition in (7) holds for translation and permutation invariance in App. C.

The second condition is that all invariance transformations t(·, r) must be volume-preserving, i.e.

∀r ∼ p(r) :

∣∣∣∣det ∂t(w, r)

∂w

∣∣∣∣−1

= 1. (8)

Although (7) and (8) are fairly restricting, common invariances such as translation and permutation
invariance fulfil these conditions for Gaussian priors and likelihood approximations (see App. C).
With (7) and (8), we can show the posterior predictive equivalence (see Lemma 1 in App. C)

Ew∼qmix
[ln p(D |w)] = Ew∼q0 [ln p(D |w)] . (9)

Invariance gap. If the conditions in (7) and (8) are met, we also show (see Lemma 2 in App. C)
LELBO (q0,D)− LELBO (qmix,D) = KL [q0 || p]−KL [qmix || p] = KL [q0 || qmix] . (10)

Interestingly, the gap between the two respective ELBO objectives is given exactly by the relative
entropy between the mean-field and invariance-abiding approximation; we therefore refer to it as the
invariance gap. We make the following observation about the detrimental effect of the invariances:
when maximising the standard ELBO LELBO (q0,D) instead of the tighter objective LELBO (qmix,D)
w.r.t. the parameters of the variational likelihood approximation g0(w;θ) (used to construct both
q0 and qmix), we see that the former objective favors solutions where q0 and qmix coincide. This
suboptimal solution is obtained if the mean-field posterior q0(w) and thus also the invariance-abiding
posterior qmix(w) revert to the prior. This is the case if g0(w) is uniform, because then gmix(w) is
uniform as well, and because both posteriors are constructed as the product of prior and likelihood
approximation (cf. (6a)).
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Implication of data-related bound. Since KL [q0 || p] is upper bounded by the best- and worst-case
ELL as described in Sec. 2.2, the invariance gap is also bounded (using (10) and (3)):

KL [q0 || qmix] ≤ KL [q0 || p] ≤ ELL (q∗,D)− ELL (p,D) . (11)

Consequently, this bound puts a constraint on the achievable solutions to the maximisation of the
ELBO objective w.r.t. the variational parameters of the mean-field approximation q0(w;θ). As
discussed above, one specific parametrisation for which the invariance gap vanishes is the mean-
field posterior collapse, q0(w;θ) ≈ p(w). However, to show that the invariance gap not only
admits posterior collapse as a potential parametrisation but indeed incentivises it, we next tackle the
question how the invariance gap behaves for non-collapsed approximations. One particularly relevant
variational parametrisation is the optimal solution w.r.t. the ELBO objective with the invariance-
abiding approximation. In order to tackle this question, we now consider a simple model for which
the relevant distributions and the invariance gap can be computed exactly.

4 Translation invariance in linear models

We study an over-parametrised Bayesian linear regression model as the canonical model that exhibits
translation invariance. The model serves as a useful tool to understand the detrimental effect of
translation invariance since all interesting quantities can be computed analytically, incl. the mean-field
and invariance-abiding distribution defined in (6) and the invariance gap from (10). We show how to
lift results from this canonical model to the more general case of NNs in Sec. 5.

Likelihood model. Consider a linear model with K latent variables w = [w1, . . . , wK ]
T and

assume that we have N observations of variables y given dependent inputs x. To simplify the setting,
we will assume that x = 1 (see App. D for the more general case). We further assume that the
observation depends only on the inner product with the inputs and additive Gaussian noise. That is,
y = 1

K1Tw + ϵ, ϵ ∼ N
(
0, σ2

y

)
. Note that any change in w which leaves the sum of the elements

unaffected does not change the likelihood. In general, we can model this translation invariance using
a K − 1 dimensional vector ∆ ∈ RK−1 and observing that

1Tw = 1T (w+B∆) , B :=

[
I

−1T

]
, (12)

since 1TB∆ = 0. This over-parametrised model exhibits translation invariance t(w,∆) = w−B∆.

Prior. We assume a Gaussian prior p (w) = N (w;µ,Σ) with diagonal covariance Σ =
Diag

(
σ2
)
, where we consider σ2 = K · σ2

0 · 1 proportional to the number of dimensions K,
such that the predictive variance V

[
1
K

∑
k wk + ϵ

]
is constant w.r.t. K. Another way to view this is

to model a prior over parameters that induces the same prior over functions for different K.

Posterior. The posterior of this Gaussian linear model can be computed as (see App. D.3)

p(w |y) = N
(
w;m∗

p,V
∗
p

)
, V∗

p =

(
N

K2σ2
y

11T +Σ−1

)−1

, m∗
p = V∗

p

∑
i yi

Kσ2
y

1 . (13)

As can be seen, the resulting posterior has full covariance with a diagonal plus rank-1 matrix. We will
now show that we can construct this posterior from the prior and a mean-field Gaussian approximation
of the likelihood by marginalising over all translations ∆ ∼ p(∆) to which the likelihood is invariant.

4.1 Mean-field parametrisation of the likelihood function

Next, we construct the mean-field and invariance-abiding posterior approximations defined in (6)
from the prior defined above and the mean-field likelihood approximation with locations m and
variances λ. We model that the likelihood is translation invariant by computing the marginal from (5)
and considering p(∆) = N

(
∆;0, β2I

)
with β → ∞ as the uniform distribution over all translations:

gmix (w;θ) =

∫
g0 (t(w,∆);θ) · p (∆) d∆

= lim
β→∞

∫
N (w;m+B∆, Diag (λ)) · N

(
∆;0, β2I

)
d∆ =: N (w;mmix,Vmix) .
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Writing the uniform distribution as the limiting case of a Gaussian with infinite variance allows us
to compute the integral analytically. As shown in App. D, the resulting function is a multivariate
Gaussian with a degenerate rank-1 covariance matrix and the same location parameter as g0(w):

mmix = m, V−1
mix =

1

1Tλ
11T . (14)

However, the invariance-abiding posterior is non-degenerate, and it can be computed efficiently as

qmix (w; θ) = N
(
w; µ+

1T (m− µ)

1T (λ+ σ2)
σ2, Diag

(
σ2
)
− 1

1T (λ+ σ2)
· σ2

(
σ2
)T
)
. (15)

As can be seen, this covariance matrix is not diagonal; it has an additive rank-1 term that vanishes as
λ → ∞. Interestingly, the location parameter of qmix is translated from the prior location µ along the
direction of the prior variance vector σ2. This is because gmix is uniform along the K−1 dimensions
hyper-plane determined by its normal vector 1. Taking the Gaussian product then translates the
location in the direction Diag(σ2)1 = σ2. Note also that the invariance-abiding posterior can be
written in the same form as the true posterior in (13) (see App. D.3). The optimal invariance-abiding
posterior is thus the true posterior. We visualise the two respective posterior approximations and the
corresponding likelihood in Fig. 3 of App. D with two different parametrisations (cf. Sec. 4.3).

4.2 Invariance gap

To quantify the detrimental effect of the translation invariance in the considered linear model we now
compute the invariance gap in (11). Note again that we assume a scaled standard normal prior with
variance σ2 = Kσ2

0 · 1. We simplify the form of the KL divergence by assuming that all variances
and means take the same value in the likelihood (and thus also in the posterior) approximation, i.e.

∀k : λk = λ̂, mk = m̂, σk = σ̂, µk = µ̂.

This choice is motivated by the fact that the posterior approximation is a function of the sum 1Tλ
only (cf. (15)), and, hence, it makes no difference for qmix. However, since the prior variance is
proportional to 1, the Gaussian likelihood resulting in the highest ELBO for the approximation q0
also has a variance vector proportional to 1. Using this assumption, the invariance gap is

KL [q0 || qmix] =
K − 1

2

[
ln

(
σ̂2 + λ̂

λ̂

)
+

λ̂

σ̂2 + λ̂
− 1

]
. (16)

This is a convex function in ϕ = σ̂2+λ̂
λ̂

with a minimum at ϕ = 1; it is minimised as λ̂ → ∞. It is
however not evident whether the gap has a large magnitude compared to the rest of the regularisation
term and over-regularises in practice. In the next section, we therefore analyse this term at the optima
for the mean-field and the invariance-abiding approximations defined in (17). The corresponding
invariance gaps are visualised in Fig. 1 where it can be seen that the invariance gap grows linearly
when using the optimal parameters of the invariance-abiding distribution and the unattainable data-
related bound is reached quickly, thus preventing this optimum if (17b) is optimised instead of (17a).

4.3 Optimal mean-field and invariance-abiding parametrisations

To better understand the detrimental effect of the invariance gap, we now analyse the ELL and KL
terms of the ELBO objective for the mean-field and invariance-abiding variational approximations,
respectively. We compare these terms for both distributions with the parameters optimized for both
posterior distributions, giving 2 × 2 combinations. We denote the optimal parameters w.r.t. the
invariance-abiding approximation and the mean-field approximation, respectively, as

θ∗
mix = argmax

θ
LELBO (qmix (· ; θ) ,D) , (17a)

θ∗
0 = argmax

θ
LELBO (q0 (· ; θ) ,D) . (17b)

Perhaps the simplest way compute these optimal parameters is to notice that qmix in (15) can be
written in the same form as the true posterior and then simply read out the optimal parameters. This
is shown in App. D.3; the resulting optimal variational parameters are

g0(w ; θ∗
mix) = N (w;m∗

mix,Diag (λ∗
mix)) , m∗

mix =
1

N

N∑
n=1

y(n) · 1, λ∗
mix =

Kσ2
y

N
· 1. (18)
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(a) N = 10 observations.
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(b) N = 100 observations.

Figure 1: Invariance gap evaluated at different optima (cf. (17)), i.e. KL [q0(·; θ∗
mix) || qmix(·; θ∗

mix)]
and KL [q0(·; θ∗

0) || qmix(·; θ∗
0)]. Prior variances are σ2 = K · 1, where K are the dimensions; the

noise variance is σ2
y = (2πe)

−1; all observations y = 1 and x = 1 are identical. As K increases, the
invariance gap vanishes in case of the optimal parameters θ∗

0. In contrast, the gap for θ∗
mix, which

induces the true posterior predictive, grows linearly. As the data-related bound (cf. Sec. 2.2) can not
be exceeded by the optimal parameters, θ∗

0 can not coincide with the optimal θ∗
mix.

The optimal parameters for the mean-field posterior can also be computed analytically, since the
Gaussian mean-field distribution that minimises the KL divergence to the multivariate Gaussian true
posterior is known [34]. The resulting optimal parameters of the mean-field likelihood are

g0(w ; θ∗
0) = N (w;m∗

0,Diag (λ∗
0)) , m∗

0 = m∗
mix, λ∗

0 =
K2σ2

y

N
1. (19)

As can be seen, the two respective optimal parameters differ by the factor K in the likelihood variance.
We then construct the two respective posterior approximations q0 and qmix with these two optimal
parameters and compare the 2× 2 combinations in Fig. 2, where we visualise the ELBO terms.

Note again that we model prior variances σ2 = Kσ2
0 · 1 such that prior and posterior over functions

are identical for any K. Due to this choice and since qmix(w;θ∗
mix) approximates the true posterior

exactly, it does not suffer from over-parametrisation. This can be seen by the loss terms in Fig. 2 being
constant in K. In contrast, since λ∗

0 depends quadratically on K and σ2 only linearly, qmix(w;θ∗
0)

collapses to the prior as K → ∞. This can be seen e.g. by the shrinking KL regularisation (Fig. 2a)
and ELL (in 2b) term. As a consequence, and in line with Coker et al. [5], the posterior predictive
variance of the optimal mean-field approximation reverts to the prior predictive variance (Fig. 2d).

We have shown that—in the simplified setting of a linear model with dependent observations—the
consequence of not handling translation invariance is indeed posterior collapse as K → ∞, while
modelling the invariance coincides with the true posterior. An important observation and key takeaway
is that, while we need to optimise for (17a), the mean-field posterior approximation q0(w;θ∗

mix) is
sufficient for prediction. Indeed, for the linear model, we could compute the invariance gap exactly
and thereby correct the ELBO objective for the invariances of this model. For more complex non-
linear models such as BNNs, this section may serve as a direction for approximating the invariance
gap. To this end, the next section describes the layer-wise translation invariance exhibited by BNNs.

5 Translation invariance in Bayesian neural networks

Let us now go back to the general NN model in Sec. 2.1. In order to describe the set of all invariances,
note that for each node zl,j in layer l (or the output node y), there is a subspace that keeps the value
zl,j (or y) invariant when using the translation-invariance model in (12), because the value itself only
depends on the actual activation zl−1 (or the input x).

More formally, the following equations model all translation invariances of a NN at a data point x:

∀∆L,1 : f(x) = hL

(
wT

L,1zL−1

)
= hL

((
wL,1 +BzL−1

∆L,1

)T
zL−1

)
, (20)

∀j ∈ {1, . . . , nl},∆l,j : zl,j = hl

(
wT

l,jzl−1

)
hl

((
wl,j +Bzl−1

∆l,j

)T
zl−1

)
, (21)

∀j ∈ {1, . . . , n1},∆1,j : z1,j = h1

(
wT

1,jx
)
= h1

(
(w1,j +Bx∆1,j)

T
x
)
, (22)
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Figure 2: ELBO loss terms and predictive variance for different posterior approximations. Lines/dots
indicate the invariance-abiding/mean-field posterior, respectively. Red/blue indicates the optimal
invariance-abiding/mean-field parameters (cf. (17)). Prior variance is σ2 = K ·1, and σ2

y = 1/ (2πe);
we used N = 10 identical observations with value y = 1 and inputs x = 1. Notably, both posterior
approximations yield the same predictive distribution as can be seen by the ELL (b) and predictive
variance (d). The variance of the mean-field approximation reverts to the prior variance as K → ∞.

where the layer index l ranges from 2, . . . , L− 1 and Bz is given by

Bz :=

[
I

− z1
zk

· · · − zk−1

zk

]
.

In order to efficiently compute the invariance-abiding likelihood gmix, note that it also decomposes
over the NN layers and the associated parameters as follows: For the n1 nodes in the first layer we have

qmix(w1,j) = Ex

[
N

(
w1,j ;µ+

xT (m− µ)

xT (V +Σ)x
(Σx) ,Σ− 1

xT (V +Σ)x
(Σx) (Σx)T

)]
, (23)

P (z1,j) = Ex

[
Ew∼qmix(w1,j)

[
h1

(
wTx

)]]
, (24)

where the outer expectation is taken over x ∼ p(D) and p(D) is the empirical distribution over the
training set D, and where m, V, µ and Σ are constrained to the parts of the overall weight vector that
correspond to w1,j . Now, since the invariance-abiding mechanism for nodes in layer l only depends
on the value zl−1 of the hidden units in layer n− 1 (see (20) and (21)), we have

qmix(wl,j) = Ez

[
N

(
wl,j ;µ+

zT (m− µ)

zT (V +Σ) z
(Σz) ,Σ− 1

zT (V +Σ) z
(Σz) (Σz)T

)]
, (25)

P (zl,j) = Ez

[
Ew∼qmix(wl,j)

[
hl

(
wTzl−1

)]]
, (26)

where again m, V, µ and Σ are constrained to the parts of the overall weight vector that correspond
to wl,j and the expectation over z is taken with respect to z ∼ P (zl−1).

Thus, the invariance-abiding approximation could e.g. be computed with a layer-by-layer iterative
optimisation: First, given data x ∼ p(D) and prior p(w), use (23) and point estimates for all weight
vectors in later layers to optimise the mean m and diagonal covariance V of the weights in the first
layer, i.e., {w1,j |j = 1, . . . , n1}. Then, we can use (24) to generate P samples z1,n of the activations
of the first layer under the (now fitted) optimal qmix({w1,j}). Next, for each of these samples z1,n,
we can use (25) and point estimates for all weight vectors in later layers to optimise the mean m and
diagonal covariance V of the weights in the second layer and average them for the optimal qmix of
the weights in the second layer. Finally, we can use (26) to generate samples z2,i for the second layer.
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This process is repeated until the last layer, and iterated until qmix(w) converges. The complexity of
this procedure is no larger than optimising the weight matrices of a single layer, because all previous
layers are fully characterised by the distribution of the latent activations zl of the hidden layers.

6 Related work

Poor empirical performance of VBNNs has been reported in several previous works, e.g., [37, 16, 33].
For instance, it has been shown that single-layer mean-field VBNNs with ReLU activations can not
have large predictive uncertainty between regions of low uncertainty [10]. In contrast, Farquhar
et al. [8] argue that mean-field approximations are expressive enough for deep BNNs; they prove
a universality result that the predictive distribution of mean-field approximations of BNNs with at
least 2 layers of hidden units can approximate any true posterior distribution over function values
arbitrarily closely. This result seems in conflict with our work and [5], who show that the predictive
distribution of mean-field VBNNs reverts to the prior predictive distribution as the network width
increases. The discrepancy between these two results is resolved by noting that Farquhar et al. [8]
only shows that the expressive power of the model is large enough but not that the approximate
inference algorithms will converge to this solution. Our work sheds light on why the mean-field
approximation fails to approximate expressive posteriors via the invariance gap in the ELBO. Our
framework to model the invariances is similar to and extends previous preliminary works [19, 22].

Surprisingly, restricting the parametrisation of the variational posterior results in competitive or
even better performance [30, 21, 31, 7]. For example, Dusenberry et al. [7] proposes a variational
approximation only for rank-1 factors, resulting in inference of a lower-dimensional subspace. The
outer product of these low-rank factors perturb a weight matrix that is treated deterministically
through maximum a posteriori (MAP) estimation. This approach avoids the invariance problem
associated with variational Bayesian inference since the MAP estimate is not impeded by this problem
and the subspace of the variational weights do not possess the same invariances.

Other attempts have proposed to approximate the posterior predictive directly, thereby circumventing
the non-identifiability issue [28, 20, 36]. While these approaches have shown promising empirical
performance, estimating the KL regularisation term in function space is more complicated and can
even be ill-defined due to regions of zero prior probability mass [4]. In a similar vein, previous work
also proposed to map the BNN prior to a Gaussian process (functional) prior [9, 32]. Another
promising direction to circumvent invariance in layered models are deep kernel processes, in
which Gram matrices are progressively transformed by nonlinear kernel functions [1]. The Gram
matrices, which are treated as the random variables, are invariant to permutations/rotations of the
weights/features.

More broadly, (non-)identifiability of parameters and latent variables in probabilistic models is a
widely-studied topic both from frequentist [27] and Bayesian perspectives [6, 25, 11, 24]. In a recent
example, Wang et al. [35] attributed posterior collapse in the context of variational auto-encoders to
non-identifiability of latent variables.

7 Conclusion

We have associated the posterior collapse phenomenon of mean-field VBNNs with invariances in
the likelihood function, in particular translation invariance. While the invariance does not affect
the predictive distribution, the approximations of the posterior—which abide and do not abide the
invariance—differ in the KL regularisation term and consequently in the tightness of the ELBO
objective. We proved that the objectives of the two approximations differ by the relative entropy (KL)
between the standard mean-field approximation and the invariance-abiding distribution. We related
this to a data-related bound on the KL regularisation, which prevents fits for which the gap is large.

We studied over-parametrised Bayesian linear regression as the canonical model that exhibits
translation invariance and for which the relevant terms can be computed exactly. A detailed analysis
of this model confirms our hypothesis that the invariance leads to a significant additional gap in the
ELBO objective compared to approximations that model the invariance. It is this very gap which
prevents mean-field approximation to achieve the same fit as an invariance-abiding approximation
and instead leads to a collapse of the posterior variances to the prior variance.
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While we can compute the invariance gap for the over-parametrised linear model, we have not yet
identified a computationally efficient procedure for layered models or for other invariances. However,
our work provides the mathematical tools to address over-regularisation due to invariances. Future
work will focus on approximations of the invariance gap in order to correct the ELBO objective for
translation and permutation invariances in general neural network functions.
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A Notation

We denote matrices and vectors with bold upper- and lower-case letters, e.g. a and A. In order to
address an element of a vector or matrix, we will use non-bold letters, e.g. x = [x1, x2, . . . , xN ]T.
We will use the superscript T to denote a transpose of a vector and |A| to denote the determinant of
the matrix A. We use Diag(a) to denote the diagonal matrix constructed from a vector, and diag(A)
to denote the diagonal vector of a matrix. We use the notation N (x;m,V) to denote the density of
the Gaussian distribution given by

N (x;µ,Σ) := |2πΣ|−
1
2 · exp

(
−1

2
(x− µ)

T
Σ−1 (x− µ)

)
.

An alternative representation of the Gaussian distribution is in terms of its canonical parameters
η = Σ−1µ and Λ = Σ−1:

G (x;η,Λ) := exp

(
xTη − 1

2
xTΛx− 1

2
ηTΛ−1η − 1

2
ln
(∣∣2πΛ−1

∣∣)) .

Note that G (x;η1,Λ1) · G (x;η2,Λ2) ∝ G (x;η1 + η2,Λ1 +Λ2) which renders this canonical
parameterisation very useful when considering the multiplication of Gaussian densities. Furthermore,
we use Ew∼p [f(w)] to denote the expectation of the function f(·) when w is drawn from the
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distribution p. Also, we use Vw∼p [f(w)] to denote the variance of the function f(·) when w is
drawn from the distribution p defined by

Vw∼p [f(w)] := Ew∼p

[
(f(w)− Ew′∼p [f(w

′)])
2
]
.

B Convolution of Gaussian Measures

Theorem 1 (Convolution of Gaussian Measures). For any A ∈ Rn×k and b ∈ Rn it holds that
p (x|θ) = N (x;Aθ + b,V) , p (θ) = N (θ;µ,Σ) ,

implies that
p (θ|x) = N

(
θ;C−1

(
ATV−1 (x− b) +Σ−1µ

)
,C−1

)
, (27)

p (x) = N
(
x;Aµ+ b,V +AΣAT) , (28)

C = ATV−1A+Σ−1 .

Proof. Let’s start by proving (27). First, we note that

p (θ|x) = p (x|θ) · p (θ)∫
p
(
x|θ̃
)
· p
(
θ̃
)
dθ̃

=
N (x;Aθ + b,V) · N (θ;µ,Σ)∫

N
(
x;Aθ̃ + b,V

)
· N

(
θ̃;µ,Σ

)
dθ̃

,

where only the numerator depends on θ. Thus, the numerator is given by

c · exp
(
−1

2

[
((x− b)−Aθ)

T
V−1 ((x− b)−Aθ) + (θ − µ)

T
Σ−1 (θ − µ)

])
,

where c = |2πV|−
1
2 ·|2πΣ|−

1
2 is independent of x and θ. Using Theorem A.86 in [14], this quadratic

form in θ can be rewritten as

c · exp
(
−1

2

[
(θ − c)

T
C (θ − c) + d (x)

])
,

where
C = ATV−1A+Σ−1 ,

Cc = ATV−1 (x− b) +Σ−1µ ,

d (x) = (x− b−Aµ)
T (

V +AΣAT)−1
(x− b−Aµ) . (29)

Since d(x) does not depend on θ, it get incorporated into the normalization constant which proves
(27).

In order to prove (28), note that

p (x) =

∫
p
(
x|θ̃
)
· p
(
θ̃
)
dθ̃

=

∫
N
(
x;Aθ̃ + b,V

)
· N

(
θ̃;µ,Σ

)
dθ̃

=

∫
c · exp

(
−1

2

[(
θ̃ − c

)T
C
(
θ̃ − c

)
+ d (x)

])
dθ̃

= c · exp
(
−1

2
d (x)

)
·
∫

exp

(
−1

2

[(
θ̃ − c

)T
C
(
θ̃ − c

)])
dθ̃

= c · exp
(
−1

2
d (x)

)
·
∣∣2πC−1

∣∣ 12
= c̃ · exp

(
−1

2

(
(x− (Aµ+ b))

T (
V +AΣAT)−1

(x− (Aµ+ b))
))

= N
(
x;Aµ+ b,V +AΣAT) ,

where the penultimate line follows again from Theorem A.86 in [14] with d(x) defined in (29).

Theorem 2 (Woodbury formula). Let C be an invertible n × n matrix. Then, for any A ∈ Rn×k

and B ∈ Rk×n,

(C+AB)
−1

= C−1 −C−1A
(
I+BC−1A

)−1
BC−1 .
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C Invariance gap and posterior-predictive equivalence

In this section, we show that the posterior predictive distribution of the mean-field and invariance-
abiding distribution are identical (for identical parametrisation of the likelihood approximation) as
stated in (9), and that the difference in the respective KL regularisation terms can be quantified by the
KL defined in (10).

We first discuss the conditions from (7) and (8). The goal is to use the invariance property of the
likelihood function (4). Unfortunately, the prior does not generally have the same invariance. Yet, the
mean-field approximate posterior defined as the product between prior and likelihood approximation
can still have the invariance property, as we show for permutation and translation invariance with
mean-field Gaussian likelihood approximation and prior. This condition is defined in (7) for each
mean-field posterior in the integral over r:

qmix(w;θ) = Z−1
mix p(w) ·

∫
p(r) g0(t(w, r);θ)dr =

∫
p(r)

1

Zmix
p(w) · g0(t(w, r);θ)dr

=

∫
p(r)

1

Zmix
p(t(w, φ(r))) · g0(t(w, φ(r));θ)dr

=

∫
p(r)

Z0(r)

Zmix
q0(t(w, φ(r));θ)dr,

where Zmix and Z0(r) are normalisation constants. The second line introduced the assumption that
there exists a surjective mapping r′ = φ(r) such that the product of the untransformed prior p(w)
and the transformed likelihood approximation g0(t(w, φ(r));θ) are identical to the product of the
transformed prior and likelihood approximation with r′, i.e. as stated in the main text,

∀r ∼ p(r) : p(w) · g0(t(w, r);θ) = p(t(w, φ(r))) · g0(t(w, φ(r));θ).

This condition may seem quite limiting, however, we show that this condition holds for permutation
invariance with the isotropic Gaussian prior and for translation invariance with Gaussian priors and
Gaussian likelihood approximation.

Condition (7) and (8) for permutation invariance. Consider first permutation invariance
(cf. App. E). It is easy to see that for the isotropic Gaussian prior: p(w) = p(Prw). Also, note that
G(Pw; η,Λ) = G(w;PTη,PTΛP). Thus, the product between the untransformed Gaussian prior
and the permuted Gaussian likelihood approximation is

p(w) · g0(Pw) = p(Pw) · g0(Pw) = G(Pw;ηp,Λp) · G(Pw;ηg,Λg) (30)

= G(w;PTηp,P
TΛpP) · G(w;PTηg,P

TΛgP) (31)

∝ G(w;PT(ηp + ηg),P
T(Λp +Λg)P) (32)

= G(Pw;ηp + ηg,Λp +Λg) = q0(Pw). (33)

Hence, for permutation invariance with the isotropic Gaussian prior and Gaussian likelihood
approximation, we have

∀r ∼ p(r) : p(w) · g0(Prw) = p(Prw) · g0(Prw) ∝ q0(Prw). (34)

The invariance transformation is thus simply t(w, φ(r)) = t(w, r) = Prw (i.e. we do not need the
mapping φ). This is because the prior has no preference over the permutation-induced modes of the
likelihood. Thus, we have

∀r ∼ p(r) :

∣∣∣∣det ∂t(w, r)

∂w

∣∣∣∣−1

=

∣∣∣∣det ∂Prw

∂w

∣∣∣∣−1

= |detPr|−1
= 1 .

Condition (7) and (8) for translation invariance. Next, consider translation invariance, and note
that N (w− v;µ,Σ) = N (w;µ+ v,Σ), and, consequently, G(w− v;η,Λ) = G(w;η +Λv,Λ).
It is easier to show directly that the product between the untransformed Gaussian prior and translated
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Gaussian likelihood approximation can be written as a Gaussian posterior translated, because:

p(w) · g0(w − v) = G(w;ηp,Λp) · G(w − v;ηg,Λg) (35)

= G(w;ηp,Λp) · G(w;ηg +Λgv,Λg) (36)

∝ G(w;ηp + ηg +Λgv,Λp +Λg) (37)

= G
(
w;ηp + ηg +

I︷ ︸︸ ︷
(Λp +Λg) (Λp +Λg)

−1
Λgv,Λp +Λg

)
(38)

= G
(
w − (Λp +Λg)

−1
Λgv;ηp + ηg,Λp +Λg

)
(39)

= q0

(
w − (Λp +Λg)

−1
Λgv

)
. (40)

Since the precision matrices are diagonal, ((Λp +Λg)
−1

Λg)Br = B((Λp +Λg)
−1

Λg)r.
Consequently, for the translation invariance g0(w) = g0(t(w, r)) = g0(w −Br), we have

∀r ∼ p(r) : p(w) · g0(w −Br) = p (w −Br′) · g0 (w −Br′) ∝ q0 (w −Br′) , (41)

where r′ = φ(r) =
(
(Λp +Λg)

−1
Λg

)
r. Thus, we have

∀r ∼ p(r) :

∣∣∣∣det ∂t(w, r)

∂w

∣∣∣∣−1

=

∣∣∣∣det ∂(w −Br)

∂w

∣∣∣∣−1

= |det I|−1
= 1 .

Lemma 1. For any distribution p(w), likelihood approximation g0(w;θ), q0(w;θ) as defined in (6),
qmix(w;θ) as defined in (6b) and p(r), assume there exists a mapping φ : r 7→ r′ such that

∀r ∼ p(r) : p(w) · g0(t(w, r);θ) = p(t(w, φ(r))) · g0(t(w, φ(r));θ) , (42)

as well as

∀r ∼ p(r) :

∣∣∣∣det ∂t(w, r)

∂w

∣∣∣∣−1

= 1 . (43)

Then,

Ew∼qmix(w; θ) [ln p(D |w)] = Ew∼q0(w; θ) [ln p(D |w)] . (44)

Proof. The lemma can be proven by applying the change-of-variables formula and using the
invariance property (42) of g(·;θ):

Ew∼qmix(w; θ) [ln p(D |w)] (45)

=

∫ qmix(w)︷ ︸︸ ︷∫
p(r)

Z0(r)

Zmix
q0(t(w, φ(r)); θ) dr ln [p(D |w)] dw (46)

=

∫
p(r)

Z0(r)

Zmix

∫
q0(t(w, φ(r)); θ) ln [p(D |w)] dw dr (47)

=

∫
p(r)

Z0(r)

Zmix

∫
q0(t(w, φ(r)); θ) ln [p(D | t(w, φ(r)))] dw dr (48)

=

∫
p(r)

Z0(r)

Zmix

∫
q0(w; θ)

1︷ ︸︸ ︷∣∣∣∣det ∂t(w, φ(r))

∂w

∣∣∣∣−1

ln [p(D |w)] dw dr (49)

=

1︷ ︸︸ ︷∫
p(r)

Z0(r)

Zmix
dr

∫
q0(w; θ) ln [p(D |w)] dw (50)

= Ew∼q0 [ln p(D |w)] . (51)

where the second line uses (42), the third line changes the order of integration (Fubini’s theorem), the
fourth line uses the invariance property ln p(D |w) = ln p(D | t(w, φ(r))), the fifth line then applies
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the change of variables theorem together with (43), the sixth line then uses again the invariance
property of the log likelihood, and the seventh line notes that the integral over the normalisation
constants Z0(r) cancels with the normalisation constant Zmix of the invariance-abiding posterior,
since ∫

p(r)Z0(r)dr =

∫ ∫
p(r) p(w) · g0(t(w, r)) dwdr (52)

=

∫
p(w) ·

∫
p(r) g0(t(w, r)) drdw (53)

=

∫
p(w) · gmix(w) dw = Zmix, (54)

where we changed the integration order, resulting in the normalisation constant of the invariance-
abiding likelihood approximation.

Lemma 2. For any distribution p(w), likelihood approximation g0(w;θ), q0(w;θ) as defined in
(6), qmix(w;θ) as defined in (6b) and p(r), assume there exist two mappings t : w × r 7→ w′ and
φ : r 7→ r′ such that (42) and (43) hold. Then,

KL [q0 || p]−KL [qmix || p] = KL [q0 || qmix] . (55)

Proof. First, note that

KL [q0 || p] = Ew∼q0 [ln [Z0 g0(w)]] , (56)
KL [qmix || p] = Ew∼qmix

[ln [Zmix gmix(w)]] . (57)

Now, in the latter KL, we expand the distribution qmix(w) as in (42),

KL [qmix || p] =
∫ qmix(w)︷ ︸︸ ︷∫

p(r)
Z0(r)

Zmix
q0(t(w, φ(r)); θ)dr ln [Zmix gmix(w)] dw (58)

=

∫ ∫
p(r)

Z0(r)

Zmix
q0(t(w, φ(r)); θ) ln [Zmix gmix(w)] drdw (59)

=

∫ ∫
p(r)

Z0(r)

Zmix
q0(t(w, φ(r)); θ) ln [Zmix gmix(t(w, φ(r)))] drdw (60)

=

∫ ∫
p(r)

Z0(r)

Zmix
q0(w; θ)

1︷ ︸︸ ︷∣∣∣∣det ∂t(w, φ(r))

∂w

∣∣∣∣−1

ln [Zmix gmix(w)] drdw (61)

=

∫
q0(w; θ)

1︷ ︸︸ ︷∫
p(r)

Z0(r)

Zmix
dr ln [Zmix gmix(w)] dw (62)

=

∫
q0(w; θ) ln [Zmix gmix(w)] dw′ , (63)

where the third line uses the invariance property of the invariance-abiding likelihood approximation,
∀r : gmix(t(w, φ(r))) = gmix(w), the change of variables formula is applied to the fourth line for
the volume-preserving transformation, and the fifth line re-arranges the integration, noting that the
integral over normalisation constants equals one.

The proposition follows by taking the difference between the regularisation terms corresponding to
the respective ELBO objectives:

KL [q0 || p]−KL [qmix || p] = Ew∼q0

[
ln

Z0 g0(w)

Zmixgmix(w)

]
(64)

= Ew∼q0

[
ln

Z0 p(w)g0(w)

Zmixp(w)gmix(w)

]
= KL [q0 || qmix] . (65)
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D Translation invariance in linear models

In this section, we derive the results from Sec. 4 for a Bayesian linear regression with a single input
vector x and corresponding target observation y. The result stated in Sec. 4 for x = 1 follows as a
special case.

We assume we have K latent variables w = [w1, . . . , wK ]
T and one observation x = [x1, . . . , xK ]

T.
We further assume that the likelihood p (y, |w,x) only depend on their inner product, that is, xTw.
Then we know that any change in w, which leaves the sum of the elements weighted by x unaffected,
does not change the likelihood. For example w′ = [w1 + ∆, w2 − ∆ · x1

x2
, w3, . . . , wK ]T has the

exact same likelihood than w = [w1, w2, w3, . . . , wK ]T. In general, we can model this translation
invariance using an K − 1 dimensional vector ∆ ∈ RK−1 and noting that

xTw = xT

w+

[
I

−x−1
K xT

K−1

]
︸ ︷︷ ︸

B

∆

 ,

where we used xK−1 := [x1, . . . , xK−1]
T because

xTB∆ =
[
xT
K−1 xK

] [ ∆
−x−1

K xT
K−1∆

]
= 0 .

D.1 Likelihood Model

Now let us assume that we approximate the likelihood by a function that has Gaussian shape, that is
p (y, |w,x) ≈ q (w) ∝ N (w;m,V). In order to model that the likelihood is translation invariant,
we compute the marginal q (w −B∆) over p (∆) = N

(
∆;0, β2I

)
and considering the case of

β → ∞ , that is

qβ (w) :=

∫
q (w −B∆) · p (∆) d∆

=

∫
N (w;m+B∆,V) · N

(
∆;0, β2I

)
d∆ .

According to Theorem 1, for any β ∈ R+ this is another Gaussian given by

qβ (w) = N

w;m+B0,V + βB · βBT︸ ︷︷ ︸
Vβ


= N

(
w;m,V + β2 ·

[
I −x−1

K xK−1

−x−1
K xT

K−1 x−2
K xT

K−1xK−1

])
.

Note that limβ→∞ qβ (w) = gmix(w) as defined in Subsection 4.1. Using the Woodbury formula in
Theorem 2, the inverse of the covariance can be re-written as

V−1
β :=

(
V + βB · βBT)−1

= V−1 − β2 ·V−1B
(
I+ β2BTV−1B

)−1
BTV−1

= V−1 − β2 ·V−1B
(
β2
(
β−2I+BTV−1B

))−1
BTV−1

= V−1 −V−1B
(
β−2I+BTV−1B

)−1
BTV−1 .
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D.2 Posterior Model

If we assume a prior p (w) = N (w;µ,Σ), then the posterior for the Gaussian approximation is
given by

p (w|x) ∝ q (w) · p (w)

∝ G
(
w;V−1m,V−1

)
· G
(
w;Σ−1µ,Σ−1

)
= G

(
w;V−1m+Σ−1µ,V−1 +Σ−1

)
= N

(
w;Σ (V +Σ)

−1
m+V (V +Σ)

−1
µ,V (V +Σ)

−1
Σ
)
,

where we used the identity
(
Σ−1 +V−1

)−1
= V (V +Σ)

−1
Σ = Σ (V +Σ)

−1
V in the last line.

Similarly, if we use the likelihood approximation which has incorporated the translation invariance,
we get

pβ (w|x) ∝ qβ (w) · p (w)

∝ G
(
w;V−1

β m,V−1
β

)
· G
(
w;Σ−1µ,Σ−1

)
= G

(
w;V−1

β m+Σ−1µ,V−1
β +Σ−1

)
= N

(
w;
(
V−1

β +Σ−1
)−1 (

V−1
β m+Σ−1µ

)
,
(
V−1

β +Σ−1
)−1

)
Observing that limβ→∞ β−2I = 0 we thus see that

p∞ (w|x) = N
(
w;
(
V−1

B +Σ−1
)−1 (

V−1
B m+Σ−1µ

)
,
(
V−1

B +Σ−1
)−1
)
, (66)

V−1
B := V−1 −V−1B

(
BTV−1B

)−1
BTV−1 . (67)

Note again that p∞ (w) = qmix (w;θ) as defined in (15).

D.2.1 Special Case of Diagonal Likelihood Covariance

Now let us consider the special case where the covariance matrix of the Gaussian likelihood
approximation is a diagonal matrix, that is V = Diag(λ). Then, observe that

V−1B =

[
V−1

K−1 0

0 λ−1
K

] [
I

−x−1
K xT

K−1

]
=

[
V−1

K−1

−λ−1
K x−1

K xT
K−1

]
, (68)

V−1BVK−1xK−1 =
(
V−1B

)
·VK−1xK−1 =

[
xK−1

−λ−1
K x−1

K xT
K−1VK−1xK−1

]
, (69)

BTV−1B =
[
I −x−1

K xK−1

] [ V−1
K−1

−λ−1
K x−1

K xT
K−1

]
= V−1

K−1 + λ−1
K x−2

K xK−1x
T
K−1 ,

where we used the notation V−1
K−1 to denote the diagonal (K − 1)× (K − 1) matrix with all

λK−1 :=
[
λ−1
1 , λ−1

2 , . . . , λ−1
K−1

]T

on the diagonal. Thus, using Theorem 2 with C =V−1
K−1, A = x−2

K λ−1
K xK−1 and B = xT

K−1, we
see that (

BTV−1B
)−1

= VK−1 −
1

λKx2
K + xT

K−1VK−1xK−1
VK−1xK−1x

T
K−1VK−1

= VK−1 −
1

xTVx
VK−1xK−1x

T
K−1VK−1 ,

Covariance
(
V−1

B +Σ−1
)
. Thus, for the covariance (67) of the posterior we have
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V−1−V−1B
(
BTV−1B

)−1
BTV−1

= V−1 −V−1B

[
VK−1 −

1

xTVx
VK−1xK−1x

T
K−1VK−1

]
BTV−1

= V−1 −V−1BVK−1B
TV−1︸ ︷︷ ︸

S

+
1

xTVx
V−1BVK−1xK−1x

T
K−1VK−1B

TV−1︸ ︷︷ ︸
T

.

Let’s focus on the expression S first. Using (68) we have

S =

[
V−1

K−1

−λ−1
K x−1

K xT
K−1

]
VK−1

[
V−1

K−1 −λ−1
K x−1

K xK−1

]
=

[
V−1

K−1 −λ−1
K x−1

K xK−1

−λ−1
K x−1

K xT
K−1 λ−2

K x−2
K xT

K−1VK−1xK−1

]
. (70)

Similarly, for the expression Tusing (69) we have

T =
1

xTVx

[
xK−1

−λ−1
K x−1

K xT
K−1VK−1xK−1

] [
xK−1 −λ−1

K x−1
K xT

K−1VK−1xK−1

]
=

1

xTVx

 xK−1x
T
K−1 −xT

K−1VK−1xK−1

λKxK
xK−1

−xT
K−1VK−1xK−1

λKxK
xT
K−1

(xT
K−1VK−1xK−1)

2

λ2
Kx2

K

 . (71)

Putting (70) and (71) together, we get

V−1
B =

1

xTVx

 xK−1x
T
K−1

(
xTVx
λKxK

− xT
K−1VK−1xK−1

λKxK

)
xK−1(

xTVx
λKxK

− xT
K−1VK−1xK−1

λKxK

)
xT
K−1

xTVx
λK

− xTVx·xT
K−1VK−1xK−1

λ2
Kx2

K
+

(xT
K−1VK−1xK−1)

2

λ2
Kx2

K


=

1

xTVx

[
xK−1x

T
K−1 xKxK−1

xKxT
K−1 x2

K

]
=

1

xTVx
xxT , (72)

where we repeatedly used that xTVx− xT
K−1VK−1xK−1 = λKx2

K . Thus, the covariance in (66)
can be written as

(
V−1

B +Σ−1
)−1

=

(
Σ−1 +

1

xTVx
xxT

)−1

= Σ− 1

xTVx
· 1

1 + (xTVx)
−1

xTΣx
·ΣxxTΣ

= Σ− 1

xT (V +Σ)x
· (Σx) (Σx)

T
, (73)

where we used Theorem 2 in the third step. Note that (14) is a special case of (72) when using x = 1
and observing that V1 = λ. Similarly, the covariance in (15) is a special case of (73) when further
noticing that Σ1 = σ2.

Mean
(
V−1

B +Σ−1
)−1 (

V−1
B m+Σ−1µ

)
. In order to derive an efficient update for the mean of

the posterior, please note that by virtue of (72), V−1
B can be written as ddTwith d =

(
xTVx

)− 1
2 · x.
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(a) Optimal parameters θ∗
mix, cf. (17a)
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Figure 3: Gaussian likelihood and posterior approximations q0 and qmix (see (15)) with different
parameter optima (cf. (17)). The dotted circles show alternative parameter values that induce the
same predictive distribution but do not correspond to one of the optima in (17).

Thus, using (73) we have(
V−1

B +Σ−1
)−1 (

V−1
B m+Σ−1µ

)
=

(
Σ− 1

xT (V +Σ)x
· (Σx) (Σx)

T
)(

ddTm+Σ−1µ
)

= ΣddTm+ µ− 1

xT (V +Σ)x
· (Σx) (Σx)

T
ddTm− 1

xT (V +Σ)x
· (Σx) (Σx)

T
Σ−1µ

= µ+

(
xTm

xTVx

)
· (Σx)− (Σx)

T
ddTm

xT (V +Σ)x
· (Σx)− (Σx)

T
Σ−1µ

xT (V +Σ)x
· (Σx)

= µ+

[
xTm

xTVx
− xTm

xTVx
· xTΣx

xT (V +Σ)x
− xTµ

xT (V +Σ)x

]
· (Σx)

= µ+

(
xT (m− µ)

xT (V +Σ)x

)
· (Σx) .

Thus, the location parameter in (15) is a special case of this more general result when using x = 1
and noticing again that Σ1 = σ2 and V1 = λ, respectively. It can be seen that the Gaussian product
updates the prior location in the direction Σx. This is because the likelihood is translation invariant
wrt. all directions perpendicular to x (i.e. the hyper plane determined by the normal vector x).

The two posterior approximations q0 and qmix as well as the corresponding likelihood approximation
is visualised in Fig. 3 for two different parametrisations (cf. Sec. 4.3).

D.3 True posterior and optimal invariance-abiding parameters

For the linear model with a single observation y and inputs x, the true posterior p(w |x, y) follows
from the standard Bayesian update equation for Gaussian linear models (cf. (27) in App. B with
A = 1

K · xT):

p(w | y,x) = N
(
w;m∗

p,V
∗
p

)
, V∗

p =

(
1

K2σ2
y

xxT +Σ−1

)−1

, m∗
p = V∗

p

y

Kσ2
y

x . (74)

For N observations Y := {y(n)}Nn=1 with identical input x, the posterior is

p (w |Y,x) = N
(
w;m∗

p,V
∗
p

)
,V∗

p =

(
N

K2σ2
y

xxT +Σ−1

)−1

,m∗
p = V∗

p

∑N
n=1 y

(n)

Kσ2
y

x . (75)
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We want to relate the true posterior (75) to the parameters of the invariance-abiding posterior
qmix(w;θ). It suffices to consider the special case x = 1 from the main text. We will use the form

qmix(w) = N
(
w;
(
Σ−1 +V−1

mix

)−1 (
Σ−1µ+V−1

mixmmix

)
,Σ−1 +V−1

mix

)
(76)

For the precision matrix Σ−1 +V−1
mix, using the form in (72) with x = 1 gives

V−1
mix =

1

xTVx
xxT =

1

1Tλ
11T, (77)

since V1 = λ. Comparing this to (75), we see that Σ−1 + V−1
mix has the same structure as the

precision matrix of the true posterior. By setting the optimal variances as 1Tλ∗ =
K2σ2

y

N , and using
K2σ2

y

N =
Kσ2

y

N · 1T1, we see that one possible choice for the optimal variance parameters is

λ∗ =
Kσ2

y

N
· 1. (78)

We note that other vectors that are not proportional to 1 and also sum to
K2σ2

y

N are also valid optima.

Similarly, with µ = 0, and by noting that Σ−1 +V−1
mix = V−1

p , we see that

m∗ =
1

N

N∑
n=1

y(n) · 1. (79)

E Permutation invariance in Bayesian neural networks

Here we analyse the permutation invariance in BNNs. This invariance is independent of the data,
persisting for any dataset size.

We first describe the set of permutation matrices corresponding to the transformations that leave
the likelihood invariant, i.e. t(w, r) = Prw. We ignore the biases for simplicity and describe these
permutations first on a node/neuron level, then layer-wise for the weight matrices, and finally on the
weight vector that is obtained by stacking all weight matrices. We will denote layers with indices
l and the number of layers by L. Layer-wise permutation matrices are then denoted as P̃l and the
corresponding weight matrices are denoted as Wl. The permutation matrix that results when stacking
all weights matrices into a vector w is denoted as P. When necessary, one particular permutation
matrix from the set of all possible permutation matrices for a given architecture is indexed with
superscript (i), i.e. P = {P(i)}i and |P| =

∏L−1
l=1 kl!, where kl is the number of nodes in layer l.

Node permutations. Each hidden layer zl ∈ z1, . . . , zL−1 is a set of nodes that can be permuted
in kl! possible ways, relabelling the corresponding parameters attached to these nodes. Each of these
kl! permutations per layer can be combined with any of the permutations of another layer. Each
permutation matrix P̃l for a layer l corresponds to one of the unique orderings of nodes zl. For
instance, the permutation matrix that reorders the first 3 nodes as (zl,3, zl,1, zl,2) is

P̃l =

 0 0 1 . . .
1 0 0 . . .
0 1 0 . . .
. . . . . . . . . . . .

 . (80)

The remaining entries in the matrix are ones on the diagonal and zeros elsewhere.

Layer-wise permutation of weight matrices. Next, we describe how node permutations correspond
to permutations of weight matrices in terms of permutations to the in- and outgoing weights. For
one particular instance of permutations (omitting superscript (i)) to each of the hidden layers, the
corresponding weight matrices can be permuted as follows:

∀l ∈ 1, . . . , L : w′
l = P̃lWlP̃

T
l−1, P̃0 = P̃L = I. (81)

The identities corresponding to the first and last layers is because only hidden layer nodes can be
permuted but not the data itself. Note also that each permutation matrix is applied to two weight
matrices, since permutations to nodes of a particular layer correspond to the simultaneous permutation
of the weight matrices from the preceding and subsequent layer.

21



Permutation of stacked weight vectors. The layer-wise formulation can be written in terms of the
stacked weight vector w = [vec(W1), . . . , vec(WL+1)]

T, using vec(ABC) =
(
CT ⊗A

)
vec(B):

vec(W′
l) =

(
P̃l−1 ⊗ P̃l

)
vec(Wl) =: Pl,l−1vec(Wl), (82)

where we denote the new permutation matrix that is applied to the vectorised weights with a bar and
the subscripts correspond to the two successive layers. The overall permutation matrix corresponding
to the entire weight vector w is given by forming the block-diagonal matrix

P =

P1,0 0 0 . . .
0 P2,1 0 . . .
0 0 P3,2 . . .
. . . . . . . . . . . .

 , (83)

where each denotes block-matrices of zeros with the respective dimensions and the remaining parts
of the matrix are the identity on the diagonal and zeros elsewhere.

Invariance gap. Note again that the permutation invariance for BNNs is independent of the data.
The invariance gap KL [q0 || qmix] takes values in the range [ 0, ln |P| ], where |P| is the factorial
number of modes. The gap takes the maximal value when each mode is completely separated from
the other modes, and the gap is zero when both q0(w) and qmix(w) are identical. This is the case e.g.
if q0(w) reverts to the prior p(w) since all modes are then identical, i.e. q0(Pw) = q(w).

F Data-related bound on the mean-field KL divergence

Assume the regression setting described in Sec. 2.2, where we assume a finite dataset D =
{(x(n), y(n))}Nn=1 and a regression setting with fixed homogeneous noise variance σ2

y . We can
further assume that the prior is chosen such that it induces a reasonably bounded output variance of
the neural network, σ2

L

(
x(n)

)
:= Vw∼p

[
f(x(n); w)

]
, for some fixed input x(n). We will then have

a finite expected log-likelihood and the ELBO for a mean-field variational approximation qθ is

LELBO (qθ,D) =

N∑
n=1

Ew∼qθ

[
ln p(y(n) |x(n), w)

]
︸ ︷︷ ︸

ELL(qθ,D)

−KL [qθ || p] . (84)

Let us now consider a hypothetical worst-case fit in terms of the ELBO objective. This is when
the data is completely ignored with qθ(w) = p(w), as any worse fit could be trivially improved by
setting the approximation to the prior. This gives then the inequality (using (84))

∀qθ : LELBO (qθ,D) ≥ LELBO (p,D) ⇔ ELL (qθ,D)−KL [qθ || p] ≥ ELL (p,D) . (85)

Although we can not compute the expected log-likelihood for an arbitrary fit qθ , we can quantify the
upper bound given above, by considering the best-case fit q∗, i.e. a hypothetical optimum where the
data is perfectly predicted up to the known observation noise variance σ2

y . The resulting bound is then

KL [qθ || p] ≤ ELL (q∗,D)− ELL (p,D) . (86)

Next, we compute the two expected log-likelihood terms in (86). We first consider the worst-case,
where we have

ELL(p,D) =

N∑
n=1

Ew∼p

[
ln p(y(n)|x(n),w)

]
(87)

=

N∑
n=1

− 1

2σ2
y

Ew∼p

[(
y(n) − zL

)2]
− N

2
ln
[
2πσ2

y

]
, (88)

where zL is the noisy output of the neural network given by

zL = f(x(n); w) + ϵ, w ∼ p(w), ϵ ∼ N
(
0, σ2

y

)
. (89)
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Splitting the expectation of the quadratic term into variance and square of the expectation, we have

Ew∼p

[(
y(n) − zL

)2]
= Ew∼p

[
y(n) − zL

]2
+ Vw∼p

[
y(n) − zL

]
(90)

Since the last layer computes f(x(n); w) = wT
L,1zL−1 in the regression setting and the prior weights

are independent of zL−1 and centred at zero, i.e. Ew∼p [wL,1] = 0, it follows that

Ew∼p

[
y(n) − zL

]
= y(n). (91)

Vw∼p

[
y(n) − zL

]
= Ew∼p

[
z2L
]
= σ2

L

(
x(n)

)
+ σ2

y, (92)

where we denote the variance of the neural network outputs by σ2
L

(
x(n)

)
:= Vw∼p

[
f(x(n); w)

]
.

Hence, the expected log likelihood under the prior is

ELL(p,D) =

N∑
n=1

− 1

2σ2
y

[
σ2
L

(
x(n)

)
+ σ2

y +
(
y(n)

)2]− N

2
ln
[
2πσ2

y

]
(93)

= −1

2

N∑
n=1

σ2
L

(
x(n)

)
+
(
y(n)

)2
σ2
y

− N

2

(
1 + ln

[
2πσ2

y

])
. (94)

For the best-case fit in terms of the ELBO, we assume that we completely overfit and perfectly predict
the data by putting the mean of the Gaussian exactly on the data, i.e.

p(y(n)|x(n),w) = N (y; y(n), σ2
y).

Then, we have

Ew∼q∗

[
y(n) − zL

]
= 0, (95)

Vw∼q∗

[
y(n) − zL

]
= σ2

y. (96)

Hence, the expected log likelihood of the best case fit is

ELL(q∗,D) =

N∑
n=1

Ew∼q∗

[
ln p(y(n) |x(n),w)

]
(97)

=

N∑
n=1

− 1

2σ2
y

[
σ2
y

]
− N

2
ln
[
2πσ2

y

]
(98)

= −N

2

(
1 + ln

[
2πσ2

y

])
. (99)

Taking the difference between (93) and (97), we obtain the result in (3),

KL [qθ || p] ≤
N∑

n=1

σ2
L

(
x(n)

)
+
(
y(n)

)2
2σ2

y

.
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